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Bee venom phospholipase A2 
ameliorates Alzheimer’s disease 
pathology in Aβ vaccination 
treatment without inducing  
neuro-inflammation in a 3xTg-AD 
mouse model
Hyunjung Baek1, Chan-ju Lee1, Da Bin Choi1, Nam-sik Kim2, Yong-Suk Kim   2, Young Jun Ye3, 
Youn-Sub Kim3, Jin Su Kim4, Insop Shim5 & Hyunsu Bae   1

Alzheimer’s disease (AD) is the most common form of dementia and is characterized by an imbalance 
between the production and clearance of amyloid-beta (Aβ) and tau proteins. Although vaccination 
against Aβ peptide results in a dramatic reduction in Aβ pathology in experimental mouse models, 
the initial clinical trial for an active Aβ vaccine was halted early due to the development of acute 
meningoencephalitis in 6% of the immunized patients, which likely involved a T-cell mediated pro-
inflammatory response. In this study, we aimed to determine whether bee venom phospholipase 
A2 (bvPLA2) treatment would induce Tregs and ameliorate AD pathology without unwanted T cell-
mediated inflammation. First, we investigated the effects of bvPLA2 on the inflammatory infiltration 
caused by Aβ vaccination. Inflammatory aggregates of CD3+ T lymphocytes and macrophages were 
found in the brains and spinal cords of mice treated with Aβ. However, administration of bvPLA2 
dramatically eliminated central nervous system inflammation following Aβ immunization. In AD model 
mice (3xTg-AD mice), bvPLA2 administration significantly ameliorated cognitive deficits and reduced 
Aβ burdens in the brains of Aβ-vaccinated 3xTg-AD mice. Additionally, we examined brain glucose 
metabolism using positron emission tomography with 18F-2 fluoro-2-deoxy-d-glucose. Cerebral glucose 
uptake was considerably higher in the brains of Aβ-vaccinated 3xTg-AD mice that received bvPLA2 than 
those that did not. The present study suggests that the modulation of Treg populations via bvPLA2 
treatment may be a new therapeutic approach to attenuate the progression of AD in conjunction with 
Aβ vaccination therapy without an adverse inflammatory response.

Alzheimer’s disease (AD) is a severe neurodegenerative disorder characterized by the accumulation of two hall-
mark proteins, amyloid-β (Aβ) peptides and neurofibrillary tangles, that play key roles in neuroinflammation, 
including the production of pro-inflammatory cytokines and activation of microglial cells and complements. 
According to the “amyloid cascade hypothesis,” deposition of Aβ peptide in amyloid plaques may cause deleteri-
ous events, such as neurofibrillary tangle formation, neuronal dysfunction, and death1–3. The present treatments 
available for AD patients are limited to symptomatic management that consists mostly of acetylcholinesterase 

1Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea. 
2Department of Acupuncutre & Moxibustion Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 
Republic of Korea. 3Department of Anatomy-Pointology, College of Korean Medicine, Gachon University, Seongnam, 
13120, Republic of Korea. 4Division of RI-Convergence Research, Korea Institute Radiological and Medical Sciences, 
75 Nowon-Gil, Gongneung-Dong, Nowon-Gu, Seoul, 01812, Republic of Korea. 5Acupuncture and Meridian Science 
Research Center, College of Korean Medical Science Graduate School, Kyung Hee University, Seoul, Republic of 
Korea. Correspondence and requests for materials should be addressed to H. Bae (email: hbae@khu.ac.kr)

Received: 26 July 2018

Accepted: 29 October 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-2655-5405
http://orcid.org/0000-0002-0299-3582
mailto:hbae@khu.ac.kr


www.nature.com/scientificreports/

2SCIentIfIC ReportS |         (2018) 8:17369  | DOI:10.1038/s41598-018-35030-1

inhibitors and an N-methyl-d-aspartate receptor antagonist. Thus, the Aβ pathway has become a major target for 
the development of disease-modifying drugs that stabilize or slow the AD pathological process.

Aβ immunotherapy involves lowering the production of neurotoxic oligomeric precursors consisting of aggre-
gated Aβ or increasing the rate of Aβ clearance from the brain4,5. Active immunization following vaccination 
against Aβ1-42 peptide was reported to have a therapeutic effect in a murine model of AD6,7. In view of these 
encouraging results, a clinical Aβ vaccination trial (AN1792) was initiated, and modest beneficial effects were 
observed in a cohort of Aβ1-42-immunized AD patients. However, the trial was interrupted due to the develop-
ment of meningoencephalitis in 6% of the patients, revealing the presence of autoreactive T cell responses8. To 
avoid a T cell-mediated immune response after active vaccination, current alternative vaccination strategies are 
focused on generating epitope-specific Aβ peptides.

