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Introduction: Thymoquinone (TQ) is the main active compound extracted from Nigella 
sativa a traditional herb with wide therapeutic applications and recognizable anticancer 
properties. This study aimed to formulate and characterize TQ-nanoparticles using PLGA 
as a biocompatible coating material (TQ-PLGA NPs) with the evaluation of its therapeutic 
properties in human melanoma cancer cells.
Methods: The TQ-PLGA NPs were prepared and characterized for size, zeta potential, 
encapsulation efficiency, and release profile.
Results: The particle size was 147.2 nm, with 22.1 positive zeta potential and 96.8% 
encapsulation efficiency. The NPs released 45.6% of the encapsulated TQ within 3 h 
followed by characteristic sustained release over 7 days with a total of 69.7% cumulative 
release. TQ-PLGA NPs were taken up effectively by the cells in a time-dependent manner up 
to 24 h. Higher cell toxicity was determined within the first 24 h in melanoma cells due to the 
rapid release of TQ from the NPs and its low stability in the cell culture media.
Conclusion: TQ-PLGA NPs is a potential anticancer agent taking advantage of the sus
tained release and tailored size that allows accumulation in the cancer tissue by the enhanced 
permeability and retention effect. However, stability problems of the active ingredient were 
address in this study and requires further investigation.
Keywords: microencapsulation, thymoquinone, PLGA, nanoparticles, melanoma

Introduction
Malignant melanoma is the third most common malignant skin cancer and the most 
aggressive in terms of local invasiveness and mortality rate.1,2 A considerable 
attention is required in this malignancy not only due to the increase in its incidence 
rate,1,3 but also because this skin malignancy is characterized by its aggressive 
behavior that often cause treatment relapse with high mortality rate.3

Nigella sativa is well-known traditional medicine in the middle east that is used 
to treat chronic cardiovascular, hepatic, and renal diseases.4 Most of the pharma
cological properties in this seed is attributes to its quinine derivative known as 
thymoquinone (TQ).5 TQ has been well known for its diverse therapeutic properties 
including antimicrobial, antioxidants, and anti-inflammatory effects. In cancer, it is 
deemed therapeutic through its interference with cell proliferation, apoptosis, cell 
invasion, and metastasis in cancer cells using different in vitro and in vivo 
models.6–9 Theses anticancer effects were reported in various types of cancers 
such as breast cancer cells,10 colon cancer,11 lung cancer,12 cervical squamous 
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carcinoma,13 ovarian cancer,14 prostate cancer cell,15 and 
osteosarcoma.16 In addition, synergistic therapeutic effects 
were elicited when TQ was given in combination with 
other chemotherapeutic agents.8,17–21 The anticancer prop
erties are mostly attributed to its antioxidant properties 
with pieces of evidence pointing towards its interference 
with specific cancer signaling pathways such as the 
MAPK, PI3-mTOR, JAK-STAT3 and NF-κB.22–25

Poly lactic-co-glycolic acid (PLGA) is a FDA 
approved polymer known for its biomedical applications 
in drug delivery due to its versatility, biodegradability, and 
biocompatibility.26 It is used extensively to prepare micro
particles and nanoparticles to deliver a wide range of 
therapeutic agents including active pharmacological 
molecules,27 peptides,28 and nucleic acids.29

Therapeutic nanocarriers had shown promising results 
in the treatment of cancer partly due to the enhanced 
selective uptake in cancer tissue through the tumor capil
laries a property known as the enhanced permeability and 
retention (EPR) effect.30,31 This effect is due to the dis
ruption in the integrity of tumor capillaries and the 
inflamed endothelial cells potentiating the extravasation 
of nanocarriers through the leaky vasculature and enhan
cing the targeting strategy of treatment.30,31 The advantage 
of the EPR effect could be enhanced by nanocarriers based 
on specific properties such as the size and the surface 
charge of the particles.30 Particles of 100–200 nm size 
with hydrophilic surfaces tend to exhibit an improved 
EPR effect, which is attributed to the increased residence 
time of nano carriers in the blood circulation.32,33

Therefore, this study aimed to formulate TQ-loaded 
PLGA nanoparticles (TQ-PLGA NPs) with the evaluation 
of its properties and uptake in human melanoma cancer 
cells. The formulation was prepared to have a particle size 
between 100 and 200 nm, characterized and evaluated for 
cell uptake and cytotoxicity using the A375 melanoma 
cancer cell line.

