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Abstract 

Background:  In nasal or sinonasal tumors, orbital invasion beyond periorbita by the tumor is one of the important 
criteria in the selection of the surgical procedure. We investigated the usefulness of the convolutional neural network 
(CNN)-based deep learning technique for the diagnosis of orbital invasion, using computed tomography (CT) images.

Methods:  A total of 168 lesions with malignant nasal or sinonasal tumors were divided into a training dataset 
(n = 119) and a test dataset (n = 49). The final diagnosis (invasion-positive or -negative) was determined by experi-
enced radiologists who carefully reviewed all of the CT images. In a CNN-based deep learning analysis, a slice of the 
square target region that included the orbital bone wall was extracted and fed into a deep-learning training session 
to create a diagnostic model using transfer learning with the Visual Geometry Group 16 (VGG16) model. The test data-
set was subsequently tested in CNN-based diagnostic models and by two other radiologists who were not specialized 
in head and neck radiology. At approx. 2 months after the first reading session, two radiologists again reviewed all of 
the images in the test dataset, referring to the diagnoses provided by the trained CNN-based diagnostic model.

Results:  The diagnostic accuracy was 0.92 by the CNN-based diagnostic models, whereas the diagnostic accuracies 
by the two radiologists at the first reading session were 0.49 and 0.45, respectively. In the second reading session by 
two radiologists (diagnosing with the assistance by the CNN-based diagnostic model), marked elevations of the diag-
nostic accuracy were observed (0.94 and 1.00, respectively).

Conclusion:  The CNN-based deep learning technique can be a useful support tool in assessing the presence of 
orbital invasion on CT images, especially for non-specialized radiologists.
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Background
Malignant sinonasal tumors often involve the orbit, and 
orbital invasion is associated with a significant reduction 
in survival [1]. Cross-sectional imaging is essential for the 
staging and preoperative assessment of sinonasal tumors 

in order to determine resectability [2, 3]. If orbital inva-
sion is suspected, the surgeon and the patient are con-
fronted with the difficult decision of exenteration. The 
relationship between the tumor and the periorbita is one 
of the criteria in the determination of whether exentera-
tion is necessary; tumor invasion beyond the periorbita 
may warrant exenteration, whereas an intact periorbita 
warrants preservation [1, 4]. Extraocular muscle involve-
ment and orbital fat obliteration were reported to have 
high positive predictive values of orbital invasion beyond 
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periorbita on computed tomography (CT) and magnetic 
resonance imaging (MRI) [4]. However, the diagnosis of 
orbital invasion beyond periorbita requires experience 
and is difficult even for experienced radiologists, and 
even more so for radiologists who are not specialists in 
this area.

The use of artificial intelligence (AI) has continued to 
increase in various fields as a problem-solving technique 
that replicates human intelligence through computer 
and algorithmic technologies [5]. Artificial intelligence 
using deep learning (DL) techniques, such as a convolu-
tional neural network (CNN), has fostered hopes for and 
research toward revolutionizing the automated analysis 
of medical images. Deep learning algorithms have been 
applied to medical imaging in several clinical settings and 
have attracted considerable attention, as their use has 
been demonstrated to perform at least as well as humans 
in image classification tasks [6, 7]. We speculated that 
using AI may enable the determination of orbital inva-
sion beyond periorbita on CT and help radiologists eval-
uate such cases.

We conducted the present study to (1) develop a CNN 
model that can be used to diagnose the presence of 
orbital invasion on CT, (2) evaluate the diagnostic per-
formance of the developed CNN model, and (3) assess 
the effect of its utility on the diagnostic performance of 
general radiologists who are not specialized in the image 
reading of the head and neck.

Methods
This retrospective study was approved by the Institu-
tional Review Board of the Hokkaido University, and the 
requirement for patients’ written informed consent was 
waived.