CD4+CD25+Foxp3+ regulatory T cells (Tregs) comprise a functionally distinct subset of mature T cells 
that act as the master regulators in the development and maintenance of immune tolerance9,10. Tregs suppress 
a variety of immune cells, including B cells, natural killer (NK) cells, CD4+ or CD8+ T cells, and both mono-
cytes and dendritic cells. Naturally occurring Tregs (nTregs) originate from the thymus and constitute a critical 
arm of the active mechanisms of peripheral tolerance, particularly to self-antigens. In contrast, inducible Tregs 
(iTregs) originate from the periphery, mainly from CD4+ T cell activation by specific target antigens presented 
by antigen-presenting cells (APC) in the presence of specific immune regulatory cytokines (essentially TGF-β). 
Following adequate antigen stimulation in the presence of cognate antigen and specialized immune-regulatory 
cytokines, iTregs differentiate into CD25+ and Foxp3+ Tregs. Recently, adoptive therapy of antigen-specific iTregs 
targeted to allergy, asthma, and autoimmune disease antigens holds promise as an alternative to an immunomod-
ulatory strategy11–13. A growing body of evidence suggests that the modulation of Treg function may be a potential 
therapeutic approach for neuroprotection in various neurodegenerative disorders14,15. A better understanding 
of Tregs may therefore facilitate the development of new alternative strategies for modulating the inflammatory 
responses involved in AD.

We have previously reported the protective role of Tregs against AD progression16. Adoptive transfer of Tregs 
improved cognitive deficits and reduced cortical and hippocampal Aβ plaque deposition in a mouse model of AD 
(3xTg-AD). Furthermore, depletion of Tregs resulted in marked aggravation of the spatial learning deficits and a 
decrease in glucose metabolism. We also reported that bee venom phospholipase A2 (bvPLA2) treatment exerted 
neuroprotective effects in a mouse model of AD via microglial inactivation and a reduction in CD4+ T cell infil-
tration17. Therefore, in the present study, we aimed to determine whether bvPLA2 treatment would induce Tregs 
and ameliorate AD pathology without unwanted T cell-mediated inflammation following Aβ vaccination. Our 
findings demonstrate that bvPLA2-mediated expansion of Tregs together with co-immunization of Aβ42 vaccine 
may have distinct effects on immunosuppressive responses, facilitating a balance in homeostasis in the context 
of neurodegenerative diseases, including AD. bvPLA2-mediated induction of Tregs improved cognitive func-
tion, reduced Aβ deposition and the production of inflammatory cytokines, and increased glucose uptake in 
Aβ-vaccinated 3xTg-AD mice. We also found that bvPLA2-induced Tregs significantly reduced inflammatory 
infiltration in the brain and spinal cord following Aβ immunization and injection of pertussis toxin (PT) as a 
model for neuro-inflammation. These findings suggest that Treg induction by bvPLA2 treatment may improve 
the safety of Aβ-based vaccines against central nervous system (CNS) inflammation. Thus, bvPLA2 treatment 
with Aβ vaccine may be a therapeutic strategy to induce Tregs targeted against Aβ42 antigen without adverse 
neuro-inflammation.

Results
bvPLA2 attenuated aberrant autoimmune reactions against Aβ peptide leading to neuro-in-
flammation in C57BL/6 mice.  First, we examined the effect of bvPLA2 treatment on adverse neuro-in-
flammations against full-length Aβ peptide vaccination. To boost the T cell response against Aβ, C57BL/6 mice 
were injected with 100 µg Aβ1-42 peptide and boosted intravenously twice with 500 ng pertussis toxin (PT) for 
two consecutive days. PT is widely used to facilitate the induction of experimental autoimmune encephalomyeli-
tis (EAE) in rodents because of its ability to open the blood-brain barrier (BBB). As expected, none of the mice 
immunized with Aβ alone showed any abnormality up to 60 days after vaccination. Conversely, the survival rate 
decreased to 60% after immunization with PT treatment. In contrast, all mice treated by bvPLA2, Aβ, and PT 
alone survived and showed no abnormal symptoms (Fig. 1). Inflammatory infiltration and aggregates of CD3+ 
T lymphocytes and BS-I isolectin B4+ macrophages were investigated in the brain and spinal cord tissues. In all 
mice treated with Aβ and PT, inflammatory infiltration was observed and was mainly localized around the mar-
ginal zone of the spinal cord, while this was not seen in the Complete Freund’s Adjuvant (CFA) group (Fig. 2(a)). 
Infiltration of inflammatory cells was also not observed in the Aβ + PT + bvPLA2 group (Table 1 and Fig. 2(b)). 
Inflammatory aggregates of macrophages and CD3+ T lymphocytes were found in the brains and spinal cords of 
mice treated with Aβ and PT (Fig. 2(b). In contrast, CD3+ T lymphocytes were diminished in bvPLA2-treated 
mice administered Aβ and PT (Fig. 2(c) and Table 1). The relative number of macrophages was about 25-fold 
lower in the Aβ + PT + bvPLA2 group than those in the Aβ + PT groups (Table 1). These results suggest that the 
induction of Tregs by bvPLA2 treatment suppresses effector T cells and macrophages in the pathogenesis of Aβ 
vaccination-induced neuro-inflammation.

