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Effect of a p38 MAPK inhibitor on FFA-induced hepatic
insulin resistance in vivo
S Pereira1,7, WQ Yu1,7, J Moore2, Y Mori1,3, E Tsiani2 and A Giacca1,4,5,6

The mechanisms whereby prolonged plasma free fatty acids elevation, as found in obesity, causes hepatic insulin resistance are not
fully clarified. We herein investigated whether inhibition of p38 mitogen-activated protein kinase (MAPK) prevented hepatic insulin
resistance following prolonged lipid infusion. Chronically cannulated rats were subdivided into one of four intravenous (i.v.)
treatments that lasted 48 h: Saline (5.5 μl min− 1), Intralipid plus heparin (IH, 20% Intralipid+20 U ml− 1 heparin; 5.5 μl min− 1),
IH+p38 MAPK inhibitor (SB239063) and SB239063 alone. During the last 2 h of treatment, a hyperinsulinemic (5 mU kg− 1 min− 1)
euglycemic clamp together with [3-3H] glucose methodology was carried out to distinguish hepatic from peripheral insulin
sensitivity. We found that SB239063 prevented IH-induced hepatic insulin resistance, but not peripheral insulin resistance.
SB239063 also prevented IH-induced phosphorylation of activating transcription factor 2 (ATF2), a marker of p38 MAPK activity,
in the liver. Moreover, in another lipid infusion model in mice, SB239063 prevented hepatic but not peripheral insulin resistance
caused by 48 h combined ethyloleate plus ethylpalmitate infusion. Our results suggest that inhibition of p38 MAPK may be a useful
strategy in alleviating hepatic insulin resistance in obesity-associated disorders.
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INTRODUCTION
Elevated plasma free fatty acids (FFAs), as found in obesity, induce
hepatic insulin resistance.1–3 Prolonged exposure of hepatocytes
to FFAs activates p38 mitogen-activated protein kinase (MAPK),
which decreases the ability of insulin to reduce gluconeogenesis.4

In murine models of obesity, hepatic p38 MAPK is activated and
when p38 MAPK is overexpressed in the liver, impairment of
insulin signalling ensues.5 Nevertheless, the role of p38 MAPK in
FFA-induced hepatic insulin resistance in vivo has not been
assessed. We herein used prolonged (48 h) lipid infusion, namely
Intralipid plus heparin (IH) infusion in rats3 and combined
ethyloleate plus ethylpalmitate infusion in mice, to elevate plasma
FFAs because thus far, p38 MAPK activation has been associated
with prolonged in vitro exposure to FFAs or obesity-associated
insulin resistance, a chronic model of FFA elevation. We have
found that protein kinase C (PKC)-δ is activated in the liver after
prolonged lipid infusion,3 and studies in hepatocytes have shown
that PKC-δ activates p38 MAPK.6 Hence, in the current study we
used a p38 MAPK inhibitor to determine whether it prevented
hepatic insulin resistance caused by prolonged plasma FFA
elevation.

MATERIALS AND METHODS
Experiments
The Animal Care Committee of the University of Toronto approved
all procedures, which were in accordance with the Canadian
Council of Animal Care Standards. Chronically cannulated3 female

Wistar rats were randomized in a non-blinded manner into one of
four intravenous (i.v.) treatments: Saline (SAL, 5.5 μl min− 1),
IH (20% Intralipid+20 U ml− 1 heparin; 5.5 μl min− 1), IH+p38 MAPK
inhibitor SB239063 (SB (Sigma, St Louis, MO, USA); 2.25 mg kg−1 h−1

for first hour and 0.55 mg kg− 1 h− 1 thereafter7) and SB alone.
After an overnight fast, at 44 h of treatment, [3-3H] glucose was
started (8 μCi bolus plus 0.15 μCi min− 1). A 2-h hyperinsulinemic
(insulin infusion: 5 mU kg− 1 min− 1) euglycemic clamp3 was
initiated at 46 h. Blood samples for plasma assays were collected
during the basal period (30 min before the clamp) and during the
last 30 min of the clamp. For western blot analysis, the liver was
collected under anesthesia after 48 h of infusions.
Male C57BL6mice underwent a hyperinsulinemic (5mU kg−1 min−1)

euglycemic clamp with [3-3H] glucose at the end of 48 h infusion
of ethanol control in glycerol vehicle (EtOH, 0.12 μmol min− 1)
or combined ethyloleate+ethylpalmitate infusion in a 2:1 ratio in
glycerol vehicle (EtO/P, total dose: 0.12 μmol min− 1) or EtO/P+SB
(4.5 mg kg− 1 during the first hour, 1.1 mg kg− 1 h− 1 thereafter).
This lipid infusion method is based on the conversion of ethyl fatty
acids to fatty acids and ethanol by plasma esterases.8