Study population
Based on the medical records, we selected the cases of 
233 patients who were treated at our hospital during 
the period from January 2009 to March 2021, with the 
following inclusion criteria: (1) patients with a patho-
logically confirmed malignant nasal or sinonasal tumor 
and (2) pretreatment coronal CT images reconstructed 
with soft tissue kernel including the tumor lesion. Some 
patients were excluded by the following exclusion cri-
teria: (1) patients with an inoperable tumor regardless 
of the presence of the orbital invasion (e.g., a malignant 
hematologic tumor) (n = 20), (2) CT acquisition or recon-
struction parameters (e.g., slice thickness, matrix size, 
convolution kernel, etc.) were not available (n = 12), (3) 
patients whose primary tumor was located clearly apart 
from the orbital wall (n = 32), and (4) intraorbital struc-
tures which severely affected the imaging findings of the 
target lesion, such as an artificial eye (n = 2). Ultimately, 

167 patients and their 168 lesions (one of the patients had 
metachronous multiple cancers) were considered eligible 
for this study. We randomly selected 119 lesions as the 
training dataset to create the diagnostic model, and we 
used the other 49 lesions as the test dataset to evaluate 
the performance of the established model, each approx. 
7:3 ratio (Fig. 1).

CT images
CT images of the total 168 lesions were obtained by vari-
ous scanners from four vendors. Of the 168 lesions, 150 
were post-contrast enhanced images and the other 18 
lesions were non-contrast enhanced images. We used 
the coronal reconstructed CT images for the evaluation. 
Other image parameters were as follows. Slice thickness: 
1–3 mm, matrix size: around 512 × 512, reconstruction 
kernel: soft tissue.

Determination of the final diagnosis
Two board-certified radiologists with 6 and 15 years 
of experience in head and neck radiology determined 
whether the quality of the CT images was appropri-
ate for interpretation. Subsequently, all of the coronal 
CT images were divided into orbital invasion beyond 
periorbita-positive or -negative (hereinafter, referred to 
as “invasion-positive or -negative”) groups by these two 
radiologists in consensus, using a Digital Imaging and 
Communication in Medicine (DICOM) viewer (XTREK, 
J-MAC SYSTEM, Tokyo). Imaging findings of the bone 
destruction of orbital wall, the presence of irregular-
ity between the tumor margin and orbital components, 
extraocular muscle involvement by the tumor, and the 
orbital fat obliteration around the tumor were carefully 
assessed, and invasion-positive or -negative status was 
determined in each image by taking all of imaging find-
ings into consideration. After this image assessment, a 
total of 81 cases were diagnosed as invasion-positive and 
the other 87 cases were diagnosed as invasion-negative. 
Approximately 9 months after the above-mentioned 
consensus reading, the two board-certified radiologists 
re-evaluated all cases individually to divide them into 
invasion-positive and negative cases in order to deter-
mine the inter-observer agreement in the case-based 
invasion-positive and -negative decisions they had made.

After the case-based evaluation for the division of inva-
sion-positive and -negative cases, for the preparation of 
the training dataset, we further performed slice-based 
evaluation to divide the invasion-positive and -nega-
tive slices within each positive case; this procedure was 
conducted in the training dataset only. In each orbital 
invasion-positive case, all slices in the range of evaluation 
(i.e., the range from the nasolacrimal duct orifice to the 
tip of the middle cranial fossa) were assessed and divided 
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into invasion-positive slices and -negative slices by the 
abovementioned two radiologists. In contrast, all of the 
CT images in the orbital invasion-negative cases were 
assigned as invasion-negative slices.

To assess the variability of consensus reading by board 
certified radiologists in determining the invasion-positive 
and -negative status, other two board-certified radiolo-
gists with 7 and 12 years of experience evaluated all cases 
by consensus to divide into invasion-positive and -nega-
tive, as an additional consensus reading session.