bvPLA2 treatment significantly alleviated memory impairments in Aβ-vaccinated 3xTg-AD 
mice.  To evaluate the neuroprotective effects of bvPLA2 in AD model mice undergoing Aβ vaccination ther-
apy, mice were immunized with Aβ1-42 peptide six times over 3 months, and bvPLA2 was injected intraperito-
neally once a week during the Aβ immunization period. We used the morris water maze (MWM) to examine 
the psychological process and neural mechanisms of spatial learning and memory in 3xTg-AD mice, which is 
placed in a large circular pool of water and required to escape from water onto a hidden platform. Mice relies 
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on distal visual cues to navigate from starting locations around the testing area to a submerged escape platform. 
The latency times taken to reach the hidden platform were measured during the acquisition trials (Fig. 3(a)). On 
the 4th day, the latency times of the 3xTg/Aβ + PLA2 group were similar to that those of the WT group, whereas 
the 3xTg and 3xTg/KLH (keyhole limpet hemocyanin) groups exhibited the longest latency times. The number 
of times the mice traveled into the location where the hidden platform was previously placed was significantly 
greater in the 3xTg/Aβ + PLA2 group than in the 3xTg/Aβ group (Fig. 3(b)). The time spent in the target quad-
rant and the number of platform crossings were both dramatically increased in the 3xTg/Aβ + PLA2 group com-
pared with those in the 3xTg/ Aβ group (Fig. 3(c,d)). KLH-treated transgenic mice failed to demonstrate learning 

Figure 1.  Time course of the survival rates of mice treated with bvPLA2 followed by Aβ immunization with or 
without PT. To induce a model of neuro-inflammation in C57BL/6 mice, the antigen suspension was mixed with 
1:1 with CFA, and 100 µg of the Aβ1-42 peptide was injected subcutaneously. 500 ng of PT was intravenously 
administered the same day and 48 h later Aβ immunization. 0.5 mg/kg of bvPLA2 was given to mice after Aβ 
immunization. Mice were monitored for survival over 60 days. The survival rate was evaluated using Kaplan-
Meier curves. **P < 0.01 and ***P < 0.01 vs. Aβ + PT + bvPLA2.

Figure 2.  Effects of bvPLA2 on inflammatory infiltration in the brains and spinal cords of C57BL/6 mice 
following Aβ immunization with or without PT. (a) The marginal region of spinal cord tissues was stained 
with hematoxylin and eosin (H&E) for analysis of cellular infiltration. Tissues were stained with (b) anti-CD3 
antibody and (c) biotin-conjugated BS-I isolectin B4 for T cell and macrophage infiltration, respectively. Figure 
is representative of sections from five individual mice. The marginal region of spinal cord and the cortex region 
of brain were depicted. Scale bars 100 µm.

Group Antigen PT bvPLA2
Survival 
rate (%)

Inflammatory 
infiltration CD3+ cells Macrophages

1 — — — 10/10 (100) 0.1 ± 0.3 1.23 ± 0.8 0.46 ± 1.2

2 Aβ1-42 No No 10/10 (100) 0.13 ± 0.3 0.25 ± 1.2 0.61 ± 1.4

3 Aβ1-42 Yes No 6/10 (60) 18.9 ± 1.9 12.21 ± 1.6 15.3 ± 2.0

4 Aβ1-42 Yes Yes 10/10 (100) 0.37 ± 0.1 1.25 ± 0.8 1.22 ± 0.6

5 — Yes No 9/10 (90) 0.14 ± 0.6 1.7 ± 0.7 0.7 ± 0.4

Table 1.  Disease features of C57BL/6 mouse groups immunized with amyloid-β with or without PT.
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or memory of the platform location. These data indicate that bvPLA2 treatment significantly reverts the memory 
deficits seen in Aβ-vaccinated 3xTg-AD mice.

Effects of bvPLA2 on inflammatory cytokine production in Aβ-vaccinated AD model mice.  The 
proportion of Tregs was measured from the splenocytes of each group and was significantly increased following 
Aβ vaccination compared to the proportion in the 3xTg group (Fig. 4(a)). However, no significant differences 
between the 3xTg/Aβ, 3xTg/Aβ + PLA2, and 3xTg/PLA2 groups were found (Fig. 4(b)). To investigate the lev-
els of immune response mediators, the production of pro-inflammatory cytokines, including interleukin (IL)-2, 
IL-10, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α, in the supernatants of splenocyte cultures was 
assessed (Fig. 4(c–e)). Levels of IL-2, IFN-γ, and TNF-α were elevated in 3xTg-AD mice compared with those 
in WT mice (Fig. 4(c–e)). Administration of bvPLA2 significantly reduced the levels of IL-2 and IFN-γ com-
pared with those in the 3xTg-AD group. The reductions of IFN-γ and TNF-α in the 3xTg/Aβ + PLA2 group 
were greater than those observed in the 3xTg/Aβ group. In contrast, IL-10 levels were significantly elevated in 
PLA2-treated mice (Fig. 4(f)). IL-10 is a key cytokine produced by Tregs, and elevated IL-10 levels suggest that 
Tregs are induced by bvPLA2 treatment.

Effects of bvPLA2 treatment on serum anti-Aβ Antibodies (Abs).  To determine whether Ab pro-
duction was directed against Aβ, we collected sera from the mice in each group and measured anti-Aβ Ab titers 
using direct enzyme linked immunosorbent assay (ELISA) methods. Serological analysis indicated that mice 
injected with Aβ developed Abs against the Aβ peptide. High titers were found in both the 3xTg/Aβ and 3xTg/
Aβ + PLA2 groups immunized against Aβ (Fig. 4(g)). In contrast, there was no anti-Aβ activity in the WT, 3xTg, 
3xTg/PLA2, or 3xTg/KLH mice at the tested medium serum dilution of 1:1,000, indicating that 3xTg-AD mice 
did not spontaneously generate Abs reactive to Aβ. Moreover, these results indicate that bvPLA2 treatment had 
no influence on the production of Aβ-specific Abs.

