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Hospital-acquired Methods: This is a retrospective linkage cohort study. The cohort includes 371,040 inpa-

complications tient multiple-day admissions of 83,025 cardiovascular disease patients admitted to public

Cardiovascular disease hospitals in 2010 with follow-ups until 2015.

Linked administrative health Data envelopment analysis was applied to benchmark the patient safety performance of

data hospitals. Logistic regression was used to examine the odds of HAC and its effects on in-

Australia hospital mortality and 30-day readmission. Generalised linear models were used to

Benchmarking identify the impacts of HACs on hospital costs and the length of hospital stay.

Data envelopment analysis Findings: On average, 9.3% of multiple-day hospital admissions were associated with

R — HACs. The average HAC rate can be reduced by two percentage points if all hospitals
L} achieve the safety record of best-practice hospitals. Old age and multiple comorbidities
pdted” were major driving factors of HACs.
Conclusions: Cardiovascular disease patients with HAC have a higher risk of death, stay
longer in hospitals and incur higher health care costs. The average HAC rates can be
reduced by two percentage points by learning from best-practice hospitals operating in
the same region.
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Introduction

Hospital-acquired complications (HACs) are undesirable and
unintended conditions that may arise during a hospitalised
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evidence that HAC is associated with a significant increase in
costs, length of hospital stay, hospital readmission and mor-
tality [2,3]. In Australia, one in nine admissions involved a HAC,
and the incidence increased to one in four admissions among
overnight admissions in 2018 [4]. HACs were shown to be
associated with more than 10 days of additional length of
hospital stay per episode and four folds increase in hospital
costs in Australia [5].

Fortunately, HACs are mostly preventable [6], and thus,
reducing HACs has become one of the top priorities of health-
care stakeholders. HACs have been integrated into a funding
model for Australian hospitals to take into account the risk
profile of patients [7]. The HAC-integrated funding model
provides fair compensation for hospitals with the capacity to
take high-risk patients. However, the current risk model does
not take into account the characteristics of hospitals. For
example, regional hospitals often have poorer equipment or
shortage of highly-skilled workforce. Hence, they are likely to
have a higher HAC rate than those in major cities despite with a
similar risk patient profile. Although the magnitude of HACs can
be feasibly reduced, no study had taken into account how
hospital characteristics can impact the extent of reduction in
HACs.

The study fills the literature gap by benchmarking the
patient safety performance of hospitals and estimate the
extent to which HAC rates can be reduced, after controlling for
hospital characteristics. The benchmark analysis is conducted
using data envelopment analysis (DEA) method, which has been
widely used to analyse and rank the operational performance
of institutions in various industries such as agriculture [8],
fishery [9], banking [10], education [11], tourism [12], traffic
safety [13], and healthcare [14]. Our DEA-based benchmarking
analysis will estimate the feasible range HAC rate can be
reduced. Compare to the current HAC-risk adjustment model
[7], our analysis take into account hospital characteristics such
as size, location and types. We also investigate determinants of
HACs and evaluate the effects of HACs on health outcomes and
healthcare costs among cardiovascular patients.

Methods
Data

The main data set for this study includes 135,399 patients
admitted to hospitals for CVD-related conditions in 2010 with
follow-ups until the end of 2015. The total number of admission
episodes during the study period was 1,790,807. The cohort
was constructed by linking data from various sources, including
the Hospital Admitted Patient Data Collection, Emergency
Department Information System, National Hospital Cost Data
Collection, Medical Benefits Schedule (MBS) and the Pharma-
ceutical Benefits Scheme (PBS). The MBS and PBS data include
all medical services and pharmaceuticals dispensed in the
community. Detailed data linkage process and description of
variables are presented in the cohort protocol [15]. Ethics
approval was granted by the Research Ethics Committee of
Griffith University (2017/001).

HACs more commonly occur during overnight or multiple day
admissions [16]; thus, we excluded admissions for same-day
admissions, which account for 65% of total episodes. We also
excluded admissions to private hospitals because detailed data

on the characteristics and outcomes of private hospitals (e.g.,
bed capacity, locations, hospital costs) were not available.
After applying all exclusion criteria, the study sample included
371,040 overnight admissions for 83,025 patients.

Variable selection

We used the latest Australian guideline [17] to define HACs
using ICD-10 diagnosis codes (see Supplementary material 1 for
details). In particular, HACs were defined as having adverse
health issues developed during the hospitalisation period. The
adverse health issues were identified by subsequent diagnosis
codes, which indicates that patients were not admitted to
hospitals for reasons associated with these issues. Meanwhile,
whether the issues occurred at hospitals was identified using
the condition onset flag (COF). HAC was identified as an
admission with a COF value of 1, which means “Condition with
onset during the episode of admitted patient care”. Based on
ICD-10 codes of subsequent diagnoses and COF flag, HACs were
classified into 16 groups: 1) Pressure injury; 2) Falls resulting in
fracture or intracranial injury; 3) Healthcare-associated
infection; 4) Surgical complications requiring unplanned
return to theatre; 5) Unplanned intensive care unit admission;
6) Respiratory complications; 7) Venous thromboembolism; 8)
Renal failure; 9) Gastrointestinal bleeding; 10) Medication
complications; 11) Delirium; 12) Incontinence; 13) Endocrine
complications; 14) Cardiac complications; 15) Third and fourth
degree perineal laceration during delivery; and 16) Neonatal
birth trauma. The identifier of HAC 5 (Metadata Online
Repository-METeOR identifier: 608995) is not currently avail-
able across coding system of Australian hospitals while our
cohort does not include any maternity or pregnancy-related
admission. Thus, HACs 5, 15 and 16 were excluded from this
study. In the empirical analysis, we measured HAC as a dummy
variable to represent an episode with at least one HAC.