Image analysis
Image selection and post‑processing for the deep learning 
analysis
We randomly selected a training data set to create a 
diagnostic model and a test data set to evaluate the per-
formance of the established model (see below Results). 
First, image segmentation was performed on all coro-
nal CT images. We manually drew the square regions 
of interest (ROIs) to encompass the orbital bone wall 
with an ROI size of approx. 12 cm2. If the target tumor 
was located around the midline and contacted the bilat-
eral orbit, the ROIs were separately drawn for both right 
and left sides. We used CT images in the range from the 
nasolacrimal duct orifice to the tip of the middle cranial 
fossa for the ROI placement. However, specific CT image 
slices in which the primary tumor was observed to be far 
from the orbital wall were excluded for further analysis. 

The segmented images of the right orbit were then hori-
zontally flipped and all aligned, and they were observed 
in the same manner as the left orbit. A triangular mask 
was applied on the upper and lateral parts of the orbit. 
The CT window of all images was adjusted to the win-
dow level 60/window width 300 Hounsfield units (HU). 
Finally, each processed image was output as a Joint Pho-
tographic Experts Group (JPEG) document. The image 
processing steps are illustrated in Fig. 2.

For the preparation of the invasion-positive group in 
the training dataset, we included only the specific slices 
that were judged as invasion-positive in the slice-based 
evaluation (see above: Determination of the final diagno-
sis); this dataset consisted of 408 images from 56 lesions. 
In contrast, we included slices on which the tumor 
lesion was in contact with the orbital wall but had not 
invaded periorbita in the invasion-negative group; this 
dataset consisted of 635 images from 63 lesions. Before 
the training session, data augmentation was performed 
to improve the robustness of the model, with random 
rotation and vertical and/or horizontal shifting for each 
image; a total of 10 additional images were generated for 
each image.

In the test dataset, all images in all lesions (both inva-
sion-positive and -negative) were used; this consisted 
of 25 invasion-positive lesions (191 invasion-positive 
images and 123 invasion-negative images; every lesion 
included at least one invasion-positive image) and 24 

Fig. 1  Study population, study flow, and recruitment pathway



Page 4 of 9Nakagawa et al. Cancer Imaging           (2022) 22:52 

invasion-negative lesions (326 invasion-negative images). 
The test dataset was evaluated without a data augmenta-
tion procedure.

Deep learning analysis
We classified the invasion-positive or -negative sta-
tus of the coronal CT images by using transfer learn-
ing from a pre-trained CNN algorithm devoted to 
image classification. The original model used in this 
work was the Visual Geometry Group 16 (VGG16) 
model, developed at Oxford University in 2015, which 
had been trained and evaluated on the ImageNet col-
lection (http://​image-​net.​org/​index) [8]. The VGG16 
model is composed of 16 layers with a combination of 
five convolutional blocks (13 convolutional layers) and 
three fully connected layers, finishing with a dense 
layer that operates the final classification through 1000 
different categories proposed by the ImageNet dataset 
[8]. Thanks to its simplicity, the VGG16 model is well 
adapted for transfer learning for a small dataset [9]. For 
the model’s training, the last fully connected layer was 
trained, whereas the parameters of other prior layers 
were fixed to the original weights of the VGG16 model. 

This allowed us to keep the more generic features of the 
VGG16 model and adapt the model to the CT images 
through a limited number of trainable parameters.

For the training session, the stochastic gradient 
descent with momentum (sgdm) optimizer was used. 
Hyperparameters were set to 15 epochs, a mini-batch 
size of 32, and the learning rate 1.0 × 10− 5. In the trans-
fer learning, 30% of the training data was used as inter-
nal validation during the training. The VGG16 model 
is able to convert the input image into a probability 
regarding the category in which it would belong, and in 
our present study the VGG16 model outputted a binary 
classification of invasion-positive or -negative status 
on the test dataset. The model was established using 
an Ubuntu 18.04 long-term support (LTS)-based server 
with a Core i9 10980XE 18core/36thread 3.0-GHz 
central processing unit (CPU), four NVIDIA Quadro 
RTX8000 graphics processing unit (GPU) cards, and 
128-GB (16GB × 8) DDR4–2933 quad-channel mem-
ory for training and validation. The time required for 
an epoch was approx. 14 min, and approx. 13 epochs 
were enough to reach the final score evaluated on the 
test dataset. All image analyses were performed using 