Effects of bvPLA2 administration on cerebral Aβ deposition in Aβ-vaccinated 3xTg-AD 
mice.  The deposition of Aβ significantly increased in the hippocampal CA1 and cortex regions, one of the 
most plaque-dense areas, in 3xTg-AD mice at the age of 6 months compared with levels in the age-matched WT 
group (Fig. 5). Immunization with Aβ was associated with a modest reduction in Aβ burden in the frontal cortex, 
with a significant reduction in the Congo-red stained area of APP/PS1 mice18. Similar reductions were observed 
in the cortex and hippocampus regions in 3xTg/Aβ mice compared with levels in the 3xTg group. Moreover, 

Figure 3.  Effects of bvPLA2 on spatial learning and memory in Aβ-vaccinated 3xTg-AD mice. 3xTg-AD 
mice were tested after 3 months of Aβ1-42 peptide immunization with or without bvPLA2 injection. Mice 
were subjected to the MWM. Training trials (60 s each) were performed three times a day for 4 days for the 
acquisition test. In the retention test, the mice were submitted to a probe trial in which the platform was 
removed from the pool. (a) Escape latency, (b) retention, (c) time in the target quadrant, and (d) number 
of platform crossings. The data are shown as means ± SEM. *P < 0.05 vs. WT; #P < 0.05, ##P < 0.01, and 
###P < 0.001 vs. 3xTg.
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compared with those in the 3xTg/Aβ group, the Aβ burdens in the hippocampal CA1 and cortex regions were 
significantly reduced following bvPLA2 treatment. In contrast, there were no significant differences between 
3xTg-AD and KLH-treated 3xTg-AD mice.

Changes in brain glucose metabolism.  We determined that bvPLA2 treatment enhanced glucose uptake 
in the brain using of 18F-2 fluoro-2-deoxy-d-glucose ([18F]-FDG)-positron emission tomography (PET) imaging. 
Figure 6 shows coronal and sagittal images of mouse brains depicting [18F]-FDG uptake. Scans indicated differ-
ences in cerebral glucose metabolism rates between the WT and 3xTg groups, the 3xTg and 3xTg/Aβ groups, 
and the 3xTg/Aβ and 3xg/Aβ + PLA2 groups (Fig. 6). The uptake of [18F]-FDG in 3xTg-AD mice in the region 
of caudate putamen was significantly decreased compared with that in the WT group (FWE p < 0.005). The 
glucose uptake in the frontal association cortex of the 3xTg/Aβ + PLA2 group was increased compared to that 
in Aβ-vaccinated 3xTg-AD mice (FWE p < 0.005). Decreased glucose uptake in forelimb region (motor asso-
ciated area) of 3xTg/Aβ + PLA2 group was detected compared to that of Aβ-vaccinated 3xTg-AD mice (FWE 
p < 0.005).

Figure 4.  Effects of bvPLA2 treatment on Tregs, inflammatory cytokine production, and serum anti-Aβ 
antibody levels in Aβ-vaccinated 3xTg-AD mice. (a) Dot plots of CD4+CD25+Foxp3+ populations were 
determined among the splenocytes of each group. (b) Percentages of CD4+CD25+Foxp3+ cells. (c) IL-2, (d) 
IFN-γ, (e) TNF-α, and (f) IL-10 were measured using the CBA mouse Th1/2/17 cytokine kit. (g) Serum levels 
of anti-Aβ antibodies were measured using an enzyme-linked immunosorbent assay (ELISA) in which 96-well 
plates were coated with Aβ1-42 peptide and incubated with each diluted serum sample. After washing, anti-Aβ 
titers were detected with specific horseradish peroxidase-conjugated anti-mouse IgG antibodies. Absorbance at 
450 nm was measured. The data are shown as the mean ± SEM. **P < 0.01 and ***P < 0.001 vs. WT; #P < 0.05, 
##P < 0.01, and ###P < 0.001 vs. 3xTg; ns: not significant.
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Effects of Treg depletion on bvPLA2-mediated attenuation of Aβ pathology.  To provide a more strin-
gent setting in which to test the involvement of Tregs following bvPLA2 treatment, we depleted the Treg population 
using the PC61 anti-CD25 monoclonal Ab during Aβ vaccination and bvPLA2 treatment. We investigated whether 
the depletion of Tregs induces altered spatial learning and memory in the MWM. The retention time was dramatically 
increased in the IgG group, whereas PC61-injected mice showed an inability to find the platform location independent 
of Aβ and bvPLA2 treatment (Fig. 7(a–c)). Changes in Th1, Th2, and Th17 populations generally suggest an alternative 
status of the T helper phenotype. Therefore, we quantified IFN-γ-, IL4-, and IL17A-producing CD4+ T cells in both 
IgG- and PC61-injected mice. As shown in Fig. 7(d–f), Th1 populations were decreased in the IgG group compared 
with those in 3xTg-AD mice. In contrast, Th1 populations in Treg-depleted mice were significantly increased compared 
with those in the IgG group. Alterations in Th2 and Th17 populations were not observed in any group.

