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Simple Summary: Immunotherapy has transformed solid tumor treatment, but cost-
effective blood biomarkers for predicting and monitoring response are still needed. Easily
measured tests, such as cell counts (monocytes, MDSCs, Tregs, and eosinophils), cytokines
(IL-6, IL-8, and IL-10), LDH, CRP, soluble checkpoints, and ctDNA, alongside simple ratios
(NLR, LMR, and PLR) and blood viscosity metrics, provide non-invasive prognostic and
predictive insights. Combining these biochemical and rheological markers could improve
patient selection and optimize immunotherapy outcomes.

Abstract: Immunotherapy has revolutionized cancer treatment; however, the availability
of cost-effective blood-based biomarkers for prognostic and predictive factors of immune
treatment in patients with solid tumors remains limited. Due to low cost and easy acces-
sibility, blood-based biomarkers should constitute an essential component of studies to
optimize and monitor immunotherapy. Currently available markers that can be measured
in peripheral blood include total monocyte count, myeloid-derived suppressor cells (MD-
SCs), regulatory T cells (Tregs), relative eosinophil count, cytokine levels (such as IL-6,
IL-8, and IL-10), lactate dehydrogenase (LDH), C-reactive protein (CRP), soluble forms
of CTLA-4 and PD-1 or PD-L1, as well as circulating tumor DNA (ctDNA). In our mini-
review, we discuss the latest evidence indicating that routinely accessible peripheral blood
parameters—such as the neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte
ratio (LMR), platelet-to-lymphocyte ratio (PLR), and rheological parameters, which so far
have been rarely considered for such an application, may be used as non-invasive biomark-
ers in cancer immunotherapy. Rheological parameters such as whole blood viscosity are
influenced by several factors, such as hematocrit, aggregability and deformability of ery-
throcytes, and plasma viscosity, which is largely dependent on plasma proteins. Especially
in cases where the set of symptoms indicates a high probability of hyperviscosity syn-
drome, blood rheological tests can lead to early diagnosis and treatment. Both biochemical
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and rheological parameters are prone to become novel and future standards for assessing
immunotherapy among patients with solid tumors.

Keywords: immunotherapy; rheology; biomarkers; cancer; CAR; TCR

1. Introduction
Immunotherapy has transformed cancer treatment by heralding a new era in on-

cology. By targeting key signaling pathways—PD-1/PD-L1, CTLA-4/CD28, JAK/STAT,
PI3K/AKT/mTOR, and MAPK/ERK—it enhances T-cell activation and proliferation and
regulates immune checkpoint expression, such as PD-L1 on tumor cells. Dysregulation
of these pathways can result in immunosuppression and therapeutic resistance, making
them critical targets for intervention. Current approaches include immune checkpoint
inhibitors, adoptive cell transfer, cancer vaccines, and cytokine therapies, all designed to
bolster the immune system’s capacity to recognize and eradicate malignant cells. Never-
theless, tumor-intrinsic resistance—driven by genetic alterations, metabolic rewiring, and
influences from the tumor microenvironment—remains a significant challenge to achieving
durable responses [1,2].

Immunotherapy includes, among others, immune checkpoint inhibitors (ICIs), cancer
vaccines, monoclonal antibodies, and adoptive cell therapy. A significant part of cancer
treatment is the ability to determine such markers to help optimize treatment. This work
focuses on cost-effective blood biomarkers that can be used as prognostic and predictive
factors in immunotherapy-treated patients with solid tumors.

The current Food and Drug Administration-approved predictive markers in patients
treated with ICIs are tumor mutational burden (TMB), programmed cell death ligand
1 (PDL1) expression, and microsatellite status (MSI). A commonly used blood-based
biomarker is ctDNA; however, only in combination with other complementary biomark-
ers, such as immunophenotyping of mononuclear cells, extracellular vesicle analysis, and
plasma proteomics, can it provide sufficient information to determine whether patients
will benefit from ICIs [2–4].

ICIs have transformed cancer treatment, yet only a fraction of patients experience
durable benefits, highlighting the need for robust predictive biomarkers that integrate
both tumor-intrinsic and host-immune factors. Peripheral blood cell ratios—such as the
neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), and platelet-
to-lymphocyte ratio (PLR)—have gained prominence because they reflect the balance
between tumor-promoting inflammation and anti-tumor immune competence, are readily
derived from routine complete blood counts, and can be monitored over time to capture
changes in systemic immunity [1]. Equally critical are tumor-intrinsic biomarkers such
as PD-L1 expression, which directly measures engagement of the PD-1/PD-L1 axis in the
tumor microenvironment and remains the most widely implemented assay for selecting
patients for anti-PD-1/PD-L1 therapies [2,3]. In parallel, ctDNA provides a minimally
invasive, dynamic readout of tumor burden and early treatment effect, with rapid declines
in ctDNA levels after ICI initiation correlating with superior progression-free and overall
survival (OS) independently of PD-L1 status or TMB [1–4]. More exploratory approaches,
including rheological parameters that assess tumor-induced alterations in blood flow and
viscosity, aim to capture the impact of systemic inflammation on immune-cell trafficking
and endothelial interactions. By combining tumor-intrinsic markers, systemic inflammation
indices, and real-time circulating measures, a multi-dimensional biomarker framework can
more precisely stratify patients and guide personalized immunotherapy strategies.
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Hemorheological changes—such as alterations in whole blood viscosity, plasma vis-
cosity, and erythrocyte aggregability—are observed in a wide range of diseases [1–3]. The
key challenge, therefore, is to skillfully distinguish those changes that are specific to the
tumor–immunotherapy interaction from systemic alterations driven by general inflamma-
tion or cancer progression, regardless of treatment efficacy. Hemorheological parameters
reflect the complex interplay of tumor-induced inflammation, systemic disease effects, and
therapy-related changes; thus, isolating immunotherapy-specific signals requires careful
analysis [2–4]. Longitudinal studies tracking these parameters before, during, and after
immune checkpoint inhibitor therapy are essential, as they can reveal temporal patterns
that differentiate treatment effects from changes due to disease progression or inflammatory
processes. Integrating hemorheological data with established biomarkers—such as the
neutrophil-to-lymphocyte ratio, CRP levels, or circulating tumor DNA—will further facili-
tate the distinction between immunotherapy-related alterations and systemic responses,
creating a more reliable predictive framework [1–3]. The application of advanced analytical
methods and multivariate statistical models can help identify characteristic hemorheo-
logical signatures associated with a positive response to immunotherapy. Finally, the
development and adoption of standardized protocols for measuring and interpreting
hemorheological parameters in the context of immunotherapy are crucial to confirm their
specificity and ensure reproducibility. Together, these strategies will strengthen the role of
hemorheological parameters as cost-effective, tumor–immunotherapy–specific biomarkers,
distinct from general markers of inflammation or disease progression.

In our review, we focused on critical pathways involved in cancer development, sys-
temic inflammatory response markers (NLR, LMR, and PLR), and rheological parameters
as prognostic and predictive factors in immunotherapy.

2. Key Signaling Pathways in Cancer Immunotherapy
The main molecular mechanisms involved in immunotherapy and cancer resistance

strategies include numerous signaling pathways and immune checkpoint routes. One
example is the PD-1/PD-L1 pathway, in which the programmed cell death protein 1 (PD-1)
on T lymphocytes binds to its ligand PD-L1 on tumor cells, leading to T cell exhaustion
and reduced anti-tumor activity. PD-1/PD-L1 inhibitors, such as nivolumab and pem-
brolizumab, block this interaction, restoring T cell capability to attack cancer cells. Similarly,
the CTLA-4 protein competes with CD28 for binding to CD80/CD86 on antigen-presenting
cells, inhibiting T cell activation. A CTLA-4 blockade using ipilimumab enhances T cell
activation and proliferation, strengthening the immune response [5] (Figure 1).

Cytokine signaling, in turn, involves the activity of interferon-gamma (IFN-γ), which
activates the JAK/STAT pathway, leading to increased expression of MHC molecules and
PD-L1 on tumor cells. Although this may enhance antigen presentation, it simultaneously
provides inhibitory signals through PD-L1. Mutations in JAK1/2 or STAT1 can lead to
resistance to immunotherapy. Interleukin-2 (IL-2) promotes T cell proliferation and activa-
tion via the PI3K/Akt/mTOR pathway; however, high doses of IL-2 may also stimulate
regulatory T cells (Tregs), suppressing the immune response [6] (Figure 1).

Innate immunity pathways, on the other hand, involve mechanisms such as the activity
of cyclic GMP-AMP synthase (cGAS), which detects cytosolic DNA and produces cGAMP
that activates the STING protein, leading to the production of type I interferons via TBK1
and IRF3. Activation of this pathway enhances dendritic cell maturation and T cell priming.
Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns, activating the
NF-κB, MAPK, and IRF3/7 pathways, which induce the production of pro-inflammatory
cytokines and type I interferons. TLR agonists are used as adjuvants in cancer vaccines to
enhance the immune response [7] (Figure 1).
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Figure 1. Key signaling pathways in cancer development and cancer immunotherapy. In (A), PD-1
on T cells binds PD-L1 on tumor cells; PD-1/PD-L1 inhibitors (nivolumab and pembrolizumab)
block this interaction. In (B), CTLA-4 competes with CD28 for CD80 on antigen-presenting cells,
inhibiting T cell activation; ipilimumab blocks CTLA-4. In (C), IFN-γ activates the JAK/STAT path-
way, increasing MHC and PD-L1 expression on tumor cells; JAK1/2 or STAT1 mutations can cause
immunotherapy resistance. In (D), cGAS detects cytosolic DNA, produces cGAMP, and activates
STING, which induces type I interferons via TBK1 and IRF3, promoting dendritic cell maturation
and T cell activation. In (E), TCR with MHC and CD28 activates the PI3K/Akt/mTOR pathway,
enhancing T cell function; CAR-T therapy amplifies this effect. In (F), JAK1/2 mutations impair
IFN-γ signaling, reducing MHC-I and PD-L1 expression, leading to PD-1 blockade resistance. PTEN
loss activates PI3K, creating an immunosuppressive tumor microenvironment. Tumor cells inhibit
PI3K/Akt/mTOR in T cells, impairing their function. In (G), TCR engagement with antigen-MHC
and co-stimulation (e.g., CD28) activates PI3K/Akt/mTOR, promoting T cell survival, proliferation,
and effector functions. In (H), tumor hypoxia upregulates HIF-1α, driving immunosuppressive
pathways and reducing immune cell infiltration. MDSCs and Tregs suppress immunity via ARG1,
iNOS, and TGF-β signaling. https://BioRender.com/quskbqk.