Assays and calculations
Measurements of plasma glucose, insulin and FFA and calculations
of glucose kinetics were performed as reported previously.3

For western blots, cytosolic fractions or whole homogenates
of liver samples were prepared.3,9 The primary antibody for total
activating transcription factor 2 (ATF2) was from Santa Cruz
Biotechnology (Santa Cruz, CA, USA; cat #sc-187), while the rest of
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primary antibodies used were from Cell Signaling Technology
(Danvers, MA, USA; cat #9221, 9251, 9252, 9271, 9272).

Statistics
Data are means ± s.e.m. Significance was accepted when Po0.05.
One-way ANOVA followed by Tukey’s t-test was used, unless
further specified. Sample size was based on variances obtained in
our previous studies using this model and is described in figure
legends. Variances were similar across groups.

RESULTS
Plasma glucose was not different among groups during the basal
(SAL: 6.60 ± 0.18 mM, n= 7; IH: 6.06 ± 0.22, n= 8; IH+SB: 5.77 ± 0.39,
n= 6; SB: 6.66 ± 0.06, n= 5) and clamp periods (SAL: 6.40 ± 0.20;
IH: 6.06 ± 0.28; IH+SB: 5.83 ± 0.39; SB: 6.49 ± 0.06). Basal plasma

FFAs were ~ 2-fold higher (Po0.05) in IH-infused groups
(SAL: 472 ± 31 μM; IH: 894 ± 62; IH+SB: 1105 ± 103; SB: 557 ± 85).
During the hyperinsulinemic clamp, FFAs were lower than basal as
expected but remained elevated (Po0.05) in IH-infused groups
(SAL: 110 ± 23 μM; IH: 549 ± 70; IH+SB: 514 ± 67; SB: 176 ± 38). There
was no intergroup difference in basal (SAL: 67 ± 12 pM; IH:
102 ± 20; IH+SB: 118 ± 32; SB: 119 ± 39) or clamp plasma insulin
(SAL: 506 ± 29 pM; IH: 522 ± 25; IH+SB: 569 ± 58; SB: 557 ± 59).
There was a trend for IH to increase basal endogenous glucose

production, which did not reach significance (Figure 1a) and was
abolished by SB. IH elevated endogenous glucose production during
the clamp and SB prevented this elevation (Figure 1a). Insulin-
induced suppression of endogenous glucose production (that is,
hepatic insulin sensitivity) was blunted by IH and rescued by
SB (Figure 1b). Glucose infusion rate and glucose utilization
were higher (Po0.05) in SAL (27.0±1.3 mg kg−1min−1 and

Figure 1. (a) Endogenous glucose production during basal and clamp periods. (b) Percent suppression of endogenous glucose production by
insulin. (c) Percent augmentation of glucose utilization by insulin. (d) Protein content of phosphorylated ATF2 (p-ATF2) relative to total ATF2 in
liver cytosolic fractions and representative blots of protein content of p-ATF2 relative to total (t) ATF2 in cytosolic fractions and whole liver
homogenates (Wh hom; performed to confirm the initial results in cytosolic fractions). (e) Protein content of phosphorylated c-jun N-terminal
kinase (p-JNK) relative to total JNK in whole liver homogenates. (f) Protein content of p-Akt relative to total Akt in whole liver homogenates.
Liver tissue collected after 48 h of treatment infusion without the hyperinsulinemic euglycemic clamp was used for (d, e). For (f), liver tissue
collected after 48 h of treatment infusion and hyperinsulinemic euglycemic clamp was used. Data are means± s.e.m. Treatments: SAL, Saline;
IH, Intralipid plus heparin; IH+SB, IH plus SB239063 (p38 MAPK inhibitor); SB, SB239063. For (a–c), n= 7 for SAL, n= 8 for IH, n= 6 for IH+SB and
n= 5 for SB. For (d), n= 5 for SAL, n= 4 for IH, n= 5 for IH+SB and n= 3 for SB. For (e), n= 4 for SAL, IH and IH+SB, and n= 3 for SB. For (f), n= 4
for SAL, n= 5 for IH, n= 4 for IH+SB and n= 4 for SB. *Po0.05 vs SAL. †Po0.05 vs other groups. §Po0.05 vs IH.
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30.0±1.2 mg kg−1min−1) than in IH (17.6±0.9 and 25.1±1.0), IH+SB
(16.1±1.1 and 20.2±1.3) and SB alone (19.7±2.3 and 24.2±1.8).
Percent augmentation in glucose utilization (that is, peripheral insulin
sensitivity) was decreased by IH, which was not prevented by SB
(Figure 1c).
As a marker of p38 MAPK activity, we determined the