Materials and Methods
Materials
Thymoquinone (Sigma Aldrich; WGK, Germany), medium 
molecular weight chitosan (190–310 kDa, 75–85% deacety
lated) and polyvinyl alcohol (PVA) (Sigma Aldrich; Saint 
Lois, USA). Tween 80, Acetone and dichloromethane 
(Merck; Darmstadt, Germany). Poly lactic-co-glycolic acid 
5004 (Purasorb; Corbion Purac, Holland). Coumarin-6 
(Sigma-Aldrich; Milwaukee, Wisconsin, USA). High 

glucose of Dulbecco’s modified Eagle medium containing 
phenol red, L-glutamine and sodium pyruvate (Nacalai 
Tesque Inc; Kyoto, Japan), fetal bovine serum (Tico 
Europe; South America), HEPES buffer (Gibco, Life 
Technology Corporation; Auckland, New Zealand), the peni
cillin-streptomycin antibiotic (Gibco Invitrogen; Auckland, 
New Zealand), Tryple E (Gibco, Fischer Scientific; 
Massachusets, USA). Tissue culture wares (American Type 
Cell Culture (ATCC); Manassas, USA), all organic solvents 
used were of HPLC grade. MTT [3-(4,5-Dimethyl-thiazol 
-2-yl)-2, S-diphenyltetrazolium bromide] (Merck; 
Darmstadt, Germany), and dimethylsulfoxide (DMSO) 
(Sigma-Aldrich, Darmstadt, Germany).

Nanoparticle Preparation
The fabrication process was adopted from Doolaanea 
A. M.34 Briefly, 6 mL aqueous phase (1% w/v chitosan, 
0.2% PVA and 0.8% w/v Tween 80) was added into the oil 
phase (10 mg of TQ and 60 mg of PLGA dissolved in 
2 mL mixture of 20:80 v:v ethyl acetate (EA) and dichlor
omethane (DCM)). The aqueous and oil phases were soni
cated using a probe sonicator (Qsonica Q700, Newtown, 
USA) to form an emulsion that was then dropped slowly 
into a dispersion medium of 24 mL water and left on 
a magnetic stirring for 2 h for complete solvent evapora
tion. The nanoparticles were then washed to remove the 
excess stabilizers and were collected through centrifuga
tion. Nanoparticles were then re-suspended in 2 mL dis
tilled water and evaluated for nanoparticle size, zeta 
potential, and encapsulation efficiency. The nanoparticles 
were lyophilized to form a powdered dosage form using 
Christ Freeze Dryer (Martin Crist Alpha 1–2LD Plus, 
Pocklington, UK).

For quantitative analysis using a flow cytometer and 
qualitative analysis of the cell uptake using the fluores
cence microscope, coumarin-6 a fluorescence dye was 
used. The dye was added together with other excipients 
that make up the oil phase (0.1% coumarin-6) together 
with the organic solvent and PLGA.

Nanoparticle Characterization
Particle Size and Zeta Potential
A volume of 20 µL of nanoparticle suspension was diluted in 
2 mL of distilled water, then the particle size and zeta potential 
were measured before lyophilization by dynamic light scatter
ing (DLS) using Zeta sizer Nano-S and Nano-Z from Malvern 
Instruments Ltd (Malvern, Worcestershire, UK). The values 
were expressed as median diameter (D 50%) and millivolt 
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(mV), for particle size and zeta potential, respectively. The 
polydispersity index (PDI) of the particle size was also 
reported.