Fig. 2  Image preprocessing on CT images for the deep learning analysis. First, a square region of interest (ROI) was manually placed to fully include 
the orbital wall on coronal CT images (red arrow). Next, segmented images by the ROI were extracted as continuous slices including the tumor. 
Then, right-side lesion images were inverted to the left side (flipped horizontally) and all images were aligned, as the lesion is shown at the left side. 
Thereafter, the top and outer areas in the image were masked (white asterisk). Finally, these processed images were fed into the data augmentation 
process with image rotation and/or a shift for training data

http://image-net.org/index
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MATLAB (R2021a, MathWorks, Natick, MA, USA) and 
Metavol software (https://​www.​metav​ol.​org) [10].

Visual evaluation by radiologists
Two general radiologists with 6 and 3 years of experi-
ence who were not specialists in the interpretation of 
head and neck images reviewed all of the images in the 
test dataset (49 lesions; 25 invasion-positive/24 negative) 
and independently determined whether the tumor lesion 
was invasion-positive or -negative. They referred to all of 
the slices with a complete field of view (not segmented 
images) for the evaluation. For patients with lesions bor-
dering the bilateral orbits, they evaluated the right and 
left sides separately to determine the presence of inva-
sion. At approx. 2 months after the first reading session, 
the same two general radiologists reviewed all of the 
images in the test dataset again to determine the inva-
sion-positive or -negative status, referring to the patient-
based diagnoses provided by the CNN model developed 
with VGG-16 described above.

Statistical analyses
The distribution of patient characteristics between 
the training and test cohorts were compared using the 
χ2-test for categorical variables and the Mann-Whitney 
U-test for continuous variables.

We used the kappa coefficient to evaluate the inter-
observer agreement regarding the case-based inva-
sion-positive and -negative decisions made by the two 
board-certified radiologists with extensive head-and-
neck imaging experience. The kappa coefficient was also 
used to assess the agreement between one of the board-
certified radiologists and the result of the consensus 
reading, and between the other board-certified radiolo-
gist and the result of the consensus reading. Kappa values 
< 0.40 were interpreted as poor agreement, 0.41–0.57 as 
fair agreement, 0.58–0.74 as good agreement, and > 0.75 
as excellent agreement [11].

In addition, the agreement between the result of first 
consensus reading (i.e., the final diagnosis) and that of 
additional consensus reading by other two board-certi-
fied radiologists was assessed using the Kappa coefficient. 
A receiver operating characteristic (ROC) curve analysis 
to calculate the area under the curve (AUC) was also per-
formed using the result of the additional consensus read-
ing by setting the result of first consensus reading as the 
gold standard.

The diagnostic performances for the test dataset 
obtained with 1) the developed CNN diagnostic model, 
2) the general radiologists without the developed 
CNN diagnostic model’s assistance, and 3) the gen-
eral radiologists with the developed CNN diagnostic 
model’s assistance were respectively evaluated. When 

we evaluated the CNN diagnostic model, we first per-
formed slice-based diagnoses by dividing all slices into 
those indicating the invasion-positive or -negative sta-
tus by using the developed CNN model in each patient. 
Each of the abovementioned slice-based diagnoses 
was then converted to an individual-based diagno-
sis by adding up the number of consecutive slices that 
the CNN model determined to be invasion-positive 
per one patient. A ROC curve analysis was performed 
to determine the optimal number of consecutive slices 
for diagnosing invasion-positive or -negative status as 
a patient-based diagnosis, using the Youden index. The 
diagnostic performance was assessed by computing 
the following performance metrics: the AUC, accuracy, 
sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV). The diagnostic 
performance achieved by each of the general radiolo-
gists without the CNN model’s assistance was compared 
with that obtained by the CNN model alone and that by 
the same radiologist with the CNN model’s assistance, 
respectively. The comparison of the AUC was calculated 
by the χ2-test. Statistical significance was set at p-val-
ues < 0.05. BellCurve for Excel (Social Survey Research 
Information Co., Tokyo) was used to perform all statis-
tical analyses.