The outcomes of interest were in-hospital mortality, 30-day
readmission, length of stay and costs (including hospital costs
and MBS/PBS expenditure). The selected covariates, based on
the availability of data and the literature [7,18] included age,
gender, Indigenous status, country of birth, Socio-Economic
Indexes for Areas (SEIFA) quintiles, marital status, ICU usage,
comorbidities, and location of hospitals. The SEIFA index rep-
resents the relative socio-economic advantage and dis-
advantage of areas in Australia [19]. The SEIFA index,
constructed from various inputs such as income, education,
and occupation, ranges from 0 to 1000; higher scores indicate
higher socio-economic advantage.

Statistical analyses

In the descriptive stage, the xz test was used to examine the
variation in HAC rates across different genders, ethnicities and
age groups. In the subsequent stage, logistic regressions were
then applied to examine the effects of HAC on the odds of
death in hospital and 30-day readmissions. Generalised linear
models were used to examine the effects of HACs on costs and
the length of hospital stay.

To benchmark the performance of hospitals in patient
safety, a data envelopment analysis (DEA) [20] was conducted
by constructing a production frontier that consists of best-
practice hospitals [21]. DEA is a mathematical programming
approach that estimates the ratio of weighted outputs and
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weighted inputs to examine the operational efficiency of
decision-making units (e.g., hospitals). DEA has been applied
widely to analyse operational efficiency in many fields,
including healthcare [22]. In this study, we select the "safety”
rate, which defines as 100%-HAC rate, as the single output that
represents patient safety. Two inputs include the number of
beds and a complexity index. The complexity index was con-
structed using the Charlson Comorbidity Index (CCl) and the
rate of admission to an intensive care unit (ICU). The CCl was
constructed from 12 comorbidities that were mostly correlated
with the risk of one-year mortality and calculated using the
algorithm developed Quan et al. [23]. The complexity index
ranged from O (the least complex admission) to 1 (the most
complex admission). In the benchmarking analysis, we derive a
“simplicity index”, defined as 1-the complexity index, to rep-
resent a positive relationship between inputs and outputs
required in the best-practice frontier.

There are two approaches to benchmark the safety per-
formance of hospitals using DEA: input-oriented (i.e., minimise
inputs while generating the same outputs); and output-
oriented (maximise outputs while using the same inputs). In
this study, we selected an output-oriented approach to
benchmark hospitals because minimising inputs (i.e., number
of beds and complexity of patient profiles) are often not fea-
sible, particularly in public hospitals. Thus, the result of the
benchmarking analysis is interpreted as how much a hospital
can improve on patient safety rates compared to the best-
practice hospitals with a similar input structure. The differ-
ence in the safety performance of best-practice hospitals and
other hospitals is referred to as the “technical efficiency
score”. In this study, the technical efficiency scores represent
how much a hospital can improve its patient safety record
compare to the best-practice hospitals with a similar input
structure. Using the results of the benchmarking analysis and
the location of hospitals, we can illustrate the spatial rela-
tionship between hospitals regarding patient safety in a peer

Q/x2

,.A

network map, which is useful to monitor the safety perform-
ance and provide feedback for hospitals.

The benchmarking can also be conducted at the state level,
where all hospitals in the cohort are used to construct the best-
practice frontier. Alternatively, the frontier can also be con-
structed using hospitals of the same regional group (e.g., major
cities). The technical efficiency scores are often higher when
using the group frontier, but the meta or overall frontier is
more convenient to compare the performance of hospitals
across regions (for technical details of estimation methods for
group-frontier and meta-frontier using DEA, see
Supplementary material 2). The mechanism for hospitals to
improve their safety performance is illustrated in Figure 1,
which represents a frontier constructed using one output (Q)
and two inputs (X1, X2). Particularly, an inefficient hospital A
can improve the patient safety performance by moving to A’ on
the best practice frontier by learning from two efficient hos-
pitals (best-practice hospitals) B and C that has a similar input-
output structure. In this case, hospitals B and C are referred to
as peers of hospital A. Details of how an inefficient hospital
could learn from the best practice will require further inves-
tigation; the benchmarking analysis only identifies best prac-
tices and their relative peers. The ratio OA/OA’ represent the
technical efficiency of hospital A. This hospital (A) can increase
outputs from OA to OA’ by learning from hospitals B and C.
Analyses were conducted using Stata 15.0 [24] and R 4.0 [25].

Results
Descriptive statistics

There was 34,340 out of 371,040 hospital admissions to
public hospitals in our cohort involved at least one HAC,

accounting for 9.3%. Also, HAC rates differed significantly by
patient characteristics, admission characteristics and hospital

Best practices

Q/x1

Figure 1. Benchmarking hospital performance using a production frontier.