Immunotherapy also leverages adaptive immune cell signaling mechanisms. Engage-
ment of the T cell receptor (TCR) with antigen-MHC complexes, along with co-stimulation
(e.g., CD28), activates the PI3K/Akt/mTOR pathway, promoting T cell survival, prolifer-
ation, and effector functions. Second-generation CAR-T cells incorporate co-stimulatory
domains such as CD28 or 4-1BB to enhance T cell activation and persistence [8] (Figure 1).

Despite the efficacy of immunotherapy, cancer cells may develop resistance through
various mechanisms. Loss-of-function mutations in JAK1/2 impair IFN-γ signaling, reduc-
ing MHC-I and PD-L1 expression, which leads to resistance to PD-1 blockade. PTEN loss
activates the PI3K pathway, promoting an immunosuppressive tumor microenvironment

https://BioRender.com/quskbqk
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and resistance to immunotherapy. Tumor cells inhibit the PI3K/Akt/mTOR pathway
in T cells, impairing their function. Adenosine, produced in the tumor microenviron-
ment, activates A2A receptors on T cells, suppressing their activation and promoting
immunosuppression. Low oxygen levels in tumors upregulate HIF-1α, which can promote
immunosuppressive pathways and reduce immune cell infiltration. Myeloid-derived sup-
pressor cells (MDSCs) and regulatory T cells (Tregs) suppress immune responses through
various mechanisms, including ARG1, iNOS, and TGF-β signaling [9] (Figure 1).

3. Blood Based Biomarkers
3.1. Inflammatory Response Markers—NLR, LMR, and PLR
3.1.1. NLR

The neutrophil-to-lymphocyte ratio (NLR) is a biomarker derived from the proportion
of neutrophils to lymphocytes in peripheral blood. It reflects the dual nature of the immune
system, combining the innate immune response—primarily driven by neutrophils—with
the adaptive immune response, mediated by lymphocytes. Neutrophils serve as the body’s
first line of defense against invading pathogens, utilizing various mechanisms such as
chemotaxis, phagocytosis, the release of reactive oxygen species (ROS), and granular
proteins, as well as the production and secretion of cytokines [10].

NLR serves as a biomarker reflecting both chronic inflammation and immune function.
An increased NLR has been linked to cardiovascular conditions, autoimmune disorders,
sepsis, cancer, and higher overall mortality rates in the general population [11,12]. In pa-
tients with malignant solid tumors, NLR may reflect the inflammatory response triggered
by neoplastic cells. High NLR was associated with increased peritumoral macrophage infil-
tration, high levels of pro-inflammatory cytokines, and a high number of tumor-associated
neutrophils (TANs) [12]. An umbrella review by Cupp MA et al. analyzed 204 meta-
analyses from 86 studies investigating the relationship between NLR or TANs and cancer
outcomes. Strong evidence linked NLR to outcomes in composite cancer endpoints, cancers
treated with immunotherapy, and some site-specific cancers (urinary, nasopharyngeal,
gastric, breast, endometrial, soft tissue sarcoma, and hepatocellular cancers) [13].

A comprehensive meta-analysis by Wang H. et al. showed that high NLR before
treatment ICIs for gastric tumors (GCs), hepatocellular carcinomas (HCCs), head and neck
squamous cell carcinomas (HNSCCs), melanomas, non-small-cell lung cancers (NSCLCs)
and renal cell carcinomas (RCCs) had been observed with worse OS and progression-free
survival (PFS) outcomes. Moreover, high pretreatment NLR may be associated with a lower
objective response rate (ORR) for GC, HCC, HNSCC, and NLSC and a disease control
rate (DCR) for HCC and HNSCC. A sub-analysis of the INVIDIa-2 study on influenza
vaccination in cancer patients (including NSCLC, RCC, and melanoma) treated with ICIs
found NLR below 3, 4 to be an independent prognostic factor for OS [14,15]. Low base-
line NLR values may also increase the risk of developing irAE in patients with NSCLC,
which may be related to the effectiveness of treatment [16]. However, high post-treatment
NLR was identified as a potential predictive biomarker for the occurrence of irAEs in
patients with different solid tumors treated with ICIs [17]. High NLR during ICIs treat-
ment was associated with significantly worsened OS and PFS rates [18–22], disease control,
and treatment response [20]. Guo Y et al. suggested that NLR levels in patients who
respond to immunotherapy remain stable but may increase in those who do not respond
to treatment. More importantly, the dynamic changes in NLR levels following ICI ther-
apy significantly impact OS, PFS, and ORR rates [21]. A related indicator is the derived
neutrophil–lymphocyte ratio (dNLR), calculated using the formula dNLR = ANC/(WBC −
ANC). Elevated dNLR levels are associated with poorer OS and PFS [19,22].
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NLR has been combined with other markers to more accurately predict the response
to ICIs. Most notable of these risk stratification scores are the Lung Immune Prognostic
Index (LIPI) and the Lung Immuno-oncology Prognostic Score (LIPS-3), both for advanced
NSCLC patients. LIPI uses dNLR with serum LDH level [23], while LIPS-3 combines NLR,
ECOG performance score, and pretreatment steroid status [24]. High dNLR and LDH
were correlated with shorter PFS and OS in other types of solid tumors treated with ICIs
(gastrointestinal, breast, and gynecological) [25].

3.1.2. LMR

The lymphocyte-to-monocyte ratio (LMR) is a parameter determined by dividing
the number of lymphocytes by the number of monocytes in a blood test and is used to
analyze inflammation and the body’s immune response. Lymphocytes play a key role
in anti-tumor defense, while monocytes can support tumor development by producing
pro-inflammatory factors. A low LMR may indicate weakened immunity and is associated
with poorer prognosis in cancer patients. In contrast, a higher LMR correlates with better
treatment outcomes and is being studied as a potential prognostic marker [26].

LMR is used as an immunotherapy efficiency biomarker for the treatment of gastric
cancer patients. The high value of LMR is associated with a better overall prognosis,
contrary to high values of NLR and PLR [27]. This may be caused by the immunological
role of lymphocytes, as they act as anti-tumor cells. For instance, they mediate anti-tumor
response. Similar combinations of those parameters’ values were found among melanoma
and gastric patients [19]. A low LMR is linked to an unfavorable prognosis in lung cancer,
colorectal cancer (CRC), renal cell carcinoma, and melanoma [28].

3.1.3. PLR

The platelet-to-lymphocyte ratio (PLR) is a novel hematological biomarker that has
gained attention for its potential role in assessing systemic inflammation and prognosti-
cating outcomes in various pathological conditions. Emerging evidence indicates that an
elevated PLR is strongly correlated with heightened inflammatory activity, the pathogenesis
of atherosclerosis, and enhanced platelet reactivity, suggesting its relevance as a predictive
indicator in clinical settings [29]. Thrombocytosis, characterized by a platelet count (PLT)
exceeding 450,000/µL, is commonly observed in patients with solid tumors and chronic
inflammatory conditions. Its coexistence with enhanced platelet activation can substantially
increase the predisposition to thrombotic complications. PLR has been recognized as a
potential prognostic biomarker in malignancies such as ovarian, breast, and lung cancer.
However, its prognostic relevance in CRC remains a subject of ongoing investigation and
lacks definitive consensus [30].

A high PLR level before treatment is associated with worse OS and PFS outcomes
in patients with advanced cancer, particularly in metastatic renal cancer, where the worst
outcomes were observed [31]. PLR is an effective indicator of the risk of cancer recurrence
after liver transplantation [32].

NLR, PLR, and MLR are cost-effective, easily obtainable, and reliable indicators of
systemic inflammation and are derived from white blood cell counts. These inflammatory
ratios may offer greater predictive accuracy in assessing inflammation compared to indi-
vidual measurements of neutrophils, platelets, monocytes, or lymphocytes, as they are less
influenced by confounding factors. Research has shown that they can serve as biomarkers
of inflammation and indicators of poor prognosis in various diseases, including cancer [33]
(Figure 2).
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Figure 2. Peripheral blood cell ratios as predictive and prognostic indicators during immunotherapy.
https://BioRender.com/buzdtfb.

3.2. Rheological Parameters

Mechanics is the field of science that explores how material bodies move and deform
when subjected to external forces. Within this discipline, rheology, often called the study
of flow, focuses specifically on how different materials respond to mechanical forces,
particularly in terms of their ability to deform and flow [34]. Hemorheology combines two
distinct aspects: its primary objective lies in medicine, whereas its research approaches
are derived from science and technology. Consequently, conducting advanced studies
in this field necessitates collaboration between specialists from both areas [35]. Blood
rheology plays a crucial role in regulating tissue perfusion, and based on the Poiseuille
relation, hemodynamic resistance in a vascular network with constant geometry is directly
proportional to blood viscosity. Additionally, blood rheology can affect vascular tone
by altering wall shear stress, which influences the endothelial production of vasoactive
substances such as nitric oxide [36].

Important parameters influencing the rheological properties of blood are hematocrit,
plasma viscosity, and the aggregability and deformability of erythrocytes. Plasma viscos-
ity, in particular, is a forgotten parameter [37]. Plasma viscosity is mainly determined
by the presence of high-molecular proteins such as fibrinogen, immunoglobulins, and
lipoproteins [38,39]. Excessive plasma viscosity may also result from both monoclonal
and polyclonal disorders associated with an increase in immunoglobulins [40]. Figure 3
presents the determinants of whole blood viscosity. It is also worth noting that the analysis
of changes in the values of hemorheological parameters, such as aggregability of erythro-
cytes and plasma viscosity, may be significant because thromboembolic events may be
the cause of complications in the process of surgical and chemotherapeutic treatments
of cancer.

https://BioRender.com/buzdtfb
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Figure 3. Rheological properties of blood. https://BioRender.com/3jagiky.

Changes in the values of hemorheological parameters are also related to such aspects
of RBC pathophysiology as reduced deformability, increased adhesion, and changes in
the properties of the erythrocyte membrane. This has been observed in association with
microcirculation dysfunction in many diseases, including hereditary hemoglobinopathies,
hemolytic anemias, malaria, sepsis, lupus, blood transfusion complications, kidney disease,
cancer, diabetes, obesity, cardiovascular disease, neurological disorders, and heavy metal
exposure [41–43].