Discussion
In this study, we hypothesized that the induction of Tregs by bvPLA2 may improve cognitive function and reduce 
the pathological features of AD in Aβ vaccination treatment. The data reported here support the idea that the use 
of bvPLA2 in Aβ vaccination treatment may lead to a reduction in aberrant autoimmune reactions against Aβ 
that provoke CNS inflammation. We found that vaccination with Aβ42 combined with PT triggers an adverse 

Figure 5.  Immunohistochemical staining depicting the effects of bvPLA2 treatment on Aβ burdens in the 
brains of 3xTg-AD mice. Aβ burdens were determined by immunohistochemical staining with anti-Aβ 
antibodies. (a) Representative images of Aβ staining in the hippocampal CA1 (top) and cortex (bottom) 
regions. Scale bars 20 µm. Bar graphs of data pertaining to the effects of bvPLA2 treatment on Aβ deposition 
in (b) hippocampal CA1 and (c) cortex regions. The data are shown as the mean ± SEM. ***P < 0.001 vs. WT; 
#P < 0.05, ##P < 0.01, ###P < 0.001 vs. 3xTg.

Figure 6.  Effect of bvPLA2 on glucose uptake in the brains of 3xTg-AD mice. Voxel-based morphometry 
revealed right-dominant asymmetry of cerebral glucose metabolism. The result of voxel-based statistical 
analysis was visualized [18F]-FDG scans comparing the WT and 3xTg groups, 3xTg and 3xTg/Aβ groups, 
and 3xTg/Aβ and 3xTg/Aβ + PLA2 groups. Red indicates a region of relatively high glucose metabolism 
in comparison to corresponding regions. Blue indicates a region of relatively low glucose metabolism in 
comparison to corresponding regions.
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autoimmune response against Aβ, leading to neuro-inflammation. PT has been reported to enhance immune 
responsiveness, in particular boosting T cell responses and predisposing to autoimmune reactions19,20. In this 
study, administration of bvPLA2 dramatically eliminated inflammatory infiltration, especially of T lymphocytes 
and macrophages, in the brain and spinal cord tissues compared to that observed in mice that treated with Aβ 
immunization and with PT. Furthermore, vaccination with Aβ protects transgenic mice from spatial learning 
deficits and was also associated with a reduction in Aβ deposition in 3xTg-AD mice. Administration of bvPLA2 
decreased cognitive deficits and reduced Aβ pathology in the hippocampal and cortex regions of AD mice model 
compared with those in Aβ-vaccinated 3xTg-AD mice. Treg populations were significantly increased in the 
Aβ-vaccinated groups. Cerebral glucose uptake was considerably increased in the brains of the bvPLA2-treated 
group compared to that in the Aβ-vaccinated 3xTg-AD group. However, the enhancement of neuroprotective 
effects by bvPLA2 treatment was not observed following Treg depletion.

After the failure of the AN1792 trial, several second-generation vaccines were developed using the N-terminal 
portion of the Aβ peptide to produce Abs without inducing Aβ-specific Th1-mediated cellular immune 
responses4,21. CAD106, containing the Aβ1-6 peptide coupled to a carrier containing 180 copies of bacteriophage 
QB coat protein, is a new Aβ vaccine in Phase II/III clinical trials22. ACC-001 is an Aβ1-7 peptide conjugated with 
a carrier protein, an inactivated diphtheria toxin. ACC-001 induced a humoral immune response with no sign 
of side effects in a phase I trial and is currently being evaluated in a phase II trial. Despite decades of extensive 
efforts to develop Aβ vaccines, there is still no effective therapy available to halt the progressive loss of neurons 
and deterioration of cognitive faculties in AD patients.

Tregs are essential for the maintenance of self-tolerance and immune homeostasis, which is required for the 
prevention of autoimmune disease, allergies, and allograft rejection23. Tregs normally serve to suppress the sys-
temic immune system and protect against autoimmune disease. However, in AD mouse models, it appears that 
this immunosuppressive activity may be detrimental, impairing the ability of the adaptive immune system to 
respond to and restrain Aβ pathology. Therefore, the modulation of Tregs has been proposed as a potential ther-
apeutic target for the treatment of neuroinflammation-mediated diseases, including AD24. In a previous report, 
we showed that the adoptive transfer of CD4+CD25+ Treg populations dramatically decreased IFN-γ production 
compared to that in the 3xTg control group16. Here, we observed the increased production of IL-10 and a reduc-
tion in IFN-γ levels in the bvPLA2-treated groups. This suggests that Tregs, induced by bvPLA2 treatment, secrete 
the cytokine IL-10, resulting in the suppression of other immune cells, such as the Th1 population.