4 S. Nghiem et al. / Infection Prevention in Practice 4 (2022) 100198

Table |
HAC rates by characteristics of patients, admissions and outcomes

Dummy variables No (0) Yes (1)
Sex (males=Yes) 0.092 0.093
Indigenous 0.094 0.070
Age groups
Less than 45 years 0.096 0.061
45—54 years 0.095 0.068
55—64 years 0.095 0.081
65—74 years 0.092 0.095
75—84 years 0.087 0.108
85—94 years 0.090 0.109
95 years and older 0.092 0.114
Marital status
Divorced/separated 0.093 0.091
Married 0.094 0.091
Never married 0.095 0.081
Widowed 0.089 0.108
SEIFA quintiles
Q1 0.096 0.083
Q2 0.094 0.088
Q3 0.090 0.101
Q4 0.092 0.097
Q5 0.091 0.099
Private insurance 0.093 0.089
ICU attendance 0.075 0.397
Acute episode 0.126 0.088
Region of birth
America 0.092 0.097
Asia 0.092 0.096
Europe 0.091 0.101
Oceania 0.099 0.091
Africa 0.093 0.075
Comorbidities
No comorbidity 0.098 0.066
One comorbidity 0.094 0.085
2+ comorbidities 0.074 0.100
Hospital remoteness
Inner regional 0.097 0.075
Major cities 0.077 0.102
Outer regional 0.093 0.090
Remote 0.094 0.031
Very remote 0.094 0.025

Mean outcomes

No HAC HAC
Hospital costs (5) 7,755 32,621
Length of stay (days) 6.0 19.6
Die at hospital (%) 11.3 30.0
30-day readmission (%) 10.2 4.9

XZ test show significant differences between groups except for sex.

locations (Table I). Given the well-known Indigenous health gap
in Australia, it is somewhat surprising that Indigenous patients
experienced lower HAC rates (7%) compared to non-indigenous
counterparts (9.4%). One possible factor contributing to this
finding is the relatively older age of non-indigenous patients in
our cohort (71 years) compared with indigenous patients (55
years), as HAC rates increased substantially with age.

Regarding marital status, widows experienced the highest
average HAC rate of 10.8%. Again, age could be the main driving
factor as those who outlived their husbands were an average of
82 years old, while the respective figure for the remainder was
67 years old. Socio-economic advantage, proxied by SEIFA
quintile, have substantial effects on HAC rates despite the >
test showing significant between-group differences.

Patients with private hospital insurance had substantially
lower HAC rates (8.9%) than those without private insurance
(9.6%). Patients who were admitted to an ICU faced the highest
HAC rates at 39.7%. In contrast, acute admission patients face
much lower HAC rates (8.8%) compared to those of non-acute
admissions (12.6%). Patients with more comorbidities, espe-
cially among those with two comorbidities or more, experi-
enced significantly higher HAC rates (10.0%). The remoteness
of hospitals was also significantly associated with HAC rates.
Patients admitted to hospitals in major cities experienced the
highest HAC rate (10.2%), while those admitted to hospitals in
very remote locations experienced the lowest average HAC
rate at 2.5%. One possible reason for higher HAC rates in hos-
pitals located in major cities could be their greater capacity to
admit patients with more complex health issues.

Costs and length of stay also differed significantly by HAC
status. Particularly, a multiple-day admission without a HAC
incurred $7,755 (Australian dollars, 2015 prices; A$1 =US$0.70
= £0.49 using purchasing-power parity conversion tool avail-
able at https://eppi.ioe.ac.uk/costconversion/default.aspx)
hospital costs compared to $32,621 for a multiple-day admis-
sion with a HAC. The average length of stay for a HAC admission
was 19.6 days, while an admission without a HAC spent only six
days in hospitals. HACs were also associated with almost three
times the risk of death in hospital (11.3% vs 30.0%), but the risk
of 30-day readmission was halved (4.9% vs 10.2%).

HAC risk factors

Results of logistic regressions showed that indigenous
patients faced no significant difference in HAC risk (Table II).
However, age remained a significant determinant for HACs:
patients aged 75 years and above faced at least double the risk
of a HAC occurring. Patients who were admitted to ICU were
ten times more likely to experience a HAC. Also, compared to
those having no comorbidity, patients with two or more
comorbidities had a 1.4-fold increased risk of experiencing a
HAC. The hospital location also had a substantial effect on the
odds of having a HAC. For example, compared to those
admitted to hospitals in major cities, patients from hospitals in
outer regional areas faced a 9% higher risk of HACs compared to
those admitted to remote hospitals.

After controlling for several confounding factors, HAC was
significantly associated with the risk of in-hospital mortality
and 30-day readmissions. In particular, the odds of death at the
hospital was 2.5-fold higher for those with a HAC (95% ClI:
2.4-2.7). However, the odds of being readmitted within 30
days from discharge was 47% lower for those with a HAC.

Other variables such as sex, ethnicity, age, and comorbidity
were significant predictors of mortality risk. Particularly, males
faced a 20% (16—25) higher in-hospital mortality risk and a 6%
(4—8) higher risk of 30-day readmission. While Indigenous
patients faced a 50% (45—55) greater risk of being readmitted
within 30 days from discharge, there was no significant
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Table Il
Determinants of HAC and health outcomes

Covariates HAC

Die at hospital 30-day readmission

HAC
Sex (males=1)
Indigenous (Y=1)

Age group (<45=base)

0.96 (0.94,0.99)
1.01 (0.96,1.07)

Age 4554 1.09 (1.02,1.16)
Age 55—64 1.35 (1.27,1.43)
Age 65—74 1.70 (1.60,1.80)
Age 7584 2.15 (2.03,2.28)
Age 85—94 2.40 (2.26,2.56)
Age 95+ 2.65 (2.36,2.97)

SEIFA quintiles (Q1=base)