Results
Patient characteristics
Table 1 summarizes the characteristics of the patients in 
the training, test, and total cohorts. Because one of the 
167 patients considered eligible for this study had mul-
tiple metachronous carcinomas, each of the patient’s 
lesions was counted as a separate case. The age of that 
patient was determined as the time when the malig-
nancy was pathologically diagnosed. In the comparison 
of patient characteristics between the training and test 
cohorts, only the patient age was significantly different 
(p = 0.048); no significant between-cohort difference was 
observed in other characteristics.

Table 1  Patients’ characteristics

Total Training Test p value
(n = 168) (n = 119) (n = 49)

Age, yrs.; median (range) 65 (29–91) 66 (29–86) 49 (30–91) 0.048

Males/females 129/39 88/31 41/8 0.175

  Primary site: 0.863

  Maxillary sinus 117 84 33

  Nasal cavity 30 22 8

  Ethmoid sinus 17 11 6

  Sphenoid sinus 2 1 1

  Maxillary gingiva 2 1 1

https://www.metavol.org/
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Interobserver agreement in the determination of the final 
diagnosis
The inter-observer agreement between the two board-
certified radiologists in their case-based invasion-positive 
and -negative decisions was excellent (kappa coefficient 
0.769, 95%CI: 0.671–0.867). The kappa coefficients for 
the agreement between the result of the consensus read-
ing and one of the board-certified radiologists was 0.808 
(95%CI: 0.720–0.897), and that for the other board-certi-
fied radiologist was 0.844 (95%CI: 0.764–0.925).

Agreement between results of the first and additional 
consensus reading
The agreement between the result of the first consensus 
reading (i.e., the final diagnosis) and that of additional 
consensus reading by other two board-certified radi-
ologists was excellent (kappa coefficient 0.810, 95% CI: 
0.722–0.898). In the ROC curve analysis, with setting the 
result of first consensus reading as a gold standard, the 
AUC from the results of the additional consensus reading 
was 0.907 (95% CI: 0.864–0.950).

Diagnostic performance of the CNN model
To evaluate the performance of the established model, 
we randomly divided the total of 168 nasal and sinonasal 
malignant tumors into 119 lesions as the training dataset 
to create the diagnostic model and 49 lesions as the test 
dataset (~ 7:3 ratio). One patient in the training dataset 
and two patients in the test dataset showed an extent to 
bilateral orbit, and thus the number of cases included 120 
lesions in the training dataset (invasion-positive n = 57; 
invasion-negative n = 63) and 51 lesions in the test data-
set (−positive n = 26; −negative n = 25).

For the transfer learning with VGG16 using the train-
ing dataset, the computed accuracy at the final epoch in 
the training session (i.e., the accuracy of the internal vali-
dation during the training session) was 0.920.

Subsequently, the test dataset was imported into the 
developed CNN model. All images in the test data-
set were divided into the invasion-positive or -nega-
tive group for each slice. We performed an ROC curve 
analysis for the differentiation of invasion-positive or 
-negative lesion status by using the number of consecu-
tive slices that were determined the CNN model to be 
invasion-positive in each patient of the test dataset. The 
CNN model-based diagnosis on the test dataset achieved 
an AUC of 0.940 (95%CI: 0.873–1.000) (Fig.  3). With 
the use of this cut-off value, when three or more con-
secutive slices were set as the best cut-off point based on 
the Youden index, the following values were obtained: 
0.922 (95%CI: 0.811–0.978) accuracy, 0.923 (95%CI: 

0.749–0.991) sensitivity, 0.920 (95%CI: 0.740–0.990) 
specificity, 0.923 (95%CI: 0.749–0.991) PPV, and 0.920 
(95%CI: 0.740–0.990) NPV (Table 2).