phosphorylation of its direct target ATF2 in liver tissues collected
after 48 h of infusions, without hyperinsulinemic clamps because
members of the MAPK family can be activated by insulin. IH increased
ATF2 phosphorylation and this was prevented by SB (Figure 1d).
In contrast, phosphorylation of c-jun N-terminal kinase (JNK), another
MAPK implicated in insulin resistance, did not differ across groups
(Figure 1e). In liver samples collected after clamp, phosphorylation
(that is, activation) of Akt, a mediator of insulin signalling, was
decreased by IH and this was prevented by SB (Figure 1f).
To corroborate our data, we used another model of prolonged

(48 h) lipid infusion, combined ethyloleate plus ethylpalmitate infusion
with or without SB in mice, and found that again, SB prevented lipid-
induced hepatic but not peripheral insulin resistance (Figure 2).

DISCUSSION
We found herein that the p38 MAPK inhibitor SB239063 prevented
hepatic insulin resistance caused by prolonged plasma FFA
elevation in rats. This effect was associated with decreased
activation of ATF2, a direct target of p38 MAPK, in the liver.
We confirmed the benefits of SB239063 on lipid-induced hepatic
insulin resistance in mice infused with combined ethyloleate plus
ethylpalmitate. SB239063, however, did not have beneficial effects
on peripheral insulin sensitivity.
To our knowledge, this is the first study to show that inhibition of

p38 MAPK prevents hepatic insulin resistance caused by FFAs in vivo.
The role of p38 MAPK in FFA-induced hepatic insulin resistance has
been studied in hepatocytes,4 where p38 MAPK stabilized PTEN
(protein phosphatase and tensin homolog deleted on chromosome
10), an antagonist of the effects of phosphoinositide 3-kinase.4 Akt is
downstream of phosphoinositide 3-kinase and the current study
shows that the p38 MAPK inhibitor prevents IH-induced impairment
in hepatic Akt activation. FFA-induced p38 MAPK activation also
increases gluconeogenic gene transcription,6 which may explain the
trend toward increased basal endogenous glucose production by IH,
abolished by SB239063.
IH increased ATF2 phosphorylation and SB239063 thwarted

this, which suggests that SB239063 acts by inhibiting p38 MAPK.
SB239063 inhibits both p38α MAPK and p38β MAPK7 although
p38α MAPK mediated the FFA effects in hepatocytes.4,6 In contrast,
activation of hepatic JNK was not altered by IH or SB239063.
SB239063 did not improve peripheral insulin sensitivity. p38

MAPK is activated in muscle of humans with type 2 diabetes,10,11

and of mice following lipid infusion;12 however, p38 MAPK inhibition

did not improve insulin-stimulated muscle glucose uptake.11 There
are reports that SB239063 inhibits glucose uptake in muscle cell
lines13 perhaps independent of p38 MAPK,14 and our results suggest
that SB239063 alone decreased glucose utilization in vivo. However,
the percent augmentation in glucose utilization by insulin infusion
did not differ in SB239063 vs SAL.
In contrast to our results, one study has found that hepatic p38

MAPK activation, via adenoviral-mediated overexpression of MAPK
kinase 6, in ob/ob mice is beneficial to insulin sensitivity.15 Our
results support the results by another group that using adenoviral-
mediated overexpression of dominant-negative p38α MAPK found
improved glucose tolerance and reduced hyperinsulinemia and
PEPCK expression in ob/ob mice.5

In conclusion, in our models of prolonged lipid infusion, inhibition
of p38 MAPK ameliorates hepatic insulin sensitivity. As prolonged
lipid infusion activates liver PKC-δ3 and PKC-δ activates p38 MAPK in
hepatocytes,6 PKC-δ may be upstream of p38 MAPK in FFA-induced
hepatic insulin resistance in vivo, but this remains to be determined.
The reason why p38 MAPK inhibition is effective on FFA-induced
hepatic but not peripheral insulin resistance is unclear; however,
there are different possibilities, including different mechanisms
of insulin resistance in the periphery vs liver after 48 h IH16 and
a possible adverse effect of SB239063 on glucose utilization.
As some MAPK inhibitors can be used in humans and are in

phase II clinical trials for their antinflammatory and antineoplastic
properties,17–19 it would be of interest to determine whether these
inhibitors can improve obesity-associated hepatic insulin resistance.
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