Q2 1.08 (1.04,1.12)
Q3 1.21 (1.17,1.26)
Q4 1.03 (0.99,1.07)
Q5 0.94 (0.91,0.98)

Marital status (divorced=base)

Married 1.01 (0.97,1.04)
Never married 1.05 (1.00,1.10)
Widowed 1.08 (1.04,1.13)

Region of origin (America=base)

Asia 0.91 (0.79,1.03)
Europe 0.98 (0.88,1.08)
Oceania 1.02 (0.92,1.13)
Africa 0.76 (0.64,0.89)

Hospital insurance

Acute episode
ICU (Y=1)

Comorbidity (No comorbidity=base)

Comorbidity=1
Comorbidity=2+

0.95 (0.92,0.98)
0.57 (0.56,0.59)

10.07 (9.74,10.41)

1.17 (1.11,1.23)
1.41 (1.36,1.47)

Hospital remoteness (Major cities=base)

Inner Regional
Outer Regional

0.85 (0.82,0.89)
1.09 (1.05,1.13)

Remote 0.34 (0.30,0.40)
Very remote 0.47 (0.39,0.55)
Number of beds 1.00 (1.00,1.00)
Constant 0.04 (0.03,0.04)

2.54 (2.43,2.66)
1.20 (1.16,1.25)
1.00 (0.91,1.09)

1.54 (1.33,1.77)
2.02 (1.78,2.30)
2.84 (2.50,3.21)
3.57 (3.15,4.04)
5.33 (4.70,6.05)
8.46 (7.16,10.00)

1.13 (1.07,1.19)
1.06 (1.01,1.12)
1.03 (0.97,1.10)
1.06 (1.00,1.14)

1.21 (1.15,1.28)
1.10 (1.02,1.18)
1.10 (1.03,1.17)

0.63 (0.52,0.77)
0.62 (0.54,0.71)
0.67 (0.59,0.76)
0.60 (0.47,0.76)
0.98 (0.94,1.03)
0.16 (0.15,0.17)
4.48 (4.22,4.75)

1.21 (1.12,1.32)
1.40 (1.31,1.49)

0.91 (0.86,0.96)
1.39 (1.32,1.47)
1.06 (0.91,1.22)
1.05 (0.89,1.23)
1.00 (1.00,1.00)
0.04 (0.03,0.05)

0.53 (0.51,0.56)
1.06 (1.04,1.08)
1.50 (1.45,1.55)

0.89 (0.85,0.92)
0.82 (0.79,0.85)
0.77 (0.74,0.79)
0.73 (0.71,0.76)
0.71 (0.68,0.74)
0.60 (0.54,0.66)

1.00 (0.97,1.02)
0.96 (0.93,0.98)
1.06 (1.03,1.09)
1.13 (1.09,1.16)

0.92 (0.89,0.94)
0.98 (0.95,1.01)
0.94 (0.91,0.97)

0.96 (0.86,1.07)
1.13 (1.04,1.22)
1.15 (1.06,1.24)
1.31 (1.16,1.47)
1.08 (1.05,1.11)
7.63 (7.22,8.06)
0.61 (0.58,0.64)

1.37 (1.32,1.42)
2.02 (1.96,2.07)

1.14 (1.11,1.17)
1.20 (1.17,1.23)
1.43 (1.35,1.52)
0.95 (0.88,1.01)
1.00 (1.00,1.00)
0.02 (0.02,0.03)

Note: Parameters are odd-ratios, 95% confidence intervals are in parentheses.

difference in their risk of dying at the hospital. Age was the
most substantial determinant of in-hospital mortality risk. For
example, patients aged 95 years or more were 8.5 times more
likely to die at the hospital compared with those aged less than
45 years.

Patients admitted to ICU were 4.5 (4.2—4.8) fold more likely
to die at the hospital, while their risk of readmission was 39%
lower (36—42). Patients with one comorbidity were 1.2
(1.1—1.3) fold more likely to die at the hospital, and the
respective figure for those with two or more comorbidities
were 1.4 (1.3—1.5) folds. Patients with comorbidities were also
more likely to be readmitted within 30 days from being dis-
charged by 1.4—2.0 folds.

Compared to hospitals in major cities, patients admitted
to hospitals in outer regional areas faced a 1.4 (1.3—1.5) fold
increased mortality risk and 1.2 folds (1.17—1.23) increased
risk of 30-day readmission. However, patients admitted to

hospitals in very remote locations faced no significant dif-
ference in the risk of in-hospital mortality or 30-day
readmission.

Compared to patients without HACs, those with HACs uti-
lised more hospital resources, having three folds longer length
of hospital stay, translating to three times higher hospital costs
(Table IIl). Hospital costs and length of stay is shown to have an
inverse U-shape relationship with age: increasing until the age
65—84 and then decreasing.