Loading Efficiency
Encapsulation efficiency was measured indirectly by quan
tifying the amount of total un-encapsulated TQ using high- 
performance liquid chromatography (HPLC) with 
a validated analytical method as reported before.35 

Briefly, after nanoparticle fabrication, 2 mL of the nano
particle suspension was collected and the supernatant was 
obtained by centrifugation. The HPLC analysis was per
formed using Shimadzu LC-20AT equipment (Shimadzu, 
Japan). A mixture of acetonitrile and water in the ratio of 
60:40 was used as a mobile phase at a flow rate of 1 mL/ 
min using Inspire C18 (4.6 x 250 mm, 5 µm) analytical 
column. The detection was performed at a UV wavelength 
of 254 nm using a diode-array detector. The encapsulation 
efficiency was calculated based on the Equation 
below (Eq.1):

Encapsulation Efficiency %ð Þ¼
TQ½ �i� TQ½ �f

TQ½ �i
�100 (1) 

where TQ½ �iis the initial TQ concentration used in the oil 
phase and TQ½ �f is the final TQ concentration in the aqu
eous phase.

Scanning Electron Microscopy
The nanostructure of the particles was observed under 
a scanning electron microscope (SEM; Zeiss, Evo 50, 
Germany). The samples were sputter-coated with gold 
before observation under the SEM. The highest magnifica
tion images were obtained to observe the freeze-dried 
nanoparticle prepared from the optimized formulation.

Release Profile
Five milligrams of the optimized freeze-dried nanoparti
cles were suspended in 5 mL of phosphate buffer saline 
(PBS pH 7.4) and incubated at 37°C. At predetermined 
time points (0 h, 1 h, 3 h, 21 h. 42 h, and 1 week), 1 mL of 
the release medium was removed, and the NPs were sepa
rated by centrifugation. Fresh PBS was added to replace 
the taken amount. TQ in the release medium was evaluated 
using HPLC as mentioned before.

Differential Scanning Calorimetry (DSC)
DSC analysis of individual components of the nanoparticle 
formulation (PLGA polymer, TQ, Tween 80, PVA and 
chitosan) and the physical mixture of polymer + drug 

(1:1) was performed using PerkinElmer DSC-7® 

(PerkinElmer, Inc., MA, USA). Equal weight of about 
5 mg of each sample was loaded into 40 µL standard 
aluminum crucibles then heated under continuous nitrogen 
purging (20 mL/min) at a heating rate of 10°C/min to 350° 
C. An empty crucible served as a reference.

Fourier-Transform Infrared Spectroscopy (FTIR)
TQ, PLGA, PVA, TQ-PLGA NPs were examined for FTIR 
spectra in the range of 400 to 4000 cm−1 at 4 cm−1 resolu
tion (Frontier Optica, Perkin Elmer, Pittsburgh, 
Pennsylvania, USA).

Stability of the Nanoparticles
Three types of stability assays were performed on TQ 
nanoparticle formulation and TQ solution. The first assay 
was based on the observation for changes in the particle 
size, PDI, and zeta potential using Malvern Zetasizer 
Nano-S and Nano-Z (Malvern Instruments Ltd, Malvern, 
Worcestershire, UK). The physical stability study was 
performed 1 month after preparation of the TQ-loaded 
PLGA nanoparticle suspensions at four different storage 
temperatures (−40°C, −20°C, 5°C and 25°C).

The second stability assay involved the assessment of 
nanoparticles in the cell culture medium. Here, the nano
particle suspensions were added to complete cell culture 
medium (DMEM) at different concentrations (0.1 mg/mL 
to 10 mg/mL). The nanoparticle suspensions were incu
bated at 37ºC and were tested after 24 h and 48 h, respec
tively. The parameters used included changes in the 
particle size, PDI, and zeta potential.

The third stability assay involved the assessment of 
chemical degradation of TQ in complete cell culture med
ium (DMEM) using the HPLC.