Several studies have reported that serum levels of anti-Aβ Ab were significantly higher in healthy age-matched 
controls than in AD patients25,26. In contrast, other studies have indicated that anti-Aβ Ab titers are much higher 

Figure 7.  Effects of Treg depletion on bvPLA2-mediated attenuation of Aβ pathology. For Treg depletion, 
mice received 0.5 mg of rat anti-CD25 IgG (the PC61 group) or total rat IgG (the IgG group) once a week for 
3 months. To examine the effects of Treg depletion on bvPLA2-mediated improvements in cognitive deficits, 
mice were subjected to MWM. (a) Retention time in the water maze during the probe trial. (b) Time spent in 
the quadrant in which the platform was placed. (c) Crossing times of the platform location. The populations of 
(d) IFN-γ+, (e) IL-4+, and (f) IL-17A+ cells among CD4+ T cells. Data are shown as the means ± SEM. *P < 0.05 
and **P < 0.01 vs. 3xTg; #P < 0.05, ##P < 0.01, ###P < 0.001 vs. the IgG group; ns: not significant.
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in AD patients than in healthy controls and are negatively correlated with cognitive impairment27. In Aβ vacci-
nation therapy, Aβ-specific Abs are efficiently generated in AD patients and murine models treated with the vac-
cine. However, Hock et al. reported no correlation between the incidence of clinical signs and the magnitude of 
anti-Aβ Ab titers28. Two patients with clinical signs of acute meningoencephalitis and who generated Aβ-specific 
Abs remained cognitively stable 1 year after vaccination, whereas the cognitive function of one patient with 
acute clinical signs without Abs against Aβ continued to decline following recovery from meningoencephalitis. 
In this study, we examined the effects of bvPLA2 treatment on the production of Aβ-specific Abs. As expected, 
bvPLA2 treatment had no effect on the production of Abs against Aβ, whereas serum Aβ Ab titers were elevated 
in Aβ-immunized mice. These results indicate that the modulation of Tregs by bvPLA2 treatment may affect 
neuroinflammation without inducing an increase in serum levels of anti-Aβ Ab in response to Aβ vaccination.

In the present study, we represented the effects of bvPLA2 administration on Aβ pathophysiology with com-
bination Aβ peptide vaccination treatment in 3xTg-AD mice. Several studies reported that bvPLA2 can promote 
Treg cell-mediated anti-inflammatory responses in several animal models of allergic asthma, Parkinson’s dis-
ease, and cisplatin-induced acute kidney injury29–31. Chung et al., found that bvPLA2 directly bound to man-
nose receptor CD206 on the surface of dendritic cells (DC) and consequently induce the expression of COX-229. 
Elevated COX-2 promotes the secretion of prostaglandin E2 (PGE2), resulting in Treg differentiation via EP2 
receptor signaling29. Here, we demonstrated that bvPLA2 treatment can ameliorate Aβ pathology without adverse 
neuro-inflammation in Aβ-vaccinated 3xTg-AD mice. The neuroprotective and anti-inflammatory effects of 
bvPLA2 are mediated by IL-10 production and Treg cell modulation. However, the exact mechanisms of bvPLA2 
treatment are further to be elucidated.

Taken together, our data highlight the therapeutic potential of Treg modulation via bvPLA2 treatment for Aβ 
immunotherapy in AD. While therapies targeting a single pathway have limited benefits and may not demon-
strate optimal efficacy, combination therapies targeting the Aβ pathway and bvPLA2-mediated immune suppres-
sion may ultimately be required.

Materials and Methods
Animals.  AD model (3xTg-AD) mice harboring transgenes encoding APP (KM670/671NL), PS1 (M146V), 
and tau (P301L) proteins [B6;129-Psen1tm1Mpm Tg(APPSwe,tauP301L)1Lfa/J] were obtained from Jackson 
Laboratory (Bar Harbor, ME, USA). Age-matched male C57BL/6 mice were purchased from Charles River 
Korea (OrientBio, Sungnam, Korea). All animals were maintained under specific pathogen-free conditions 
and a 12-hour light/dark cycle. All mice had free access to food and water during the experiments. All ani-
mal experiments were conducted in accordance with the Rules for Animal Care and the Guiding Principles for 
Experiments Using Animals and were approved by the University of Kyung Hee Animal Care and Use Committee 
[KHUASP(SE)-16-085].

Aβ vaccination protocols.  For Aβ vaccination, 3 month-old 3xTg-AD mice were used. Aβ1-42 pep-
tide (Genescript, Piscataway, NJ, USA) was suspended in 450 µl distilled water (DW), mixed with 50 µl 10× 
phosphate-buffered saline (PBS) to yield 1× PBS, and incubated overnight (O/N) at 37 °C. The antigen suspension 
was mixed 1:1 with complete Freund’s adjuvant (CFA), and 100 µg of the Aβ preparation was injected subcutane-
ously on days 0, 14, 28, 42, 56, and 70. Control mice were injected with PBS or keyhole limpet hemocyanin (KLH) 
in CFA that was prepared in the same manner. bvPLA2 (Sigma-Aldrich, St. Louis, MO, USA) dissolved in PBS 
and administered by intraperitoneal injection at a dose of 0.5 mg/kg once a week for 3 months. bvPLA2 injected 
3 days after Aβ immunization. Mice were randomly assigned to six groups as follows: (1) PBS-treated wild-type 
mice (WT); (2) PBS-treated 3xTg-AD mice (3xTg); (3) Aβ-vaccinated 3xTg-AD mice (3xTg/Aβ); (4) bvP-
LA2-treated and Aβ-vaccinated 3xTg-AD mice (3xTg/Aβ + PLA2); (5) bvPLA2-treated 3xTg-AD mice (3xTg/
PLA2); and (6) KLH-treated 3xTg-AD mice (3xTg/KLH). For Treg depletion, mice received a dose of 0.5 mg of 
rat anti-CD25 IgG (clone PC61) or total rat IgG once a week for 3 months. The rat anti-CD25 IgG was generated 
in-house from hybridomas obtained from the American Type Culture Collection (Manassas, VA, USA). The 
efficacy of Treg depletion was analyzed by flow cytometry using phycoerythrin (PE)-labeled anti-CD25 and flu-
orescein isothiocyanate (FITC)-conjugated anti-CD4 antibodies (Abs). There were five to seven mice per group.