Among other covariates, hospital insurance and the severity
of admissions were significant determinants of hospital costs
and length of stay. Particularly, patients with private hospital
insurance who incurred 12% lower hospital costs. Those
admitted to ICU experienced 3.8 times higher hospital costs
and a 1.9 times higher length of stay. Patients with comorbid-
ities also faced 8—23% higher hospital costs and stayed longer
at the hospital by 15—30%.
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Table Il
Effects of HACs on hospital costs and length of stay
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Table IV

Hospital safety performance by remoteness regions

Variables

Hospital costs

Length of stay

HAC
Sex (males=1)
Indigenous (Y=1)

3.10 (3.06,3.14)
0.98 (0.98,0.99)
0.96 (0.95,0.98)

2.93 (2.90,2.97)
0.97 (0.96,0.98)
0.91 (0.90,0.92)

Hospital location

Types of frontier

Regional frontier

State frontier

Major cities
Inner regional

95.23 (98.80, 91.66)
84.16 (88.05, 80.27)

52.63 (59.66, 45.59)
56.96 (59.85, 54.07)

Age group (<45=base)

Age 45—54 0.98 (0.97,1.00) 0.99 (0.97,1.00)
Age 55—64 1.03 (1.01,1.05) 1.03 (1.01,1.04)
Age 65—74 1.08 (1.06,1.10) 1.10 (1.09,1.12)
Age 75—84 1.08 (1.06,1.10) 1.17 (1.15,1.18)
Age 85—94 1.05 (1.03,1.07) 1.22 (1.21,1.24)
Age 95+ 1.02 (0.98,1.06) 1.18 (1.15,1.22)
SEIFA quintiles (Q1=base)

Q2 1.01 (1.00,1.02) 1.03 (1.02,1.03)
Q3 1.02 (1.01,1.04) 1.00 (0.99,1.01)
Q4 0.98 (0.97,0.99) 0.99 (0.98,1.00)
Q5 0.89 (0.88,0.91) 0.99 (0.98,1.00)
Marital status (divorced=base)

Married 1.02 (1.01,1.03) 0.96 (0.95,0.97)
Never married 1.04 (1.03,1.06) 1.07 (1.06,1.08)
Widowed 1.03 (1.01,1.04) 1.01 (1.00,1.02)
Region of origin (America=base)

Asia 1.01 (0.96,1.05) 0.98 (0.94,1.01)
Europe 1.01 (0.98,1.05) 0.98 (0.96,1.01)
Oceania 1.01 (0.98,1.05) 1.00 (0.97,1.03)
Africa 0.95 (0.90,1.01) 0.89 (0.86,0.93)

Hospital insurance
Acute episode

ICU attendance

(Y=1)

Comorbidity (No comorbidity=base)
Comorbidity=1 1.08 (1.06,1.09)
Comorbidity=2-+ 1.23 (1.22,1.24)
Hospital remoteness (Major cities=base)
Inner regional 0.95 (0.93,0.96)
Outer regional 1.01 (1.00,1.02)
Remote 1.22 (1.18,1.26)
Very remote 2.19 (2.10,2.28)
Number of beds 1.00 (1.00,1.00) 1.00 (1.00,1.00)
Constant 3669 (2472,5445) 4.48 (4.33,4.64)

Note: Exponentiated parameters are presented; 95% confidence
intervals are in parentheses.

0.88 (0.87,0.89)
0.67 (0.45,0.99)
3.78 (3.72,3.84)

0.95 (0.94,0.96)
0.44 (0.43,0.45)
1.88 (1.85,1.90)

1.15 (1.14,1.17)
1.30 (1.29,1.32)

1.00 (0.99,1.01)
1.12 (1.11,1.13)
0.99 (0.96,1.01)
1.07 (1.04,1.10)

Benchmarking hospital safety

Results from the data envelopment analysis showed that
patient safety performance varied considerably by hospital
location (Table V). Using the regional frontier, hospitals located
in major cities were the most efficient, with an average tech-
nical efficiency of 95.2% (i.e., HAC rates can be reduced by 4.8%
by learning from best-practice hospitals in similar regions). In
contrast, hospitals in outer regional areas can improve patient
safety by 38.1%. The weighted average technical efficiency of all
hospitals was 78.3%, suggesting that, on average, the HAC rate
can be reduced by 21.7% if all hospitals can match the safety
performance of best-practice hospitals in their region.

As expected, benchmarking results using the state frontier
show that hospitals can have more room for improvement with
the average technical efficiency score of 58.7% (i.e., HAC rates

Outer regional 61.90 (66.58, 57.22)  60.21 (64.33, 56.09)

Remote 86.45 (93.60, 79.31)  64.75 (72.65, 56.84)
Very remote 84.97 (91.40, 78.54)  59.52 (65.69, 53.34)
Average 78.28 (81.51, 75.04)  58.73 (61.09, 56.37)

Note: 95% confidence intervals are in parentheses.

can be reduced by 41.3% if all hospitals can match the safety
records of the best-practice hospitals across the whole state). A
closer examination reveals that the main factors contributing to
this substantial gap between regional and state frontiers are two
outstanding hospitals located in outer regional areas. This
finding explains why the gap between state and regional fron-
tiers is smallest among hospitals in outer regional areas (i.e.,
61.9% vs. 60.2%). More detailed examination of these two best-
practice hospitals are needed to determine whether their safety
record can be replicable to all hospitals across the state. Thus,
we now focus on discussing the results of the regional frontier.

The peer network (Figure 2) shows that inefficient hospitals
can improve their patient safety performance by learning from
best-practice hospitals of the same region. We withhold the
names of hospitals on the map to protect their identity. Also,
benchmarking results of each hospital (e.g., technical efficiency
scores, targeted inputs and outputs, peers and peer weights) are
not presented on the map to avoid over-crowding. In practice,
the benchmarking analysis will provide each hospital with a brief
report on: 1) how efficient they are compared to the best
practices (i.e. technical efficiency score); 2) what are the ach-
ievable target for inputs or outputs if they are 100% efficient
(i.e., targets); 3) what are the best-practice hospitals that share
similar input-output structure to them (i.e., peers); and 4) what
are the relative importance of their peer hospitals (i.e., peer
weights). The benchmarking results will provide hospitals with
useful managerial information to improve the operational effi-
ciency of hospitals. The peer network map illustrates that best-
practice hospitals with a greater peer count (illustrated by the
number of connections) are more influential on the safety per-
formance of other hospitals. Best-practice hospitals with few
connections could have a unique input-output structure making
it difficult for other hospitals to learn.