Radiologists’ diagnostic performances
In the blind review of the test set without CNN model 
assistance, the diagnostic performances of the two non-
specialist radiologists were as follows. Reader 1: AUC 
0.491 (95%CI: 0.351–0.631), 0.490 accuracy (95%CI: 
0.348–0.634), 0.500 (95%CI: 0.291–0.709) sensitivity, 
0.481 (95%CI: 0.287–0.681) specificity, 0.462 (95%CI: 
0.266–0.666) PPV, and 0.520 (95%CI: 0.313–0.722) NPV; 
Reader 2: AUC 0.451 (95%CI: 0.311–0.590), 0.451 accu-
racy (95%CI: 0.311–0.597), 0.462 (95%CI: 0.266–0.666) 
sensitivity, 0.440 (95%CI: 0.244–0.651) specificity, 0.462 
(95%CI: 0.266–0.666) PPV, and 0.440 (95%CI: 0.244–
0.651) NPV.

Assisted by the CNN model-based diagnosis, both 
of these radiologists achieved a higher diagnostic per-
formance as follows. Reader 1: AUC 0.941 (95%CI: 
0.875–1.007, 0.941 (95%CI: 0.838–0.988) accuracy, 
0.962 (95%CI: 0.757–0.991) sensitivity, 0.920 (95%CI: 
0.789–0.999) specificity, 0.926 (95%CI: 0.804–0.999) PPV, 
and 0.958 (95%CI: 0.740–0.990) NPV; Reader 2: AUC 
1.000 (95%CI: 1.000–1.000), 1.000 (95%CI: 1.000–1.000) 
accuracy, 1.000 (95%CI: 1.000–1.000) sensitivity, 1.000 
(95%CI: 1.000–1.000) specificity, 1.000 (95%CI: 1.000–
1.000) PPV, and 1.000 (95%CI: 1.000–1.000) NPV. Table 2 
summarizes the results of the comparison of the non-
specialist radiologists’ performances without and with 
the CNN model’s assistance. The ROC curve obtained 
from the CNN model in the test dataset and the point 
plot of the sensitivity and specificity values obtained from 
the two radiologists’ visual evaluation in the test dataset 
analysis with and without the CNN model assistance are 
depicted in Fig. 3. The AUC of the CNN model was sig-
nificantly higher than those for both radiologists (read-
ers 1 and 2) (p < 0.001, respectively). In addition, the 
AUC obtained by both radiologists with the assistance of 
the CNN model was significantly higher than the AUC 
obtained without the assistance (p < 0.001). Representa-
tive false-positive and false-negative cases with the CNN-
based diagnoses are presented in Fig. 4.

Discussion
The incidence of orbital invasion by malignancies in the 
nasal or sinonasal cavity varies with the site of origin, his-
tology, and aggressiveness of the tumor. Invasion of the 
orbital bone wall occurs in 66–82% of ethmoidal malig-
nancies [12] and in 60–80% of maxillary sinus malignan-
cies [13]. The periorbita is the periosteal lining of the 
internal orbit and covers the four orbital walls from the 
anterior aperture of the orbital cavity back to the conical 
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apex with the optic canal and the superior orbital fissure 
[14]. The periorbita has been considered an effective bar-
rier to tumor extension into the orbit [4]. The invasion 
of orbital contents through the periorbita is one of the 
general indications for orbital clearance, and such inva-
sion heralds a poorer prognosis [1, 15]. Displacement 
of the periorbita by a tumor is one of the most accurate 

radiologic signs of orbital invasion seen on CT, showing 
an NPV of 86% and a PPV of 75% [4, 16].