To induce a model of neuro-inflammation in C57BL/6 mice, the antigen suspension was mixed 1:1 with CFA, 
and 100 µg of the Aβ1-42 peptide was injected subcutaneously. This was followed by intravenous administration 
of 500 ng of pertussis toxin (PT; Sigma-Aldrich) the same day and 48 h later. Control mice were immunized 
with CFA alone. Mice were divided into five groups, and bvPLA2 was injected intraperitoneally into mice as 
follows: (1) CFA-treated control (CFA); (2) Aβ-immunized (Aβ); (3) Aβ-immunized with PT (Aβ + PT); (4) 
Aβ-immunized with PT and bvPLA2 (Aβ + bvPLA2); and (5) PT-injected (PT). The mouse survival rate was 
evaluated using Kaplan-Meier curves. Mice used in individual experiments were age-matched, and there were 
five mice per group.

Morris water maze.  Spatial learning and memory were examined in mice using the Morris water maze 
(MWM) with minor modifications32. Briefly, mice were trained in a circular water maze with a 90-cm diameter 
(opaque water, 22 ± 2 °C) and a 6-cm hidden platform submerged 1-cm below the water surface. The maximal 
trial duration was 60 s, with 30 s on the platform at the end of each trial. Each animal was trained for one of the 
different starting positions and the swimming path once per day for 4 days, with a new platform location used 
each day. All mice were subjected to three trials per day at intervals of 15 min for 4 consecutive days. For the probe 
trial, the platform was removed from the pool, and mice were allowed to swim freely for 60 s to search for the 
previous location of the platform. Escape latency, time spent in the platform quadrant, and number of platform 
crossings were recorded for each mouse. Data were collected using a video camera connected to a video recorder 
and a tracking device (S-MART, Pan-Lab, Barcelona, Spain).
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Measurement of Treg populations.  Single-cell suspensions of splenocytes were incubated with PE-labeled 
anti-CD25 and FITC-conjugated anti-CD4 Abs on ice for 30 min. After surface staining, cells were fixed and per-
meabilized with Perm/Fix solution (eBioscience, San Diego, CA, USA) and stained with PerCP-Cy5.5-conjugated 
anti-Foxp3 Ab (eBioscience). Stained cells were acquired via BD FACSCalibur flow cytometer (BD Biosciences, 
San Diego, CA, USA), and the data were analyzed using FLOWJO software (BD Biosciences).

Measurement of cytokines in splenocyte cultures.  Single-cell suspensions of splenocytes were plated 
in 96-well tissue culture plates in RPMI-1640 medium (WelGENE Inc., Taegu, Korea) supplemented with 10% 
fetal bovine serum, 50 IU/ml penicillin, and 50 µg/ml streptomycin (Hyclone, Logan, UT, USA). Cultures were 
activated in the presence of plate-bound anti-CD3 and soluble anti-CD28 Abs (BD Biosciences). Cytokines were 
detected in the supernatants using a mouse cytometric bead array (CBA) kit (BD Biosciences) in accordance 
with the manufacturer’s instructions. Briefly, samples were added to a mixture of capture Ab, bead reagent, and 
PE-conjugated detection Ab. The mixture was incubated at room temperature in the dark and then washed. Data 
were acquired using a BD FACSCalibur flow cytometer and analyzed using BD CellQuest and BD CBA software 
(BD Biosciences).

Th1/2/17 phenotyping.  Splenocytes were washed, resuspended in complete RPMI-1640 medium, 
and transferred to 6-well plates. Cultures were stimulated with 50 ng/ml phorbol myristate acetate (PMA; 
Sigma-Aldrich) and 1 μg/ml ionomycin (Sigma-Aldrich) for 5 h in the presence of Golgi-stop (BD Biosciences). 
After 5 h of culture, the contents of the wells were transferred and centrifuged at 300 g for 5 min. Cells were 
aliquoted into tubes and washed once in stain buffer (BD Bioscience). Cells were incubated with FITC-labeled 
anti-CD4 Ab for surface staining. After surface staining, cells were fixed and permeabilized with Perm/Fix solu-
tion (eBioscience) and stained with PE-conjugated anti-IFN-γ, IL-4, and IL-17A Abs (eBioscience). Stained cells 
were acquired by BD FACSCalibur flow cytometer, and the data were analyzed using FLOWJO software (BD 
Biosciences).

Measurement of Aβ-specific Ab titers.  Serum anti-Aβ Ab titers were measured via enzyme-linked 
immunosorbent assay (ELISA). First, 96-well EIA/RIA plates were coated with 10 µg/ml Aβ1-42 peptide in coat-
ing buffer and incubated O/N at 4 °C. Plates were washed with washing buffer (0.05% Tween-20 in PBS) and then 
blocked for 1 h at 37 °C with 1.5% bovine serum albumin (BSA) in wash buffer. Following blocking, the plate was 
washed three times, and diluted samples were applied in triplicate and incubated at 37 °C for 1 h. Aβ-specific Ab 
titers were detected with specific horseradish peroxidase (HRP)-conjugated anti-mouse IgG Abs (R&D Systems, 
Minneapolis, MN, USA).