Discussion

HACs remain a public health concern as these are sig-
nificantly associated with adverse health outcomes. This study
confirmed that the risk of HAC was substantially higher for
elderly patients, those admitted to ICU or those who had
multiple comorbidities. The change in HAC risk was substantial
among those aged 75 years, who are more than twice likely to
have a HAC compared to those aged less than 45 years. This
finding is consistent with the literature [26] that elderly
patients often have comorbidities, dementia and frailty, which
could result in a higher risk of HAC. However, admission to ICU
was the strongest indicator of HAC risk with the odds ratio of
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more than 10. This finding was also in line with the literature
[27] that patients in ICU was associated with higher risk of HAC.
Overall, our findings suggest that efforts to reduce HAC should
be focused on ICU units and vulnerable patients (e.g., old age
and multiple comorbidities).

The risk of HAC was not significantly different between
sexes and ethnic groups, after controlling for other charac-
teristics of patients (e.g., marital status, and socio-economic
status), characteristics of admission episodes (e.g., acute
episode, ICU admission, and comorbidity), and hospital loca-
tion. This finding suggests that the significance of the y? test for
HAC rate by ethnicity groups reported in Table | could be due to
differences in age and comorbidities because the test did not
control for any covariates.

In line with the literature [28—30], this study found that HAC
was associated with significantly higher hospital costs. The
largest cost difference is observed for hospital cost, which
shows that patients with HACs incurred higher hospital costs by
3.1 folds compared to those without a HAC. This finding is
consistent with the difference in average hospital costs by HAC
status being $24,800 (532,621 vs. $7,755). Most of the hospital
cost differences can be attributed to a 2.8-fold longer hospital
stay (i.e., increase from 6.0 to 19.6 days). In addition, HACs
were associated with a 2.5-fold increased risk of in-hospital
death. The positive association between HAC and in-hospital
mortality was consistent with studies in other countries,
including the United States [31,32] and Europe [33,34].

Our findings that HAC is prevalent among the older age
group is consistent with findings in the literature, which shows
that age is a risk factor for HAC [2,35]. In addition, the higher

risk of mortality and hospital costs estimated in this study are
in line with previous estimates in the literature. For example,
Glance et al., [3] found that in the United States, trauma
patients with HAC have 1.5—1.9-fold higher odds of death and
incur 2—2.5 folds higher health care costs compared with those
without HAC. Similarly, Chan et al. [36], estimated that the
length of hospitalization among gynecologic cancer patients
who had HAC was nine days longer than among those without
HAC. They further found a cost difference, which was 2.87
times larger among patients with HAC. Overall, the high cost
and high mortality risk associated with HAC suggest that
reducing HAC could improve health outcomes and save costs.
However, current strategies to reduce HAC focused only on
patient characteristics [7] or incident reporting scores [37],
which has been criticised for not comparing the performance of
hospitals with similar characteristics [38,39]. The benchmark-
ing analysis in this study addresses this issue by comparing the
safety performance of hospitals with similar characteristics
using the data envelopment analysis framework.

The benchmarking analysis revealed that hospitals could
reduce HAC rates substantially by learning from best-practice
hospitals in the same location and with similar character-
istics. For example, Figure 2 illustrates that an inefficient
hospital in major cities can learn from four best-practice hos-
pitals to improve patient safety performance. On average,
hospitals in the sample can reduce HAC rates by 21.7% or 7,452
episodes by learning from the experience of best practice
hospitals. Since each HAC episode incurred an additional
$24,800 in hospital costs, a reduction of 7,452 HAC episodes is
translated to a cost-saving of $184.8 million.
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Conclusions

To the best of our knowledge, this is the first study to
benchmark the patient safety performance of hospitals in
Australia using DEA. This benchmarking analysis not only
identifies the extent to which HAC can be reduced but provides
useful managerial inputs (e.g., peers and targets) for hospitals
to improve their patient safety performance. We also inves-
tigate the prevalence and determinants of HAC and its sub-
sequent association with adverse health outcomes and
healthcare costs. Our finding is consistent with the literature
that old age and multi-morbidities were the main risk factors
for HACs. However, managerial factors contribute to a poten-
tial reduction of the average HAC rate by two percentage
points if lessons of the regional best practices can be shared.
Considering the global increase in CVD related mortalities over
the past two decades, it is necessary for policymakers, espe-
cially hospital managers, to put in place appropriate measures
to minimize HACs.

Policymakers should consider adopting the benchmarking
method used in this study to evaluate hospital safety per-
formance to target setting and budget allocation. This method
has been widely applied in healthcare [13] and other industries
[8,10—12,14] for performance benchmarking. The main
advantage of our approach is that it can provide useful infor-
mation such as peers (which best-practice hospitals are most
relevant to learn from) and target (how much HAC and be
reduced) for each hospital. However, a more detailed exami-
nation of best-practice hospitals will be required to promote
experience sharing such that other hospitals can learn to
improve their safety performance.

CRediT authorship contribution statement

Son Nghiem: Conceptualization, Data curation, Formal
analysis, Visualization, Writing original draft, Writing - review
& editing, Investigation.