In the present study, the use of the DL technique 
to diagnosis the orbital invasion beyond periorbita in 
CT was successful. We speculated that the DL tech-
nique would successfully train the CNN-based diagnos-
tic model to identify the above-mentioned radiologic 
signs of orbital invasion observed on CT. To the best of 
our knowledge, no prior study has assessed the applica-
tion of the DL technique for the imaging diagnoses of 
orbital invasion by head and neck malignancies. Inves-
tigations of the usefulness of DL approaches to diag-
nose the presence of local invasion by malignant tumors 
in CT images include examinations of visceral pleural 
invasion in early-stage lung cancer [17], muscular inva-
sion in bladder cancer [18], and extranodal extension 
in lymph node metastases of head and neck squamous 
cell carcinoma [19]. All of these studies described good 
diagnostic performance, with some results reported as 
similar to or better than those obtained by experienced 
radiologists. Several studies have also indicated the use-
fulness of the DL technique as a supportive tool that 

Fig. 3  ROC curve analysis. The ROC curve for the CNN-based deep learning models of VGG16 is shown. The point plots of the sensitivity and 
specificity values of the two non-specialist radiologists with and without the CNN model’s assistance are also shown

Table 2  Diagnostic performances

AUC​ area under the curve, CNN convolutional neural network, NPV negative 
predictive value, PPV positive predictive value

CNN model Reader 1 Reader 
1 with 
CNN

Reader 2 Reader 
2 with 
CNN

AUC​ 0.940 0.509 0.941 0.549 1.000

Accuracy 0.922 0.490 0.941 0.451 1.000

Sensitivity 0.923 0.462 0.962 0.462 1.000

Specificity 0.920 0.520 0.920 0.440 1.000

PPV 0.923 0.500 0.926 0.462 1.000

NPV 0.920 0.482 0.958 0.440 1.000
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provided improved diagnostic performance with the aid 
of a DL-based diagnostic model [19–21]. Our present 
findings demonstrated the same trend of results as those 
described in these previous studies.

We observed herein that almost all of the cases were 
diagnosed correctly with the developed CNN model; 
however, two false-negative and two false-positive cases 
were detected. Both of the false-negative cases involved 
the medial wall and not the inferior wall. The lesions 
with medial wall involvement were mainly from nasal, 
ethmoidal, and sphenoidal sinus tumors, and the number 
of tumors at this location was too small compared to the 
maxillary sinus. The amount and quality of the training 
with the imaging findings with medial wall involvement 
for the CNN model’s development might therefore not be 
sufficient due to the small number of cases.

In contrast, the imaging findings of the two false-pos-
itive cases were as follows. Both lesions expanded and 
projected into the orbit to a certain degree, but the mar-
gin was well circumscribed, with thinned orbital bone 
wall and without irregularities of orbital fat density. Suf-
ficient training of this imaging findings might not be per-
formed in the training session, because the number of 
cases with such imaging findings in the total cohort was 
also small.

Our study has the following limitations. The sample size 
was small due to the single-institutional study design, and 
the results should thus be treated as preliminary. The CT 
scanning parameters (e.g., slice thickness, in-plane matrix 
size) were heterogenous among the cohorts. However, in 
light of our findings, we believe that using a DL technique 
could effectively create a diagnostic model even in such a 

heterogeneous dataset. The inclusion of CT images with 
various scanning parameters may have allowed us to ver-
ify the accuracy of the data in a manner similar to exter-
nal validation. Most of the cases in the present cohort 
did not have a surgically confirmed diagnosis of orbital 
invasion beyond periorbita, and their categorization was 
based solely on CT imaging findings. This is due to the 
characteristics of our institution, where the treatment of 
choice for advanced sinonasal tumors is predominantly 
chemoradiotherapy, and therefore pathological results 
are difficult to obtain. Last, only CT features of the orbital 
invasion beyond periorbita were analyzed; MRI findings 
were not included. It has been reported that several MRI 
imaging features are useful for the differentiation between 
invasion-positive and -negative status [16], but because 
some of the present patients did not undergo MRI, we did 
not include MRI findings in this study.

Conclusion
The CNN model can be useful for the diagnosis of orbital 
invasion beyond periorbita on CT images. This technique 
may become a diagnostic support tool, especially for radi-
ologists who are not specialists in head and neck imaging.
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by experienced radiologists was determined as invasion-positive. However, the CNN model-based diagnosis was negative (a false negative). b 
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arrowhead), the final diagnosis by the experienced radiologists was invasion-negative. However, the CNN model-based diagnosis was positive (false 
positive)
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