Cell Culture
A375 human melanoma cells were obtained from American 
Type Cell Culture (ATCC), Manassas, USA. The cells were 
cultured in T75 and T25 flasks (Eppendorf, San Diego 
California, USA) at 37°C and 5% CO2 using High glucose 
Dulbecco’s modified Eagle medium (DMEM) Eagle’s 
Minimum Essential Medium (EMEM). Fetal bovine 
serum, penicillin-streptomycin, and HEPES buffer were 
added to a final concentration of 10%, 2%, and 1%, respec
tively, to complete the growth medium.

Cell Uptake of Nanoparticles
A375 cells were seeded in 96-well flat plate at a concentration 
of 1 x 104 cells/100 µL/well. For concentration-dependent 
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studies of the cell uptake, after the cells adhered to plate within 
24 h then treatment started with 0.1, 1.0, 2.5, 5, and 10 mg/mL 
concentrations of coumarin-TQ-loaded PLGA NPs for 24 
h. Meanwhile, for time-dependent cell uptake, the cells were 
assessed after 2 h, 6 h, and 24 h of treatment, respectively, 
using a fixed concentration of the NPs. On the time of assay, 
the cells were washed gently with ice-cold PBS three times 
before being detached by triple E in the incubator for 2 min.36 

The cells were centrifuged at 800 g for 4 min and the super
natant was discarded. The cells were then re-suspended in 4% 
of formaldehyde for cell fixation and incubated in ice for 10 
min. The cells were centrifuged and re-suspended in PBS 
buffer saline before being evaluated with the flow cytometer. 
The forward light scatters (FSC) were used to count the total 
number of cells after the deduction of the background caused 
by some free NPs in the medium. On the other hand, the green 
fluorescence channel was used to count the positive cells 
(successful cell uptake if fluorescent NPs).

The efficiency of cell uptake was also qualitatively 
assessed using a fluorescent microscope (Cytell cell imaging 
system, GE Healthcare life science, Buckinghamshire, UK). In 
this assay, the A375 cells were seeded on round-coated cover
slip mounted in 24-well flat plate at a concentration of 1 x 104 

cells/well. Cells were allowed to attach for 24 h and then the 
cells were incubated with a suspension of 1.0 mg/mL cou
marin-loaded nanoparticles in growth medium for 2 h. The 
coverslips were then transferred into wells containing ice-cold 
4% paraformaldehyde for 10 min fixation. Then the coverslip 
was lifted and placed on top of the glass slide with cells facing 
upwards. A 50 µL of mounting medium containing fluorescent 
dyes of DAPI and phalloidin with the ratio 1:1 was dropped on 
the cells before being covered by square coverslip cleaned 
with 70% ethanol. The glass coverslips were sealed to retain 
the position on the glass slide before being examined under the 
Cytell fluorescence microscope.

In vitro Cancer Cytotoxicity Assay
The cytotoxic effect of TQ solution and NPs form was 
evaluated using the MTT assay (3-(4,5-dimethylthiazol- 
2-yl)-2,5-diphenyltetrazolium bromide assay) in the A375 
cells. The cells were seeded in 96-well flat plate at 
a concentration of 1 x 104 cells/well and allowed to attach 
for 24 h. The cells were then treated with TQ solution, 
TQ-PLGA NPs and blank NPs using concentration gra
dients of (1–100 µg/mL) and (0.1–10 mg/mL) respec
tively for 24 h and 48 h. After the treatment, the 
medium was aspirated, and the cells were washed with 
PBS and treated with MTT reagent (5 mg/mL in PBS). 

The formazan crystals produced by mitochondrial reduc
tase enzyme of the living A375 cells were dissolved using 
dimethyl sulfoxide (DMSO) with continuous agitation. 
The cells were incubated at room temperature for 
30 min before measuring the light absorbance at 570 nm 
wavelength using a microplate reader (Infinite M200 
Nanoquant, Tecan, Austria). The percentage of cell viabi
lity were calculated, by deducting the absorbance of the 
cell-free wells containing MTT only from the absorbance 
values of treatment wells and then dividing the corrected 
absorbance value on by the absorbance of healthy- 
untreated cells.