Regarding the physical properties of blood, rheology can be widely used to assess
blood parameters. It is especially crucial for previously described hematological malignan-
cies where basically the blood is the most affected tissue. Hematological malignancies are
often unveiled by analyzing the rheological parameters of blood samples collected from
patients. Immunotherapy, i.e., CART-T cell therapy or kinase inhibitors, is one of the major
parts of the treatment of these malignancies. Major studies concluded that whole blood
viscosity (WBV) is increased in myeloproliferative neoplasms [44–46]. This can lead to a
higher risk of thrombotic complications, such as deep vein thrombosis [47]. It is reported
that COVID-19 vaccinations among patients with multiple myeloma, which is described
to cause high WBV by itself, are prone to cause adverse effects, including thrombosis.
Hematocrit value, which does not require advanced rheometer to be assessed, is proposed
as a parameter to measure the efficiency of T-cell harvesting of CD3+ cells for T-cell therapy
regarding hematological neoplasms [48]. Additionally, in mice models the efficiency of
immunotherapy can be measured by Doppler ultrasonography [49]. Increased perfusion in
tumors’ vessels contributes to more efficient immune checkpoint blockade (ICB).

However, the data for solid tumors affecting rheological blood properties is firmly
limited. Some studies aim to establish rheological parameters for patients with solid
tumors treated with immunotherapy agents. For instance, tumor microenvironment (TME)
is closely associated with the blood flow within tumor mass. The most critical rheological
parameter, i.e., whole blood viscosity, is increased in vessels covering TME. It is reported
that it is prone to tumor metastasis and has a worse response during the treatment [50].
In newly diagnosed cancer cases, a common pattern involves elevated plasma viscosity
(PV) accompanied by increased red blood cell (RBC) aggregation. This results in a state of
hyperviscosity, which is usually mitigated by anemia. However, if hematocrit levels rise

https://BioRender.com/3jagiky
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uncontrollably in cancer patients, it can impair microcirculatory blood flow, potentially
leading to a harmful hemorheological condition [51].

The number of articles related to solid tumors is limited; however, Han JW et al.
demonstrated that nivolumab-treated patients with HCC who had lower WBV tended to
have better OS and PFS rates. However, these results did not reach statistical significance
(OS and PFS rates: p = 0.069 and p = 0.067, respectively), and the study group was small
(n = 33). The high diastolic whole blood viscosity (WBV) (>16.0 cP) was associated with
poorer OS and PFS compared to the group with lower WBV (≤16.0 cP). The differences
were close to statistical significance (p = 0.069 for OS and p = 0.067 for PFS, which may be
due to the small sample size). The objective response rate was 25.0% in the low WBV group
(6/24, including one complete response and five partial responses) compared to 0% in the
high WBV group (0/9), although the difference was not statistically significant (p = 0.409).
The study suggests that WBV may serve as a potential biomarker in HCC, particularly in
the context of immunotherapy, but emphasizes the need for larger, prospective studies [52].

In a retrospective study evaluating 100 oncology patients treated with ICIs, focusing
on sarcopenia as an independent predictor of responses to immunotherapy, Ucgul E et al.
demonstrated that elevated sedimentation rates could serve as a significant prognostic
indicator for OS rate [53]. Issa M et al. showed that low hemoglobin levels in patients
with HNSCC treated with ICIs are an independent predictor of poor OS rate [27]. Higher
baseline hemoglobin (above 11 g/dL) was associated with better PFS and OS in NSCLC
patients treated with ICIs [40]. Similar conclusions came from a subsequent study, which
showed that higher hemoglobin, along with higher Treg lymphocytes, MPV (mean platelet
volume), and lower monocytes were predictive factors for PFS and OS in this cancer [54,55].
The results of aforementioned studies seem to align with the findings of He Y et al., who
demonstrated that baseline hemoglobin levels are correlated with OS, PFS, and ORR in
patients treated with ICIs. Furthermore, the correlation between hemoglobin levels and
treatment results with ICIs was independent of the treatment approach (chemotherapy
before ICIs, ICI monotherapy, or ICI combination therapy) and other factors such as age,
gender, cancer stage, or TMB. Additionally, it was demonstrated that combining TMB
assessment with hemoglobin levels can increase the predictive accuracy of treatment
response to ICIs [56]. A red cell-based score was developed by Mazzaschi et al. for
metastatic renal cell carcinoma (mRCC) patients. Hemoglobin ≥ 12 g/dL, MCV > 87 fL,
and RDW ≤ 16% are considered as positive factors. Initially validated in a group of
patients treated with TKI, it has proved to be prognostic in patients treated with first-line
immunotherapy (TKI plus ICI or ICI plus ICI), as well as second-line nivolumab [57–59].

Table 1 presents the available data on the impact of blood rheological parameters on
immunotherapy outcomes across various cancer types. In some cases, although certain
trends were observed, the results did not reach statistical significance, which may be
attributed to the small sample sizes of the study populations.

Data on the impact of solid tumors on blood rheological properties remain limited;
however, immunotherapy—through its effects on the tumor microenvironment and inflam-
matory processes—offers plausible mechanisms by which hemorheological parameters
could serve as predictors of treatment response. The referenced study in HCC, along with
observed associations with inflammatory markers such as NLR and PLR, supports this
hypothesis. Further research, particularly in larger patient cohorts and using standardized
methodologies, is essential to confirm these mechanisms and establish their clinical utility.
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Table 1. Rheological parameters and outcomes of immunotherapy in cancer.

Rheological
Parameter

Cancer
Type/Treatment

Association with
Treatment Outcomes Statistical Data Reference

Whole blood
viscosity (WBV)

HCC and treated
with nivolumab

A higher WBV
(>16.0 cP) was
associated with

worse OS and PFS.

OS: p = 0.069; PFS:
p = 0.067; ORR: 25% (low
WBV) vs. 0% (high WBV),

p = 0.409

[52]

Hemoglobin (Hb)
Non-small-cell lung
cancer (NSCLC) and

immunotherapy

Hb ≥ 110 g/L
associated with

better OS and PFS

OS: 17.6 vs. 10.5 months,
HR 0.56, p < 0.001; PFS:
10.0 vs. 4.0 months, HR

0.63, p = 0.001

[54]

Hemoglobin (Hb) NSCLC and ICI
Higher baseline Hb

associated with
better OS and PFS

Detailed stats not
disclosed; trend observed

in 224 patients
[55]

Red cell-based
rheologic score
(Hb ≥ 12 g/dL,

MCV > 87 fL, and
RDW ≤ 16%)

Metastatic renal cell
carcinoma (mRCC),
treated with TKIs

and/or ICIs

Higher score
correlated with

better OS and PFS

OS: 42.0 vs. 17.3 months,
HR 0.60, p < 0.001; PFS:
17.4 vs. 8.2 months, HR

0.66, p < 0.001

[58]

3.3. Integrated Significance of Inflammatory Markers and Blood Rheological Parameters in
Assessing the Response to Immunotherapy

In recent years, there has been growing interest in the use of hematological inflam-
matory markers and blood rheological parameters as readily accessible and non-invasive
biomarkers for monitoring the effectiveness of immunotherapy in oncology patients. The
most commonly analyzed indicators include NLR, LMR, and PLR, which reflect the balance
between the body’s inflammatory and immune responses.

Elevated NLR and PLR—indicating a predominance of the inflammatory component
over the lymphocytic one—have been significantly associated with poorer prognosis and
lower treatment efficacy in patients with various solid tumors, including non-small-cell
lung cancer (NSCLC), HCC, renal cell carcinoma (RCC), and melanoma [11–22,29–32]. In
contrast, a high LMR, reflecting a stronger lymphocytic response over the protumorigenic
activity of monocytes, correlates with better treatment outcomes and longer OS [26–28].
Moreover, not only baseline values but also dynamic changes during therapy may provide
valuable prognostic and predictive insights, highlighting the potential of tracking these
ratios throughout immunotherapy [21].

Complementing these markers are blood rheological parameters, which describe the
physical properties of blood flow, such as whole blood viscosity (WBV), plasma viscosity
(PV), hematocrit, erythrocyte deformability, and red blood cell aggregation. Changes in
these parameters, especially in the context of tumor microcirculation, may influence drug
delivery effectiveness and the immune response [36–40]. Elevated WBV can impair tissue
perfusion and reduce the efficacy of ICIs, as observed, for instance, in HCC patients treated
with nivolumab [52]. Although data regarding solid tumors remain limited, current studies
suggest the prognostic potential of rheological parameters, particularly when combined
with classical hematological indices.

It is also worth noting parameters such as hemoglobin levels, hematocrit, and red
blood cell volume and distribution indices (MCV and RDW), which have been identi-
fied as independent prognostic factors in the context of immunotherapy in patients with
NSCLC, HNSCC, and renal cell carcinoma [27,40,54–59]. High hemoglobin levels correlate
with improved PFS and OS regardless of the type of immunotherapy used, and combin-
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ing hemoglobin with TMB assessments enhances the predictive accuracy for treatment
response [56].

In summary, both inflammatory markers (NLR, LMR, and PLR) and blood rheological
parameters provide valuable information regarding inflammation status, immune function,
and circulatory efficiency in patients undergoing immunotherapy. Their combined use
may offer a foundation for more personalized treatment approaches and more accurate
predictions of therapeutic efficacy, although further research is needed to validate their
clinical utility [33,50–52].

3.4. Blood-Based Biomarkers in Preclinical and Clinical Studies

In cancer immunotherapy, preclinical mouse models, especially humanized ones
with human immune cells, are essential for testing new treatments. These models enable
researchers to measure blood-based biomarkers, such as cytokine levels and immune cell
ratios, to assess the efficacy and safety of immunotherapy. Studies have shown that changes
in these biomarkers can indicate treatment success or potential side effects, providing
valuable insights for patient care [60,61].

Our research focuses on preclinical and clinical studies that describe less commonly
investigated parameters, which may be considered in future efforts to develop biomarkers
of immunotherapy responses (Tables 2 and 3). However, more evidence is emerging
from clinical studies involving patients, as these are more valuable and provide a better
understanding of these parameters in vivo [62–64].

Table 2. Preclinical studies assessing blood-based biomarkers in mouse models of cancer immunotherapy.

Animal Model Tumor Sub-
site/Biomarkers Immunotherapy Biomarkers Key Findings Reference

mouse (KP lung
adenocarcinoma

and MC38)

lung
adenocarcinoma

and colon
carcinoma

not specified

neutrophil gene
signatures and,

likely, blood
neutrophil counts

Therapy-elicited
neutrophils with

interferon gene signatures
are essential for successful

immunotherapy.

[65]

mouse (various
strains: BL/6 and

BALB/c)

TC-1, CT26,
B16F10, MC38,

and 4T1

antimicrobial
peptides and
vaccination

blood neutrophil
percentages

Neutrophil abundance
and phenotype vary with
host genetics and tumor

type, affecting tumor
growth control.