Histological analysis.  After the behavioral test, mice were transcardially perfused with saline solution con-
taining 0.5% sodium nitrate and heparin (10 U/ml) and fixed with 4% paraformaldehyde (PFA). Each brain was 
dissected from the skull, post-fixed O/N at 4 °C, dehydrated in a 30% sucrose solution, and frozen-sectioned 
on a sliding microtome into 30-μm-thick coronal sections. Slides containing the brain sections were boiled in 
0.01 M citrate buffer (pH 6.0) for antigen retrieval, incubated with 3% hydrogen peroxide solution for 10 min 
to eliminate endogenous peroxidase activity, and then washed with PBS. Aβ burdens were detected using 
mouse monoclonal 4G8 Ab (BioLegend, San Diego, CA, USA) O/N at 4 °C. Brain sections were washed with 
PBS, incubated with a biotinylated secondary Ab, and processed with an avidin-biotin complex kit (Vectastain 
ABC kit; Vector Laboratories, Burlingame, CA, USA). Aβ burdens were visualized via incubation with 0.05% 
diaminobenzidine-HCl (Vector Laboratories). The labeled tissue sections were then mounted and analyzed under 
a bright-field microscope (Nikon, Tokyo, Japan). The coronal sections of the hippocampus, starting rostrally 
from anteroposterior −2.1 mm and continuing to anteroposterior −4.5 mm relative to bregma, were examined 
at x10 magnification using the IMAGE PRO PLUS system (version 4.0; Media Cybernetics, Silver Spring, MD, 
USA) on a computer attached to a light microscope (Zeiss Axioskop, Oberkochen, Germany) that was interfaced 
with a charge-coupled device video camera (Kodak Mega Plus model 1.4 I). To determine the density of the 
Aβ-immunoreactive staining in the hippocampus, a square frame 500 × 500 μm was placed in the dorsal part 
of the hippocampus. A second square frame of 200 × 200 μm was placed in the corpus callosum to measure the 
background.

For neuro-inflammation models in C57BL/6 mice, brains and spinal cords were removed from mice and 
embedded in paraffin. Then, 5-μm-thick sections were cut from all organs and stained with hematoxylin and 
eosin (H&E) or processed for detection of CD3-positive cells and macrophages. Briefly, after antigen retrieval and 
removal of endogenous peroxidase activity with 3% H2O2, slides were incubated with monoclonal anti-CD3 Ab 
(BioLegend) and biotin-conjugated BS-I isolectin B4 for macrophage signal O/N at 4 °C. Sections were washed 
with PBS and incubated with an avidin-biotin complex. The CD3-positive cells and macrophages were visualized 
via incubation with 3,3-diaminobenzidine (DAB).

18F-fluoro-2-deoxy-d-glucose micro positron emission tomography scanning.  All mice were 
fasted for 8 h before scanning experiments to increase the uptake of 18F-2 fluoro-2-deoxy-d-glucose ([18F]-FDG) 
by their brains33. There were five mice per group. Before [18F]-FDG uptake, all mice were warmed using a heating 
pad in a cage in accordance with the previously reported optimized [18F]-FDG uptake protocol34. A total of 1 mCi 
of [18F]-FDG was injected into the tail vein, and the mice were anesthetized with 2% isoflurane in 100% oxygen 
(Forane solution; ChoongWae Pharma, Seoul, Korea). A Siemens Inveon positron emission tomography (PET) 
scanner (Siemens Medical Solutions, Malvern, PA, USA) was used for PET imaging. Transmission PET data were 
acquired for 10 min using a Co-57 point source with an energy window of 120–125 keV. The transverse resolution 
used was <1.8 mm at the center35,36. After allowing 30 min for tracer uptake, 30 min of PET data was acquired 
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within an energy window of 350–650 keV. The emission list-mode PET data were sorted into 3D sinograms and 
reconstructed using 3DRP methods. The pixel size of the reconstructed images was 0.15 × 0.15 × 0.79 mm3. 
Attenuation and scatter corrections were performed for all datasets.

Voxel-based statistical analysis.  Voxel-based statistical analysis was performed to compare the cerebral 
glucose metabolisms of the different groups. The procedure used for the statistical parametric mapping (SPM) 
analysis of the PET data has been described previously37,38. Briefly, for efficient spatial normalization, only the 
brain region was extracted. A study-specific template was then constructed using all of the datasets. The PET data 
were spatially normalized onto a mouse brain template and smoothed using a Gaussian kernel. Count normaliza-
tion was performed. A voxel-wise t-test comparing the datasets from the various groups was performed using the 
Statistical Parametric Mapping 5 program (FWE P < 0.005, K > 50).

Statistical analysis.  All values are presented as the mean ± standard error of the mean (SEM). The statistical 
significance of each variable was evaluated by one-way analysis of variance (ANOVA) followed by Tukey’s multi-
ple comparison test using Prism 5.01 software (GraphPad Software Inc., San Diego, CA, USA). All experiments 
were performed in a blinded manner and repeated independently under identical conditions. Differences with 
P-values < 0.05 were considered statistically significant.

Data Availability
No datasets were generated or analyzed during the current study.
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