Statistical Analysis
Comparisons amongst the three formulations were carried 
out using analysis of variance (ANOVA) with Tukey’s post 
hoc test while t-test was employed for comparisons within 
each formulation. P-value < 0.05 was considered statistically 
significant. Minitab software version 16 (Minitab, State 
College, PA) was used to perform the statistical analysis.

Results and Discussion
Characterization of Nanoparticles
TQ-PLGA NPs exhibited monomodal particle size distribu
tion (Figure 1) with an average size of Di50 = 147.2 ± 0.4 
nm with PDI of 0.142 ± 0.017. The NPs showed a positive 
zeta potential of 22.1 ± 1.1 attributed to the adsorption of 
chitosan on the surface. TQ encapsulation efficiency was 
high (96.81 ± 0.05%) thanks to its low water solubility. The 
solubility of TQ was reported as 549–669 μg/mL in the 
aqueous solutions.37 High encapsulation efficiency is usually 
obtained with hydrophobic drugs when using the solvent 

Figure 1 SEM image of the freeze-dried TQ-PLGA NPs.
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evaporation method for nanoparticle preparation. The low 
aqueous solubility prohibits the material from escaping to 
the external phase. This is applicable to TQ which is 
a hydrophobic material with low aqueous solubility.

The in vitro release of TQ from PLGA NPs showed 
a typical biphasic release pattern (Figure 2). The NPs 
released 45.6% of the encapsulated TQ within the first 3 h 
followed by characteristic sustained release. The cumula
tive percentage release of TQ was 65.0% within 48 h fol
lowed by slower release pattern to reach only 69.7% after 
1 week. The initial burst of TQ release was likely due to the 
release of TQ loosely attached to the surface of the nano
particles, whereas the later slow release may indicate the 
release from the of PLGA NPs matrix.

Optimum storage conditions for TQ-PLGA NPs were 
evaluated in this study in which the particles were stored 
in different storage conditions for 10 days. At freezing 
temperatures of −20°C and −40°C, the nanoparticles 
demonstrated a propensity to aggregate after defrosting 
the nanoparticle suspension that was indicated by the 
increase in particle size (Figure 3). This may be attributed 
to the detachment of chitosan molecules from the surface 
of the nanoparticles as indicated by the decrease of zeta 
potential values. These loosely attached or detached chit
osan molecules may contribute in the adherence between 
adjacent nanoparticles causing aggregation. When TQ 
nanoparticles were prepared without using chitosan, the 
suspension displayed significantly better solubility and less 
aggregation which further support the claimed observation 
in this study.36 Therefore, uncoated PLGA NPs exhibited 

better suspension stability than chitosan-coated PLGA NPs 
at freezing temperatures.

The nanoparticles structure plays an important role in 
determining their interaction and adhesion with body cells. 
To determine the morphology of the nanoparticles, SEM 
was carried out. The nanoparticles appeared as clumps of 
grainy like structure that is mostly attributed to the effect 
of freezing on the nanoparticle suspension as shown 
(Figure 3). This finding was supported in other studies, 
where larger particles are produced when using rapid 
freezing rate.38 The tendency of nanoparticles for aggrega
tions are more likely to happen when the van der Waals 
attractive forces between nanoparticles are larger than the 
electrostatic repulsive forces during the freezing process.39 

Chitosan and PVA provide steric stabilization through the 
binding on the surface of the nanoparticles while Tween 
80 provides electrosteric stabilization to the nanoparticle 
suspension.40 Coating TQ-PLGA NPs with these three 
materials may have contributed in producing the weak 
steric or electrostatic stabilization of the nanoparticle ren
dering most of the particles in a fragile state that could 
collapsed easily upon freezing and thawing.

The nanoparticles formulations in powdered form are 
usually more stable than being in the suspension form. 
Thus the powdered form may prevent the premature release 
of the encapsulated drug in the dispersed phase; it therefore 
allows longer terms of storage and ease of transport.41

The aggregation problem observed in the study could be 
overcome by the usage of cryoprotectants as they shield the 
nanoparticles from one another through particle isolation 

Figure 2 Release profile of the optimized TQ-PLGA NP formulation (Mean ± SE, n = 3). The release profile has two phases; burst release within 24 h followed by sustained 
release up to one week.
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Figure 3 Stability of TQ-PLGA NP suspension at four different storage conditions. The stability indicators included (A) PS (particle size), (B) PDI (polydispersity index) and 
(C) ZP (zeta potential).