[66]

mouse not specified
TNF, CD40 agonist,

and tumor-
binding antibody

neutrophil
activation and

infiltration

Neutrophils induced
tumor eradication through

oxidative damage.
[67]

humanized mouse
(MISTRGGR) not specified not specified human neutrophil

counts

improved reconstitution
of human neutrophils,

enabling potential
NLR calculation

[68]

PBMC humanized
(NSG, etc.) - TGN1412 analog, a

CD28 superagonist
cytokine levels

(e.g., IL-6)

robust cytokine release in
response to CD28

superagonist; useful for
CRS assessment

[69]

HIS-BRGS mice

breast, colorectal,
pancreatic, lung,
adrenocortical,
melanoma, and
hematological
malignancies

block CTLA-4
and/or

PD-1/PD-L1

human chimerism
and T cell subsets

correlated blood immune
profiles with tumor
infiltration; variable

chimerism noted

[70]
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Table 3. Selected original studies and their findings on blood-based biomarkers in immunotherapy
for solid tumors.

Clinical Study
Type—Phase Tumor Subsite Biomarkers Immunotherapy Key Findings Reference

retrospective study NSCLC
CD4/CD8, LYM%,

PD-1+ T-cells,
NLR, and MLR

anti-PD-(L)1

Elevated expression of
CD4/CD8 and LYM% are
positively associated with
effective immunotherapy,

while PD-1+ on T cells,
NLR, and MLR have a

negative impact.

[71]

phase 3 trial NSCLC bTMB atezolizumab

Additional exploration of
bTMB to identify optimal

cutoffs, confounding
factors, assay

improvements, or
cooperative biomarkers

is warranted.

[72]

phase 2 and phase
3 trials NSCLC bTMB atezolizumab

bTMB identifies patients
who derive clinically

significant improvements
in PFS from atezolizumab.

[73]

multiple cohorts NSCLC
CD4/CD8, LYM%,

PD-1+ T-cells,
NLR, and MLR

anti-PD-(L)1

ctDNA-adjusted bTMB
might predict OS benefit

in NSCLC patients
receiving ICIs.

[74]

multiple cohorts NSCLC bTMB anti-PD-(L)1

Ma-bTMB could reduce
the confounding effect of
MSAF and ITH on bTMB
calculation and effectively

identify beneficiaries
of ICIs.

[75]

multiple cohorts NSCLC bTMB anti-PD-(L)1
LAF-bTMB is a feasible

predictor of OS, PFS, and
ORR.

[76]

prospective cohort
study NSCLC ctDNA-adjusted

bTMB anti-PD-(L)1

Presence of CTCs is a
predictive factor for a

worse durable response
rate to ICIs.

[77]

prospective cohort
study melanoma MSAF-adjusted

bTMB pembrolizumab

Early on-treatment
increase in circulating

exosomal PD-L1 stratifies
clinical responders from

nonresponders.

[78]

prospective
cohort study melanoma Allele frequency-

adjusted bTMB ipilimumab

Increased exosomal PD-1
and CD28 on T-cells were
correlated with longer PFS

and OS.

[79]

In preclinical studies using various animal models (Table 2), peripheral blood
biomarkers—particularly neutrophil counts and phenotypes—were found to strongly
correlate with immunotherapy efficacy [65,66]. First, therapy-elicited neutrophils bearing
an interferon gene signature proved essential for successful anti-tumor responses [65].
Second, host genetics and tumor type determined both the proportion of circulating neu-
trophils and their capacity to control tumor growth [66]. Moreover, neutrophil activation
(e.g., via TNF, a CD40 agonist, or tumor-targeting antibodies) induced tumor eradication
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through oxidative damage [67]. In humanized models, improved reconstitution of human
neutrophils enables the calculation of NLR as a translational marker [68], and measure-
ment of cytokine release (e.g., IL-6) facilitates assessment of cytokine release syndrome
risk [69]. Finally, in HIS-BRGS mice, the degree of human chimerism and distribution of
T-cell subsets in circulation correlated with tumor infiltration, underscoring the value of
liquid-biopsy immune profiling for therapy monitoring [70].

Table 3 summarizes key original studies investigating blood-based biomarkers in
immunotherapy for solid tumors. In non-small-cell lung cancer (NSCLC), early work
showed that higher circulating CD4/CD8 ratios and lymphocyte percentages correlate with
improved responses to anti-PD-(L)1 therapy, whereas elevated PD-1+ T-cell frequencies,
neutrophil-to-lymphocyte ratio (NLR), and monocyte-to-lymphocyte ratio (MLR) predict
poorer outcomes [71]. Several studies have focused on blood TMP (bTMB) in NSCLC
treated with atezolizumab or other ICIs: one study demonstrated that bTMB reliably iden-
tifies patients with significant PFS benefit, though optimal cutoffs and assay refinements
remain under investigation [72,73], while subsequent work has shown that adjusting bTMB
for ctDNA or maximum somatic allele frequency (Ma-bTMB and LAF-bTMB) improves its
predictive power for both OS and PFS [74–76]. Another NSCLC study found that detection
of circulating tumor cells alongside ctDNA-adjusted bTMB identifies patients less likely
to achieve durable responses [77]. In melanoma, on-treatment increases in exosomal PD-
L1 levels distinguished pembrolizumab responders from nonresponders [78], and allele
frequency-adjusted exosomal markers such as PD-1 and CD28 on T cells were associated
with longer PFS and OS following ipilimumab [79]. Together, these findings highlight
the evolving landscape of blood-based biomarkers—from cellular ratios to ctDNA-based
measures—in predicting immunotherapy efficacy across tumor types (Table 3).

3.5. New Players in Immunotherapy: Molecular Basis of Emerging Peripheral Blood Biomarkers

In the search for predictive molecular markers of responses to immunotherapy, partic-
ular attention is paid to inflammatory pathways activated in neutrophils and their interac-
tions with the tumor microenvironment. Activation of the STAT3 pathway in neutrophils
leads to the overexpression of PD-L1, which inhibits the function of cytotoxic T lymphocytes
and weakens the anti-tumor response. Blocking both STAT3 and PD-L1 could improve
the effectiveness of immunotherapy. Additionally, circular RNAs, such as CircPACRGL,
regulate neutrophil functions by increasing TGF-β levels, promoting the differentiation of
neutrophils into the N2 phenotype with immunosuppressive properties. The presence of
this circRNA and activation of the TGF-β pathway may serve as biomarkers predicting the
lack of response to immunotherapy and offer potential directions for combination therapies
targeting the inflammatory components of the tumor microenvironment [80].

Platelets play a significant role in tumor progression, particularly by enhancing angio-
genesis through VEGF, the levels of which are elevated in cancer patients. Pro-inflammatory
cytokines such as IL-1 and IL-6 stimulate increased megakaryocyte production, leading to
thrombocytosis, which is considered a negative prognostic factor. Additionally, within the
tumor microenvironment, platelets become activated and release factors that support neo-
vascularization and tumor growth. As a result, in the context of chronic inflammation and
immunosuppression, a decrease in lymphocyte count occurs, contributing to an elevated
PLR, which has been associated with poorer prognosis in patients with solid tumors [81].

Cancer cells can contribute to lymphopenia in several ways. One of them is by directly
inducing the death of lymphocytes through the expression of pro-apoptotic ligands. Addi-
tionally, tumors can weaken the ability of T lymphocytes to respond to stimuli by disrupting
the signaling of their receptors. An important role is also played by the increased number
of regulatory T cells, which, through the expression of the CTLA-4 molecule, promote
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immunosuppression and can lead to the death of other immune cells in an activation-
dependent manner [27]. Lymphocytes support the survival of CRC patients by inducing
tumor cell apoptosis in the immune response. In contrast, monocyte activation inhibits
the proliferation and activation of T cells, leading to immunosuppression and weakened
anti-tumor responses. A high number of monocytes in peripheral blood is associated with
worse prognosis in cancer patients. Monocyte activation inhibits the proliferation and
activation of CD4+ CD25- and CD8+ CD25-T cells, resulting in immune suppression [26].

3.6. ctDNA

Circulating tumor DNA (ctDNA), a type of cell-free DNA shed into the bloodstream
by tumor cells, reflects tumor burden and offers a real-time view of tumor dynamics [82]
(Figure 4). Beyond its diagnostic potential, ctDNA can stimulate innate immune path-
ways, promoting systemic inflammation and immune dysregulation. Through recognition
by pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) and cytosolic
DNA sensors, ctDNA activates inflammatory signaling cascades, including the caspase-1
inflammasome pathway, leading to the release of pro-inflammatory cytokines like IL-1β
and IL-18 [82,83].

Figure 4. Blood- and tumor-based biomarkers for assessing responses to cancer immunotherapy.
https://BioRender.com/zbddbm9.

ctDNA is a valuable tool for monitoring tumor burden and tumor dynamics in real
time. However, ctDNA, although reflecting genomic alterations, may not always fully
capture the complex spatial heterogeneity (differences between tumor regions or metastases)
or clonal evolution (emergence of new mutations or subclones over time) of the tumor [84].
ctDNA levels may be low in early stages of disease or in low-burden tumors, which limits
its sensitivity. Furthermore, the ctDNA fraction may be variable and may not always reflect
all tumor clones, especially those with low prevalence. To overcome these limitations, it
is necessary to combine ctDNA analyses with other methods, such as mononuclear cell
immunophenotyping, extracellular vesicle analysis, and plasma proteomics, as well as
integrated approaches with circulating tumor cells (CTCs) [85,86].

Although ctDNA provides valuable real-time information on tumor dynamics, its
limitations in fully reflecting tumor heterogeneity and clonal evolution emphasize the need
for multimodal approaches. Combining ctDNA with other biomarkers and advanced ana-

https://BioRender.com/zbddbm9
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lytical methods may provide a more comprehensive view of tumor biology and treatment
response [87].

This inflammatory response is part of a broader tumor-induced immune disruption,
which also includes enhanced lymphangiogenesis and lymphatic remodeling, driven by
VEGFC and VEGFD, facilitating tumor dissemination. Tracking ctDNA levels offers a non-
invasive biomarker for monitoring tumor progression and treatment response. A decline in
ctDNA is typically associated with therapeutic success, while increasing levels may signal
resistance or relapse. Its dual role as a tumor burden marker and inflammatory trigger
makes ctDNA a valuable tool in both cancer diagnostics and immunological research [88].

3.7. LDH and CRP

Lactate dehydrogenase (LDH) and CRP are widely used markers of systemic inflam-
mation that are frequently elevated in cancer (Figure 4). These acute phase reactants reflect
tumor-associated tissue damage, immune activation, and overall inflammatory burden,
often correlating with advanced disease and poor prognosis [89,90].

LDH, a metabolic enzyme released during cell damage, is linked to increased tumor
burden, rapid cell turnover, and aggressive tumor phenotypes. It also contributes to tumor
progression by promoting angiogenesis and immune evasion. Ratios such as the LDH-
to-albumin ratio (LAR) have shown a prognostic value in CRC and correlate with TNM
staging [89].