Clifford Afoakwah: Data curation, Writing - review &
editing.

Joshua Byrnes: Investigation, clinical advice, Writing -
review & editing.

Paul Scuffham: Writing — review & editing, supervision,
project management.

Conflict of interest statement

The authors have no conflict to declare.

Funding
Son Nghiem was awarded a seed funding from the Menzies

Health Institute Queensland during this research project. PS is
a NHMRC Senior Research Fellow (grant #1136923).

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.infpip.2021.100198.

References

[1] Bohlouli B, Tonelli M, Jackson T, Hemmelgam B, Klarenbach S.
Risk of hospital-acquired complications in patients with chronic
kidney disease. Clin J Am Soc Nephrol 2016;11(6):956—63.

[2] Raines BT, Ponce BA, Reed RD, Richman JS, Hawn MT. Hospital
acquired conditions are the strongest predictor for early read-
mission: an analysis of 26,710 arthroplasties. J Arthroplasty
2015;30(8):1299—-307.

[3] Glance LG, Stone PW, Mukamel DB, Dick AW. Increases in mor-
tality, length of stay, and cost associated with hospital-acquired
infections in trauma patients. Arch Surg 2011;146(7):794—801.

[4] Duckett S, Jorm C, Danks L, Moran G. All complications should

count: using our data to make hospitals safer. Grattan Institute;

2018.

Trentino KM, Swain SG, Burrows SA, Sprivulis PC, Daly, Frank FS.

Measuring the incidence of hospital-acquired complications and

their effect on length of stay using CHADx. Med J Aust

2013;199(8):543—7.

Zimlichman E, Henderson D, Tamir O, Franz C, Song P, Yamin CK,

et al. Health care—associated infections: a meta-analysis of costs

and financial impact on the US health care system. JAMA Int Med
2013;173(22):2039—46.

Independent Hospital Pricing Authority. Risk adjustment model

for hospital acquired complications - technical specifications.

Independent Hospital Pricing Authority; 2017.

Son Nghiem H, Coelli T. The effect of incentive reforms upon

productivity: Evidence from the Vietnamese rice industry. J Dev

Stud 2002;39(1):74—-93.

[9] Van Nguyen Q, Pascoe S, Coglan L, Nghiem S. The sensitivity of
efficiency scores to input and other choices in stochastic frontier
analysis: an  empirical investigation. J Prod Anal
2021;55(1):31—40.

[10] Sharma P, Manoa S, Taleniwesi S, Nghiem S. Technical efficiency
of banking institutions in a Pacific Island Country: a distance
function stochastic frontier analysis. J Asia Pac Econ
2020;25(1):1-15.

[11] Nghiem S, Nguyen HT, Connelly LB. The Efficiency of Australian
Schools: A nationwide analysis using gains in test scores of stu-
dents as outputs. Econ Papers: J Appl Econ Policy
2016;35(3):256—68.

[12] Salman Saleh A, Assaf AG, Son Nghiem H. Efficiency of the
Malaysian hotel industry: a distance function approach. Tour Anal
2012;17(6):721-32.

[13] Nghiem S, Connelly LB. Benchmarking road traffic safety across
OECD countries a distance function approach. J Transp Econ
Policy (JTEP) 2015;49(4):539—-59.

[14] Nghiem S, Coelli T, Barber S. Sources of productivity growth in
health services: a case study of Queensland public hospitals. Econ
Anal Policy 2011;41(1):37—48.

[15] Byrnes J, Nghiem S, Afoakwah C, Scuffham P. Queensland car-
diovascular data linkage (QCard): a population-based cohort
study. F1000 2020;9.

[16] Duckett S, Jorm C. All complications should count. Melbourne,
Australia: The Grattan Institute; 2018.

[17] The Australian Commission on Safety and Quality in Health Care.
In: Hospital acquired complications V1.1 - June 2019; 2019. The
Australian Commission on Safety and Quality in Health Care,
Canberra.

[18] Wen T, Attenello FJ, He S, Cen Y, Kim-Tenser MA, Sanossian N,
et al. Racial and socioeconomic disparities in incidence of
hospital-acquired complications following cerebrovascular pro-
cedures. Neurosurgery 2014;75(1):43—-50.

[19] Australian Bureau of Statistics. Socio-economic indexes for areas
(SEIFA). Canberra: Australian Bureau of Statistics; 2011.

[5

—_

6

—_—

[7

—

8

—_—


https://doi.org/10.1016/j.infpip.2021.100198
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref1
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref1
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref1
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref1
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref2
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref2
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref2
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref2
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref2
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref3
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref3
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref3
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref3
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref4
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref4
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref4
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref5
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref5
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref5
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref5
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref5
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref6
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref6
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref6
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref6
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref6
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref6
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref7
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref7
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref7
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref8
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref8
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref8
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref8
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref9
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref9
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref9
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref9
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref9
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref10
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref10
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref10
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref10
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref10
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref11
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref11
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref11
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref11
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref11
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref12
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref12
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref12
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref12
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref13
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref13
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref13
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref13
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref14
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref14
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref14
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref14
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref15
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref15
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref15
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref16
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref16
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref17
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref17
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref17
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref17
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref18
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref18
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref18
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref18
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref18
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref19
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref19

S. Nghiem et al. / Infection Prevention in Practice 4 (2022) 100198 9

[20] Hollingsworth B. The measurement of efficiency and productivity
of health care delivery. Health Econ 2008;17(10):1107—28.