CRP, produced by the liver in response to pro-inflammatory cytokines like IL-6, is a
sensitive marker of systemic inflammation. Elevated CRP levels have been associated with
tumor growth, metastasis, and therapy resistance in multiple malignancies [91]. Its broad
availability and responsiveness to inflammation make it a practical tool for monitoring
cancer progression and treatment response.

For LDH and CRP, ROC-AUC analysis in melanoma patients showed that CRP
(AUC = 0.933) was superior to LDH (AUC = 0.491) in discriminating stage IV melanoma.
In the context of diagnosing stage IV melanoma, at a cutoff of 3.0 mg/l, CRP achieved
a sensitivity of 0.769 and a specificity of 0.904, whereas LDH did not provide additional
information compared with CRP [92].

In NSCLC, a study showed that both serum CRP and LDH levels, as well as their
combination, could predict the response to checkpoint inhibitors. High LDH levels and
low CRP levels were associated with unfavorable progression-free survival [93]. In acute
pancreatitis, LDH showed higher sensitivity (94.9%) but lower specificity (88.2%) compared
to CRP (sensitivity of 59.0% and specificity of 97.4%) [94].

In lung cancer, although the combination of CRP and neuron-specific enolase (NSE)
showed high specificity (94%) and accuracy (82.67%), LDH levels were not statistically
different in the patient groups [95].

Analysis of the results obtained from the studies shows that CRP appears to be superior
to LDH in staging melanoma, whereas their individual diagnostic powers differ in other
conditions, such as acute pancreatitis. Importantly, studies in NSCLC and prostate cancer
show that their combination can increase predictive power. This suggests that rather than
one marker being universally “better,” they may offer complementary information, with
their optimal utility being dictated by the specific tumor type, stage, and clinical question.

3.8. Cytokine Signaling

Cytokines are key signaling molecules that regulate immune responses and inflamma-
tion within the tumor microenvironment (TME). Their effects vary depending on the tumor
type, stage, and host immune status, and they significantly influence tumor progression,
immune evasion, angiogenesis, and metastasis [96]. Among them, interleukins like IL-6,
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IL-8, and IL-10 play prominent roles in shaping tumor behavior and immune cell activ-
ity [96–98] (Figure 4). Due to their broad impact on immune signaling, cytokines are being
actively studied as biomarkers and therapeutic targets in cancer [96].

IL-6 and IL-8 are strongly associated with pro-tumorigenic activities. IL-6 promotes
tumor cell proliferation, survival, and metastasis via the JAK-STAT3 pathway, which upreg-
ulates genes involved in cell cycle progression and angiogenesis [96,97]. It also suppresses
anti-tumor immunity by promoting the expansion of myeloid-derived suppressor cells
(MDSCs) and inhibiting cytotoxic T lymphocytes (CTLs) [96]. Elevated IL-6 is correlated
with advanced stages in cancers like breast and bladder cancer [96,97]. IL-8, a chemokine,
supports tumor progression by promoting angiogenesis, tumor invasion, and extracellular
matrix degradation via matrix metalloproteinases (MMPs). It also attracts neutrophils,
sustaining chronic inflammation within the TME [96,98].

IL-10 has a dual role in cancer. Known for its anti-inflammatory effects, IL-10 sup-
presses pro-inflammatory cytokine production and enhances regulatory T cell (Treg) devel-
opment, thereby dampening anti-tumor immune responses. While this may help prevent
tissue damage from chronic inflammation, IL-10 can also facilitate tumor growth by sup-
pressing immune surveillance. Its role is highly context-dependent, making therapeutic
targeting of IL-10 complex but potentially valuable in modulating the TME [96].

Studies show that dynamic changes in cytokine profiles, such as decreased IL-6 and
IL-8 levels, may reflect the short-term efficacy of immunotherapy [99]. Changes in CCL11,
IL1RA, and IL17A levels after treatment were associated with long-term progression-free
survival [100].

In addition, interactions between cytokines (e.g., IL-10 inhibiting the production of
IL-1, IL-6, and IL-12) are complex and affect the overall immune response [101]. Differ-
ent checkpoint inhibitors, such as the CTLA-4 and PD-1 blockade, may induce distinct
immunologic changes and cytokine profiles [102]. Ignoring this temporal variability and
interplay limits a full understanding of the role of cytokines as biomarkers. Single mea-
surements at a single time point may not capture the complexity of the immune response
and the dynamics of the tumor microenvironment. The dynamic monitoring of biomarkers
is critical, especially in cancers [88,89]. Rather than relying on single measurements at a
single time point, future studies should focus on profiling cytokines and other immune
parameters in a serial manner to capture their kinetics and interplay during treatment.
Such analysis can provide much more precise information about the response to therapy,
early detection of resistance, and prediction of adverse events.

Understanding the nuanced roles of cytokines in the TME is critical for develop-
ing targeted immunotherapies that can enhance anti-tumor responses while minimizing
immune-related adverse effects.

3.9. Eosinophiles

Eosinophils, best known for their role in allergic reactions and parasitic infections, are
now increasingly recognized as influential players in the tumor microenvironment (TME)
(Figure 4). Their involvement in cancer is complex and context-dependent, showing both
pro- and anti-tumor effects, which vary with tumor type, stage, and immune context. This
duality highlights the diverse roles eosinophils can play in cancer progression and the
need to better understand the mechanisms behind their function in tumors. Once activated,
eosinophils release a range of cytotoxic granules—including eosinophil peroxidase (EPO),
major basic protein (MBP), eosinophil cationic protein (ECP), and eosinophil-derived neu-
rotoxin (EDN)—that can directly induce tumor cell death. In addition, eosinophils secrete
cytokines like IL-5, IL-13, and TNF-α, which influence the activity of other immune cells in
the TME, such as T cells, natural killer cells, and macrophages. For instance, IL-5 enhances
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eosinophil recruitment, while IL-13 can affect macrophage polarization, and TNF-α may
boosts T cell cytotoxicity. The impact of eosinophils on tumor outcome is highly variable. In
cancers such as Hodgkin lymphoma and colorectal cancer, eosinophil infiltration has been
linked to better prognosis and improved immune responses. In contrast, in lung cancer and
melanoma, eosinophils have been associated with poor outcomes, potentially due to their
role in immunosuppression or angiogenesis. Additionally, peripheral eosinophilia has been
proposed as a positive predictive biomarker for response to immunotherapy, although it
may also increase the risk of immune-related adverse events. The tumor microenvironment
strongly influences eosinophil behavior. In pro-inflammatory settings, eosinophils may
promote tumor destruction; in more immunosuppressive conditions, they may instead sup-
port tumor growth. As such, better insight into the signals guiding eosinophil recruitment
and function is essential for leveraging their potential in cancer immunotherapy [103].

3.10. Tregs

Regulatory T cells (Tregs) are a subset of CD4+ T cells marked by Foxp3 expression that
play a vital role in maintaining immune tolerance and preventing autoimmunity. However,
in cancer, Tregs can suppress anti-tumor immune responses and support tumor progression
by promoting an immunosuppressive tumor microenvironment (TME) [104,105].

Tregs inhibit the function of effector T cells, B cells, and NK cells through several
mechanisms, notably the secretion of IL-10, TGF-β, and expression of CTLA-4. IL-10
dampens inflammatory cytokine production, while TGF-β suppresses T-cell proliferation
and fosters further Treg differentiation. CTLA-4, by competing with CD28 for CD80/86
binding on antigen-presenting cells (APCs), limits co-stimulatory signals necessary for
T-cell activation. Together, these actions foster immune tolerance and enable tumor cells
to evade immune destruction. A high Treg presence within tumors has been correlated
with poorer prognosis [105]. The balance between Tregs and effector T cells in the TME
is a key factor influencing responses to immunotherapies [104]. A high Treg-to-effector
T cell ratio typically indicates resistance to treatment, while a lower ratio is linked to
improved outcomes. Accordingly, cancer therapies are exploring strategies to selectively
deplete or inhibit Tregs within the tumor site [105]. However, because Tregs are essential
for immune homeostasis, systemic depletion carries the risk of autoimmunity [104,105].
This underscores the need for precision in modulating Treg activity to enhance anti-tumor
immunity while avoiding adverse effects.

3.11. MDSCs

Myeloid-derived suppressor cells (MDSCs) are a diverse group of immature myeloid
cells that expand under pathological conditions such as cancer and chronic inflammation.
These cells contribute to tumor progression by suppressing T-cell responses and shaping an
immunosuppressive tumor microenvironment (TME). Normally rare in healthy individuals,
MDSCs accumulate in malignancy due to cytokines and growth factors like IL-6, GM-
CSF, and IL-10 that drive their differentiation and recruitment. MDSCs mediate immune
suppression via multiple mechanisms: arginase (ARG1) depletes L-arginine, impairing
T-cell function; inducible nitric oxide synthase (iNOS/NOS2) produces nitric oxide, which
disrupts TCR signaling; and reactive oxygen species (ROS) contribute to oxidative stress
and T-cell dysfunction. MDSCs also promote the expansion of regulatory T cells (Tregs)
and M2-polarized macrophages, amplifying immunosuppression [106].

Their development and function are tightly regulated by signaling pathways such
as JAK-STAT, NF-κB, and MAPK [94–96]. JAK-STAT signaling, triggered by IL-6 or GM-
CSF, promotes MDSC differentiation and survival. NF-κB, activated by inflammatory
stimuli like TNF-α and ROS, enhances the expression of immunosuppressive mediators.
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The MAPK pathway further supports MDSC development under stress or growth factor
signaling. Conversely, AMPK signaling can dampen these pathways and limit MDSC
expansion [107].

Studies indicate heterogeneity of MDSC populations and considerable interlaboratory
variability in their phenotyping and quantification by flow cytometry, especially for granu-
locytic subsets [108]. The lack of a uniform, universally accepted classification of human
MDSCs (both in terms of subset types and identification markers) and differences in gating
strategies are the main sources of this variability [109]. This makes comparing study results
and establishing reliable cutoff values for clinical assessment extremely difficult. Further
efforts to harmonize protocols and standardize methodologies are essential for MDSCs to
become routinely useful biomarkers in oncology [110].

Solving the heterogeneity problem in MDSC quantification is crucial. The complexity
of MDSC subsets and the lack of consensus on the best combinations of surface markers for
their identification by flow cytometry pose significant challenges. Standardization of gating
strategies and protocols is essential to obtain consistent and comparable data, enabling
their reliable clinical application.

Given their critical role in tumor immune evasion, MDSCs are increasingly recognized
as promising targets in cancer immunotherapy.

3.12. Monocytes

Monocytes, a type of circulating white blood cell, are key players in the immune
system, constantly surveilling the body for infections or injury. In solid tumors, these cells
are actively recruited into the tumor microenvironment (TME) through chemokines, where
they differentiate into macrophages [80]. This recruitment is a critical event that shapes the
immune landscape of the TME and influences tumor progression [111,112] (Figure 4).

Once in the TME, macrophages adapt to environmental cues, leading to their po-
larization into distinct subtypes—primarily M1 and M2. M1 macrophages, activated by
signals like IFN-γ and LPS, produce pro-inflammatory cytokines (e.g., TNF-α and IL-12)
and reactive species that help eliminate tumor cells. In contrast, M2 macrophages, induced
by IL-4, IL-10, and IL-13, support tumor growth, suppress immune responses, and facilitate
tissue remodeling. These tumor-associated macrophages (TAMs) are typically skewed
toward the M2 phenotype in tumors and are linked to metastasis, angiogenesis, and poor
prognosis [112].

Cytokines within the TME strongly influence macrophage function. IL-6 promotes
tumor growth and M2 polarization by enhancing immunosuppressive traits [112]. IL-
10, a key anti-inflammatory cytokine, further pushes macrophages toward an M2 profile
while inhibiting M1-mediated anti-tumor activity. Interestingly, TNF-α, though generally
pro-inflammatory, can also drive M2 polarization depending on the context [112]. These
cytokines, through their nuanced roles, shape the immunological behavior of macrophages
and contribute to either tumor suppression or promotion.

Targeting macrophage polarization, especially reprogramming TAMs from an M2-
to an M1-like state, is a promising therapeutic strategy aimed at enhancing anti-tumor
immunity and disrupting tumor progression.

3.13. Mechanistic Insights into Blood Rheology Alterations and Their Impact on Tumor Biology
and Immunotherapy Response

The relationship between changes in blood rheology and tumor biology, particularly
in the context of responses to immunotherapy, is complex and multifaceted. Tumors often
exhibit intrinsic resistance to immunotherapy, stemming from factors such as reduced lym-
phocyte activity against the tumor and mutations affecting immunological recognition [113].
For instance, mutations in genes associated with antigen presentation can limit the immune
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system’s ability to recognize tumor cells. Additionally, genomic instability, a hallmark of
many cancers, can lead to the release of DNA into the cytoplasm, activating inflammatory
pathways like the cGAS/STING pathway, potentially enhancing the anti-tumor immune
response [114]. However, tumors often develop mechanisms to suppress these pathways to
evade immune elimination, contributing to resistance to immunotherapy.

3.14. Inflammatory Signaling

The presence of DNA in the cytoplasm, resulting from genomic instability, activates
DNA sensors like cGAS, leading to a type I interferon response that enhances anti-tumor
immunity [114]. This inflammatory response can increase the immunogenicity of tumor
cells, making them more susceptible to immunotherapies such as checkpoint inhibitors.
However, tumors may develop mechanisms to suppress this signaling, for example, by
inhibiting the cGAS/STING pathway, thereby limiting treatment efficacy. Furthermore, the
tumor microenvironment can mimic fetal tissue, creating immunosuppressive conditions
that hinder effective immune responses. Interactions between fetal-like macrophages and T
cells play a crucial role in this process [115].

3.15. Tumor-Associated Inflammation and Blood Rheology

Cancer-related inflammation can also alter blood rheology. Studies have shown that
patients with cancer exhibit increased plasma viscosity and changes in red blood cell
aggregation, which are associated with inflammatory states [116]. These changes can
affect blood flow within tumors, further complicating the delivery of immune cells and
therapeutic agents.

3.16. Impact of Blood Rheology on the Tumor Microenvironment

In solid tumors, blood vessels are often abnormal, with dilated and tortuous structures,
altering blood flow properties. Research indicates that blood viscosity within tumors is
reduced compared to bulk viscosity, affecting tumor perfusion [117]. Impaired perfusion
leads to hypoxia, a characteristic feature of the tumor microenvironment (TME), which
is associated with immunosuppression. Hypoxia increases the expression of checkpoint
molecules like PD-L1 on tumor and immune cells, promoting immune evasion [118]. Addi-
tionally, hypoxia attracts immunosuppressive cells, such as myeloid-derived suppressor
cells (MDSCs) and regulatory T cells (Tregs), further inhibiting effective immune responses.

3.17. Strategies to Enhance Immunotherapy Responses

Strategies aimed at improving tumor perfusion, such as vascular normalization using
anti-angiogenic drugs, can reduce hypoxia and enhance the efficacy of immunotherapy.
Studies have demonstrated that administering low doses of anti-angiogenic drugs improves
the delivery of immune and therapeutic cells to tumors, increasing the effectiveness of
immunotherapy [119]. Sequential administration of these drugs can optimize the tumor-
immune microenvironment, while high doses may lead to excessive vessel constriction and
worsened perfusion. Similarly, anticoagulant therapy can promote the tumor’s immuno-
logical microenvironment and potentiate immunotherapy by alleviating hypoxia [120].

Understanding the immunosuppressive features of the tumor-immune microenviron-
ment, such as VEGF-A expression, is crucial for developing strategies to improve responses
to immunotherapy. Blocking specific pathways, for example, using anti-angiogenic drugs,
can enhance treatment outcomes in cancers like hepatocellular carcinoma [115]. Changes
in blood rheology, such as increased plasma viscosity, can limit the delivery of immune
cells to tumors, reducing the effectiveness of therapies like checkpoint inhibitors or CAR-
T cell therapy [116]. The normalization of blood flow strategies thus holds potential to
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increase the efficacy of immunotherapy, but it requires further research to optimize their
clinical application.

3.18. Prognostic and Predictive Values of Four Blood- and Tumor-Based Biomarkers

In the presented review, the prognostic and predictive properties of biomarkers were
discussed, with particular emphasis on their application in the context of immunotherapy.
It is important to note that prognostic biomarkers provide information about the overall
course of cancer regardless of the treatment applied, whereas predictive biomarkers offer
insights into the likely response to a specific therapy. In the context of immunotherapy,
combining prognostic markers such as NLR, PLR, and LMR with blood rheology param-
eters may enhance the ability to predict treatment outcomes. For instance, in a study of
gastric cancer patients treated with immune checkpoint inhibitors, elevated NLR and PLR
were associated with poorer survival outcomes, suggesting their potential as predictive
biomarkers. Additionally, in the realm of blood rheology, changes such as increased plasma
viscosity or alterations in erythrocyte aggregation can influence blood flow within the
tumor, further complicating the delivery of immune cells and drugs. Understanding these
interactions is crucial for optimizing cancer treatment strategies, considering both prognos-
tic biomarkers and blood rheology parameters. These factors complement each other and
should be applied individually depending on the clinical objective [18].

The prognostic and predictive value of blood markers such as the neutrophil-to-NLR,
-PLR, and -LMR, has been extensively studied across various cancer types. Elevated NLR
and PLR were generally associated with poorer OS and PFS, while higher LMR correlates
with improved outcomes. However, their predictive value—specifically their ability to
forecast response to specific treatments—is less established and appears to be context-
dependent. For instance, in medullary thyroid carcinoma, LMR and MPV have shown
potential in predicting postoperative calcitonin progression, but not recurrence [121].

It has been observed that elevated plasma and whole blood viscosity levels are linked
to poorer survival and increased risk of metastasis in various cancers, including gyne-
cologic and liver cancers [122]. Altered red blood cell aggregation and deformability
can reflect disease severity and may serve as prognostic indicators, particularly in hema-
tologic malignancies such as multiple myeloma. The mechanical properties of tumor
tissues and cells—such as stiffness and cytoplasmic viscosity—are associated with treat-
ment response and metastatic potential, providing opportunities for the development of
predictive biomarkers.

These inflammatory markers have shown significant associations with patient out-
comes, particularly in the context of ICIs and surgical interventions. These markers and
their prognostic and predictive values are presented in Tables 4 and 5.

Table 4. Prognostic and predictive value of NLR, PLR, and LMR in various cancers.

Cancer Type NLR Prognostic Value PLR Prognostic Value LMR Prognostic Value Reference

Gastric Cancer (ICI)

Elevated NLR associated
with poorer OS

(HR = 2.01) and PFS
(HR = 1.59)

Elevated PLR associated
with poorer OS (HR = 1.57)

and PFS (HR = 1.52)

Elevated LMR associated
with improved OS

(HR = 0.62) and PFS
(HR = 0.69)

[18]

Melanoma (ICI) Elevated NLR associated
with poorer OS and PFS

Elevated PLR associated
with poorer OS and PFS

Elevated LMR associated
with improved OS and PFS [19]

Head and Neck SCC

Elevated NLR identified
as an independent

negative prognostic
factor for OS

PLR not specified as a
significant

prognostic factor

LMR not specified as a
significant

prognostic factor
[123]
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Table 4. Cont.

Cancer Type NLR Prognostic Value PLR Prognostic Value LMR Prognostic Value Reference

Breast Cancer Elevated NLR correlated
with poorer DSS and DFS

PLR identified as an
independent prognostic

marker with superior
predictive value for DSS

and DFS compared to NLR
and LMR

Lower LMR associated
with poorer DSS and DFS [124]

Pancreatic Cancer Elevated NLR associated
with worse OS

Elevated PLR correlated
with greater tumor

viability post-
neoadjuvant chemotherapy

LMR not significant as a
prognostic marker [125]

Osteosarcoma

Elevated NLR
significantly correlated
with advanced disease

stage and
poorer prognosis

Elevated PLR significantly
correlated with advanced

disease stage and
poorer prognosis

Lower LMR significantly
correlated with advanced

disease stage and
poorer prognosis

[126]

Laryngeal Carcinoma Elevated NLR associated
with increased mortality

Elevated PLR associated
with increased mortality

Lower LMR associated
with better

survival outcomes
[121]

Hilar
Cholangiocarcinoma

NLR negatively
correlated with CD3+

and CD8+ TILs;
associated with

poorer OS

PLR showed no correlation
with TILs

Elevated LMR positively
correlated with CD3+ TILs;

identified as an
independent prognostic

factor for OS

[127]
Początek

formularza

Dół
formularza

Table 5. Prognostic and predictive value of rheological parameters in cancer.

Cancer Type Rheological Parameter(s) Prognostic/Predictive Value Reference

Gynecologic Cancers Plasma viscosity and
RBC aggregation

Elevated plasma viscosity is an
independent prognostic marker for

overall survival in breast and
ovarian cancers; higher plasma

viscosity correlates with increased
risk of thrombosis and poorer

survival outcomes.

[122]

Hepatocellular Carcinoma Whole blood viscosity

Increased whole blood viscosity is
associated with extrahepatic

metastases and reduced survival,
indicating its potential as a

prognostic marker.