[21] Matawie KM, Assaf A. A metafrontier model to assess regional
efficiency differences. J Model Manag 2008.

[22] Kohl S, Schoenfelder J, Fiigener A, Brunner JO. The use of data
envelopment analysis (DEA) in healthcare with a focus on hospi-
tals. Health Care Manag Sci 2019;22(2):245—86.

[23] Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC,
et al. Coding algorithms for defining comorbidities in ICD-9-CM
and ICD-10 administrative data. Med Care 2005:1130—9.

[24] StataCorp L. Stata data analysis and statistical Software Release
15. Special Edition Release. 2017. College Station, TX.

[25] R Development Core Team. In: R.F.f.S. Computing, editor. R: a
language and environment for statistical computing; 2019.
Vienna, Austria.

[26] Bail K, Grealish L. ‘Failure to Maintain’: A theoretical proposition
for a new quality indicator of nurse care rationing for complex
older people in hospital. Int J Nurs Stud 2016;63:146—61.

[27] Donowitz LG, Wenzel RP, Hoyt JW. High risk of hospital-acquired
infection in the ICU patient. Crit Care Med 1982;10(6):355—7.

[28] Ehsani JP, Duckett SJ, Jackson T. The incidence and cost of
cardiac surgery adverse events in Australian (Victorian) hospitals
2003—2004. Eur J Health Econ 2007;8(4):339—46.

[29] Duckett S, Jorm C. All complications should count: using our data
to make hospitals safer. Grattan Institute; 2018.

[30] Fuller RL, McCullough EC, Bao MZ, Averill RF. Estimating the costs
of potentially preventable hospital acquired complications.
Health Care Financ Rev 2009;30(4):17.

[31] Kates M, Gorin MA, Deibert CM, Pierorazio PM, Schoenberg MP,
McKiernan JM, et al. In-hospital death and hospital-acquired

complications among patients undergoing partial cystectomy for
bladder cancer in the United States. In: Urologic oncology: sem-
inars and original investigations. Elsevier; 2014.

[32] Nufo M, Carico C, Mukherjee D, Ly D, Ortega A, Black KL, et al.
Association between in-hospital adverse events and mortality for
patients with brain tumors. J Neurosurg 2015;123(5):1247-55.

[33] Friedrich AW. Control of hospital acquired infections and anti-
microbial resistance in Europe: the way to go. Wien Med
Wochenschr 2019;169(1):25—30.

[34] Teixeira H, Freitas A, Sarmento A, Nossa P, Goncalves H, Pina MF.
Spatial patterns in hospital-acquired infections in Portugal
(2014—2017). Int J Environ Res Public Health 2021;18(9):4703.

[35] Lidor AO, Moran-Atkin E, Stem M, Magnuson TH, Steele KE,
Feinberg R, et al. Hospital-acquired conditions after bariatric
surgery: we can predict, but can we prevent? Surg Endosc
2014;28(12):3285-92.

[36] Chan JK, Gardner AB, Mann AK, Kapp DS. Hospital-acquired
conditions after surgery for gynecologic cancer—An analysis of
82,304 patients. Gynecol Oncol 2018;150(3):515—20.

[37] Rajaram R, Chung JW, Kinnier CV, Barnard C, Mohanty S, Pavey ES,
et al. Hospital characteristics associated with penalties in the
centers for medicare & medicaid services hospital-acquired con-
dition reduction program. JAMA 2015;314(4):375—83.

[38] Fuller RL, Goldfield NI, Averill RF, Hughes JS. Is the CMS hospital-
acquired condition reduction program a valid measure of hospital
performance? Am J Med Qual 2017;32(3):254—60.

[39] Lawton EJ, Sheetz KH, Ryan AM. Improving the hospital-acquired
condition reduction program through rulemaking. In: JAMA health
forum. American Medical Association; 2020.


http://refhub.elsevier.com/S2590-0889(21)00087-1/sref20
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref20
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref20
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref21
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref21
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref22
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref22
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref22
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref22
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref23
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref23
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref23
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref23
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref24
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref24
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref25
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref25
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref25
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref26
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref26
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref26
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref26
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref27
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref27
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref27
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref28
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref28
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref28
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref28
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref28
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref29
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref29
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref30
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref30
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref30
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref31
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref31
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref31
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref31
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref31
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref32
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref32
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref32
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref32
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref33
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref33
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref33
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref33
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref34
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref34
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref34
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref34
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref35
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref35
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref35
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref35
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref35
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref36
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref36
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref36
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref36
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref36
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref37
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref37
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref37
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref37
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref37
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref38
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref38
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref38
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref38
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref39
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref39
http://refhub.elsevier.com/S2590-0889(21)00087-1/sref39

	Benchmarking hospital safety and identifying determinants of hospital-acquired complication: the case of Queensland cardiac ...
	Introduction
	Methods
	Data
	Variable selection
	Statistical analyses

	Results
	Descriptive statistics
	HAC risk factors
	Benchmarking hospital safety

	Discussion
	Conclusions
	CRediT authorship contribution statement
	Conflict of interest statement
	Funding
	Appendix A. Supplementary data
	References