[52]

Colorectal Liver Metastases
Tissue stiffness (shear wave

speed) and viscoelastic
parameters (α and µ)

Higher tissue stiffness correlates
with better histopathological
response to chemotherapy;

viscoelastic parameters can predict
treatment response with high

diagnostic accuracy (AUC > 0.8).

[128]
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Table 5. Cont.

Cancer Type Rheological Parameter(s) Prognostic/Predictive Value Reference

Multiple Myeloma RBC aggregation index
and deformability

Patients exhibit higher RBC
aggregation and reduced

deformability compared to healthy
controls, which may contribute to

disease progression and could serve
as prognostic indicators.

[46]

Various Cancers
(Pre/Post-Chemotherapy)

Hematocrit, ESR, plasma
viscosity, and whole

blood viscosity

Chemotherapy induces significant
changes in rheological parameters;
post-chemotherapy reductions in

whole blood viscosity and
hematocrit may reflect treatment
response and impact prognosis.

[129]

Breast Cancer
(Cellular Level) Cytoplasmic viscosity

Lower cytoplasmic viscosity in
highly metastatic breast cancer cells
suggests its potential as a biomarker

for metastatic potential
and aggressiveness.

[130]

Colon Cancer
Tissue rheology

(compressional stiffening
and shear weakening)

Cancerous colon tissues exhibit
distinct rheological properties

compared to healthy tissues; these
mechanical characteristics may

serve as complementary diagnostic
markers alongside histopathology.

[131]

4. Discussion and Conclusions
Based on the results discussed in the paper, there is a need for further analysis and

searching for correlations between the value of whole blood viscosity and determinants
that depend on the values of biochemical parameters and biomarkers. For example, the
presence of neoplastic disease may alter factors governing whole blood viscosity, which
may affect both blood circulation through normal and tumor tissues and even induce the
onset of metastases. During cancer, changes in hematocrit values, changes in whole blood
viscosity, plasma viscosity, and changes in erythrocyte aggregability and deformability
were observed [41,50]. Han et al. emphasized in their studies that whole blood viscosity
increases during cancer development and that it is associated with an advanced stage of
systemic metastases [52]. In turn, R.K. Jain in 1988 already pointed out that there is a lack of
quantitative data on the factors determining blood flow in tumors and that microcirculation
in the tumor is heterogeneous both temporally and spatially. The author pointed out that
answers to questions about intertumoral viscosity, how it changes depending on the size,
type, and location of the tumor and whether the observed differences can be explained on
the basis of the number, size, and stiffness of cells in the blood, plasma viscosity, and vessel
geometry, and also what key parameters are needed to predict the hemodynamic response
of human tumors should be found [44]. The results suggest the need for further large-scale
studies, which may eventually enable the inclusion of cost-effective basic blood parameters
in routine testing to evaluate immunotherapy treatment outcomes, especially regarding the
lack of scientific research for the group of patients with solid tumors.

One of the most thoroughly studied peripheral blood biomarkers, though still lacking
validation in large clinical trials, is soluble PD-L1 (sPD-L1). In the meta-analysis, Cheng
et al. showed that low levels of sPD-L1 were significantly associated with improved OS
and PFS [131]. However, further studies are needed to clearly determine whether sPD-L1
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can serve as an independent prognostic factor in immunotherapy. Like soluble PD-L1
(sPD-L1), soluble CTLA-4 (sCTLA-4) has emerged as a potentially valuable biomarker for
monitoring immunotherapeutic efficacy. Pistillo et al. reported significant associations
between sCTLA-4 serum levels and ipilimumab response, OS, and irAEs [132]. An undeni-
able advantage of assessing parameters such as NLR, PLR, and LMR is their low cost, as
they can be calculated from routinely performed complete blood counts with a differential.
As previously mentioned, the most assessed peripheral blood biomarker remains ctDNA.
A clear drawback of using such biomarkers is the variability in testing methods, protocols,
and reporting standards [133,134].

While tissue-based biomarkers, such as PD-L1 expression, TMB, and MSI, are currently
the most-often-used biomarkers for ICIs treatment, they require obtaining a tissue sample
from the tumor. Immunohistochemical (IHC) assays for assessment of PD-L1 expression
in tumor and immune cells were developed along PD-(L)1 inhibitors. Standardized as-
says include 22C3 and 28-8 pharmDx on Dako platforms, as well as SP142 and SP263 on
Ventana platforms. The results of PD-L1 testing may vary depending on the monoclonal
antibody, IHC platform, and interpreting pathologist. Studies showed that 28-8, 22C3,
and SP263 assays were highly concordant for tumor cells staining, but not for immune
cells staining [135]. A multicenter study by Adam et al. analyzed the concordance of the
aforementioned standardized assays as well as 27 laboratory-developed tests, with combi-
nations of five anti-PD-L1 monoclonal antibodies (28-8, 22C3, E1L3N, SP142, and SP263)
and three types of IHC platforms (Dako Autostainer Link 48, Leica Bond, and Ventana
BenchMark Ultra). A total of 14 of the laboratory-developed tests (51.8%) demonstrated
similar concordance to the standardized assays [136].

Blood-based biomarkers have the advantage of being obtained with a simple blood
draw instead of a biopsy. However, the diagnostic laboratory needs access to necessary
equipment and qualified personnel. The cost and availability depends on the specific
biomarker. NLR, LMR, and PLR can be calculated at any laboratory with a hematology
analyzer as elements of a routine complete blood count. Variability can be minimized by
quality control and analyzing fresh blood samples [137,138]. If necessary, samples can be
sent to a reference laboratory, but optimal storage conditions should be provided [138,139].
Some rheological parameters of blood (such as hematocrit) can be assessed as part of the
complete blood count, but analyzing erythrocyte deformability and whole blood viscosity
requires additional equipment [140].

Combined with the often high cost of these analyses, this highlights the need to explore
alternative, more affordable peripheral blood markers that could serve similar functions. It
is worth emphasizing that even FDA-approved biomarkers show variable responses to ICIs
therapy. A combination of several biomarkers may be required to enhance the accuracy of
predicting therapeutic outcomes and optimize patient stratification [141]. The accumulation
of myeloid-derived suppressor cells (MDSCs) is most prominent in patients with stage
IV disease; however, elevated levels can already be observed in stage I [142]. Increased
MDSC levels in gastrointestinal cancers have been identified as an independent prognostic
factor for reduced overall survival, commonly associated with elevated concentrations of
interleukin-13 (IL-13), arginase-1, and regulatory T cells (Tregs) [143]. Furthermore, a rising
proportion and absolute number of MDSCs correlate with an increased metastatic tumor
burden in patients with breast cancer [144] and colorectal cancer [145]. Elevated serum
LDH levels have been consistently associated with poor prognosis in a variety of malignan-
cies [146]. Elevated serum LDH levels are correlated with poor survival outcomes in solid
tumors, particularly in melanoma, prostate, and renal cell carcinomas, and can serve as a
valuable and cost-effective prognostic biomarker in metastatic carcinomas [147]. Cytokines
exert both direct and indirect effects on tumor cell growth and metastatic behavior, as
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well as on stromal cells, including fibroblasts, infiltrating immune cells, and endothelial
cells within the microvasculature [148]. Patients with metastatic solid tumors exhibited
significantly higher mean serum IL-2R levels compared to those without metastases, with
values similar to those observed in lymphoma patients [149].

Assay standardization and preanalytical variability are crucial for clinical use of
biomarkers to ensure accurate and comparable results. Special attention is paid to ensure
that the assays are robust to common confounding factors such as hemoglobin and biliru-
bin, which reduces preanalytical variability. However, detailed procedures such as sample
storage are not fully controlled or may be a potential point of variability. Therefore, further
studies are needed to establish universal standards for these biomarkers in clinical prac-
tice [150,151]. Key elements of standardization should include basic steps in the validation
of assay methods, such as standard curve development, assay sensitivity, detection limits,
quantification limits, assay repeatability, assay specificity, dilution linearity, and post-dose
recovery. These elements ensure that assays are precise, reproducible, and suitable for
clinical use, which is essential for the comparability of results between laboratories.

Preanalytical variability is one of the parameters that influence the obtained results
and biomarker parameter values. Preanalytical variability refers to variations that may
occur before sample analysis, such as sample collection, storage, and processing. For
samples, steps such as interference testing, precise sample type, and sample handling, i.e.,
when biomarker measurement should be performed, whether before or after surgical inter-
ventions, are important. Although details such as storage conditions and processing time
are not widely discussed, it is important to standardize sample collection procedures. The
influence of tumor type and surgical intervention type is also important. Studies indicate
the need for harmonization of biomarker measurement methods across laboratories. For
example, other studies often use ELISA to measure these biomarkers, but without standard-
ized protocols, results may be incomparable between laboratories. The need for common
reference standards and sample handling protocols is crucial for the clinical application of
these biomarkers. The accompanying publication fills a gap in the review by providing
detailed information on assay standardization for sPD-L1 and sCTLA-4, which is crucial
for their clinical application. It also addresses preanalytical variability, indicating that the
assays are robust to common interferences, although detailed preanalytical procedures
require further discussion. Further studies are needed to establish universal standards,
which is necessary for the broad application of these biomarkers in clinical practice [152].

The diagnostic and prognostic values of MLR, NLR, PLR, CEA, and CA19-9 were
assessed using a receiver operating characteristic (ROC) curve analysis, and the chi-square
test in a retrospective analysis was conducted involving 783 patients diagnosed with CRC
and 1232 age-matched healthy controls. Levels of MLR, NLR, and PLR were significantly
elevated in CRC patients compared to controls. The areas under the ROC curve (AUC)
for MLR, CEA, PLR, NLR, and CA19-9 were 0.739, 0.726, 0.683, 0.610, and 0.603, respec-
tively. The combination of CEA and MLR yielded the highest diagnostic performance
(AUC = 0.815), outperforming other combinations, including CEA with CA19-9. These
findings indicate that MLR is a superior diagnostic marker for colorectal cancer compared
to NLR and PLR, whereas NLR may hold greater prognostic value for CRC patients [153].

Another study highlighting the superiority of NLR and PLR over more costly di-
agnostic methods focused on gastric cancer. Most patients with gastric cancer remain
asymptomatic until the disease reaches advanced stages. Although gastroscopy remains
the gold standard diagnostic tool recommended by clinical guidelines, its invasive nature
and high cost limit its widespread use in screening programs for early detection. Commonly
used tumor markers, such as carcinoembryonic antigen (CEA) and carbohydrate antigen
19-9 (CA19-9), exhibit limited sensitivity and specificity, thereby restricting their diagnostic
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utility in gastric cancer. This retrospective study included 2606 patients diagnosed with
gastric cancer (GC) and 3219 healthy controls monitored over a three-year period. Periph-
eral blood samples were analyzed to assess levels of NLR, PLR, CEA, and CA19-9. Optimal
cutoff values for NLR and PLR were established through a receiver operating characteristic
(ROC) curve analysis.

The findings demonstrated that systemic inflammatory markers NLR and PLR were
significantly associated with gastric cancer diagnosis, particularly among male patients.
These results suggest that assessment of inflammatory markers in peripheral blood may
serve as a valuable tool for identifying high-risk populations for gastric cancer [154].

Temporal dynamics refer to the evolution of biomarkers, such as immune cell popula-
tions, gene expression profiles, or ctDNA, during immunotherapy.

Circulating non-coding RNAs (ncRNAs)—including microRNAs (miRNAs), long
non-coding RNAs (lncRNAs), and circular RNAs (circRNAs)—are emerging as promising
non-invasive biomarkers for cancer diagnosis and monitoring. These molecules are stable
in body fluids such as blood and urine, making them suitable candidates for liquid biopsy
applications. Their ability to reflect tumor-specific alterations underscores their potential in
early detection, therapeutic selection, and disease monitoring.

miR-21, for instance, has been extensively studied in NSCLC. Elevated levels of miR-21
have been associated with tumor progression and poor prognosis, highlighting its utility as
a diagnostic and prognostic biomarker [155].

In gastric cancer, the circular RNA hsa_circ_0001789 has demonstrated diagnostic
value. Reduced expression levels of hsa_circ_0001789 in gastric cancer tissues and plasma
samples correlate with malignant characteristics, suggesting its role in disease monitor-
ing [156].

Moreover, ncRNAs have shown potential in predicting therapeutic responses. Certain
ncRNA expression profiles can indicate sensitivity to targeted therapies, such as epidermal
growth factor receptor (EGFR) inhibitors in NSCLC, facilitating personalized treatment
strategies [157].

Unlike static pretreatment measurements, longitudinal assessments capture the im-
mune system’s response to treatment, providing insights into mechanisms of action and
clinical outcomes. These dynamics are particularly relevant for PD-1 and CTLA-4 inhibitors,
which modulate T-cell activity at different stages, PD-1 primarily in peripheral tissues later
in the immune response, and CTLA-4 in lymph nodes early on [158].

PD-1 and CTLA-4 inhibitors target distinct immune checkpoints, leading to different
temporal biomarker profiles. PD-1 blockade primarily enhances exhausted CD8+ T-cell
proliferation early in treatment, as seen in lung cancer patients where PD-1+CD8+ T cells
peaked within the first week [152]. Conversely, CTLA-4 blockade promotes CD4+ Th1-like
effector cell expansion and Treg depletion, with effects more evident at later time points (e.g.,
3 weeks post-treatment) [159]. Combination therapy synergizes these effects, sustaining
robust T-cell responses, as evidenced by increased Ki-67+ CD8+ T cells in peripheral blood
post-ipilimumab plus nivolumab [160].

Implementing longitudinal biomarker analysis faces challenges, including the inva-
siveness of serial biopsies and the need for standardized timing protocols. Optimal timing
for assessment varies by biomarker and treatment; for instance, PD-L1 IHC requires stain-
ing within 6 months of tissue sectioning, and T-cell assays need prompt PBMC isolation to
avoid suppression [161]. Advances in liquid biopsies and high-throughput technologies,
like mass cytometry and single-cell sequencing, could facilitate non-invasive, frequent
monitoring. Future research should focus on validating optimal time points (e.g., 1, 3, or
6 weeks) and developing combination biomarker strategies to enhance predictive accuracy.
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The temporal dynamics of biomarkers during a PD-1 and CTLA-4 blockade provide
critical insights into immune responses, enabling improved patient stratification, response
monitoring, and resistance management. Longitudinal studies demonstrate distinct pat-
terns between PD-1 and CTLA-4 therapies, with combination approaches amplifying these
effects. By integrating serial biomarker assessments into clinical practice, immunotherapy
can be optimized, paving the way for precision oncology.

The use of multiparametric predictive models in cancer treatment, particularly in
the context of immunotherapy, is justified for several reasons based on the analysis of
the presented text and general trends in oncology. Integrating immunological markers
such as CTLA-4 and PD-L1, inflammatory markers (NLR, PLR, and LMR), and rheological
parameters such as RDW-SD, MCV, PDW, APTT, P-LCR, and MPV enables more accurate
prediction of treatment response and identification of patients most likely to benefit from
immune checkpoint inhibitor therapy.

Traditional biomarkers, such as PD-L1 expression, do not always provide sufficient
predictive accuracy due to variability in detection methods, interpretation criteria, and
selection thresholds. Multiparametric models, such as the random forest (RF) model,
which incorporates a variety of blood parameters, e.g., RDW-SD, MCV, PDW, CD3+CD8+,
APTT, P-LCR, calcium, MPV, CD4+/CD8+ ratio, and AST, demonstrate superior predictive
performance compared to conventional models.

The integration of these markers allows for a holistic assessment of the patient’s condi-
tion, taking into account the immune response as well as inflammatory and rheological
changes associated with cancer. For instance, the CD4+/CD8+ ratio is a key indicator of
immune function; an elevated ratio suggests enhanced helper T cell activity relative to
suppressor T cells, which correlates with a better prognosis in immunotherapy. Inflamma-
tory markers such as RDW-SD are associated with inflammatory responses and oxidative
stress, both of which influence tumor progression, while rheological parameters like APTT
and MPV reflect changes in coagulation and platelet activation systems that may promote
tumor development and affect treatment outcomes.

Using routine blood tests as a data source for predictive models is minimally inva-
sive, cost-effective, and enables sequential patient monitoring. The RF model mentioned
facilitates the stratification of patients into high- and low-risk groups, thereby assisting
clinicians in identifying individuals most likely to benefit from immunotherapy, supporting
therapeutic decision-making, and reducing the risk of ineffective treatment [162].

In this study, we emphasize the need to broaden the scope of current investigations
to include additional systemic inflammatory markers, such as the NLR, PLR, and LMR,
as well as hemorheological parameters. Although the dynamics of these indices during
immunotherapy remain insufficiently characterized, they may hold significant clinical
relevance and offer a cost-effective means to enhance the monitoring and personalization
of immunotherapeutic strategies.
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Abbreviations
The following abbreviations are used in this manuscript:

MDSCs Myeloid-Derived Suppressor Cells
Tregs Regulatory T Cells
IL-6 Interleukin-6
IL-8 Interleukin-8
IL-10 Interleukin-10
LDH Lactate Dehydrogenase
CRP C-Reactive Protein
CTLA-4 Cytotoxic T-Lymphocyte-Associated Protein 4
PD-1 Programmed Cell Death Protein 1
PD-L1 Programmed Death-Ligand 1
ctDNA Circulating Tumor DNA
NLR Neutrophil-to-Lymphocyte Ratio
LMR Lymphocyte-to-Monocyte Ratio
PLR Platelet-to-Lymphocyte Ratio
CAR Chimeric Antigen Receptor
TCR T-Cell Receptor
JAK/STAT Janus Kinase/Signal Transducer and Activator of Transcription

PI3K/AKT/mTOR
Phosphoinositide 3-Kinase/Protein Kinase B/Mammalian Target
of Rapamycin

MAPK/ERK Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase
ICIs Immune Checkpoint Inhibitors
TMB Tumor Mutational Burden
PDL1 Programmed Death-Ligand 1
MSI Microsatellite Instability
IFN-γ Interferon-Gamma
cGAS Cyclic GMP-AMP Synthase
STING Stimulator of Interferon Genes
TBK1 TANK-Binding Kinase 1
IRF3 Interferon Regulatory Factor 3
TLRs Toll-Like Receptors
NF-κB Nuclear Factor Kappa B
IRF3/7 Interferon Regulatory Factor 3/7
TANs Tumor-Associated Neutrophils
OS Overall Survival
PFS Progression-Free Survival
ORR Objective Response Rate
DCR Disease Control Rate
irAE Immune-Related Adverse Event
dNLR Derived Neutrophil–Lymphocyte Ratio
ANC Absolute Neutrophil Count
WBC White Blood Cell
LIPI Lung Immune Prognostic Index
LIPS-3 Lung Immuno-oncology Prognostic Score
ECOG Eastern Cooperative Oncology Group
PLT Platelet
CRC Colorectal Cancer
ROS Reactive Oxygen Species
WBV Whole Blood Viscosity
PV Plasma Viscosity
RBC Red Blood Cell
TME Tumor Microenvironment
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HCC Hepatocellular Carcinoma
HNSCC Head and Neck Squamous Cell Carcinoma
NSCLC Non-Small-Cell Lung Cancer
RCC Renal Cell Carcinoma
MCV Mean Corpuscular Volume
RDW Red Cell Distribution Width
TKI Tyrosine Kinase Inhibitor
ICB Immune Checkpoint Blockade
bTMB Blood Tumor Mutational Burden
LYM% Lymphocyte Percentage
MSAF Maximum Somatic Allele Frequency
ITH Intratumor Heterogeneity
LAF-bTMB Low Allele Frequency Blood Tumor Mutational Burden
CTCs Circulating Tumor Cells
VEGF Vascular Endothelial Growth Factor
IL-1 Interleukin-1
STAT3 Signal Transducer and Activator of Transcription 3
CircPACRGL Circular RNA PACRGL
TGF-β Transforming Growth Factor Beta
PRRs Pattern Recognition Receptors
IL-1β Interleukin-1 Beta
IL-18 Interleukin-18
VEGFC Vascular Endothelial Growth Factor C
VEGFD Vascular Endothelial Growth Factor D
LAR LDH-to-Albumin Ratio
TNM Tumor, Node, Metastasis
MMPs Matrix Metalloproteinases
CTLs Cytotoxic T Lymphocytes
EPO Eosinophil Peroxidase
MBP Major Basic Protein
ECP Eosinophil Cationic Protein
EDN Eosinophil-Derived Neurotoxin
IL-5 Interleukin-5
IL-13 Interleukin-13
TNF-α Tumor Necrosis Factor Alpha
Foxp3 Forkhead Box P3
APCs Antigen-Presenting Cells
ARG1 Arginase 1
iNOS/NOS2 Inducible Nitric Oxide Synthase
GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor
AMPK AMP-Activated Protein Kinase
LPS Lipopolysaccharide
IL-12 Interleukin-12
IL-4 Interleukin-4
TAMs Tumor-Associated Macrophages
sPD-L1 Soluble Programmed Death-Ligand 1
sCTLA-4 Soluble Cytotoxic T-Lymphocyte-Associated Protein 4
IL-2R Interleukin-2 Receptor
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