Figure 4 ATR-FTIR spectra of PLGA NPs, TQ-PLGA NPs, and TQ.
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Figure 5 DSC thermograms of (A) TQ and the components in the NP formulation, physical mixture, and blank NPs and (B) TQ-PLGA NPs.
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hypothesis and therewith hinder the aggregation.42 Based 
on the findings in the study it is recommended to store 
TQ-PLGA NPs in the fridge (5 °C) and use the particles 
suspension within 10 days.

FTIR spectra helps to study interactions between dif
ferent components in the formulation and such interactions 

are indicated by appearance or disappearance of peaks or 
peaks shift.43 The infrared spectra of TQ, blank nanopar
ticles (PLGA NPs), and TQ-PLGA NPs are shown in 
Figure 4. The characteristic spectra of all of the samples 
showed the alkane groups (–CH, –CH2, –CH3) stretching 
at 2800–3000 cm−1, and ethers group (C–O) stretching at 

Figure 6 TQ-PLGA NP stability in DMEM media in term of polydispersity index (A), particle size (B), and zeta potential (C) incubated at 37ºC. The values are mean ± 
standard deviation, n=3, t-test of variance, *p-value ≤0.05, **p-value ≤0.001.

Figure 7 HPLC chromatograms demonstrating the stability of TQ in complete cell culture media at 0, 24 and 48 h incubation (37 °C).
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1050–1250 cm−1. For both blank and loaded nanoparticles, 
the carboxyl group (–C=O) of PLGA exhibited stretching 
at 1750–1625 cm−1. Peaks in range of 1600–1580 cm−1 are 
attributed to the benzene ring of TQ. The characteristic 
peaks in TQ-PLGA NPs were identical to those of blank 
PLGA NPs and were therefore attributed to the peaks of 
PLGA polymer. On the other hand, TQ peaks were not 
detected in the loaded TQ-PLGA NPs probably due to the 
small percentage of TQ compared to PLGA and the weak 
absorption bands of TQ compared to PLGA.

Differential scanning calorimetry (DSC) thermograms 
for the NP components, physical mixture, blank NPs, TQ, 
and TQ-PLGA NPs are shown in Figure 5. Melting tem
perature Tm of TQ was found at 48.33°C. PLGA polymer 
showed a glass transition Tg onset at 42.45°C with clear 
enthalpy relaxation. There was no shifting in Tg of the 
blank nanoparticle curve. TQ-PLGA NP Tg onset was at 
30.3°C suggesting a remarkable plasticizing effect of TQ 
on PLGA. Lowering the glass transition below body tem
perature may contribute to the rapid release of TQ from 
the nanoparticles. This is due to the increase in polymer 

molecular mobility above the glass transition temperature. 
Consistent observations were reported in TQ, PLGA, and 
physical mixture thermograms of other studies.44

TQ melting peaks disappeared in the thermogram of 
TQ-PLGA NP denoting the amorphous state of TQ in the 
NP formulation. This may contribute to the fast release 
from the nanoparticles as amorphous forms usually have 
better solubility than their crystalline counterparts.

Stability of Nanoparticles in Cell Culture 
Media
The physical stability of TQ-PLGA NPs was evaluated by 
measuring particle size, PDI, and zeta potential of various 
nanoparticle concentrations in the media used for the cell 
viability, cell cytotoxicity, and cell uptake studies at 37ºC 
as summarized in Figure 6.

As shown, there was no significant change in the particle 
size within 24 h (p > 0.05); however, after 48 h significant 
changes were elicited as indicated in the figure (p < 0.05).

The poly disparity index (PDI) of the of TQ-PLGA 
NPs demonstrated significant changes in culture media 

Figure 8 Flow cytometric analysis of the controls (A) free nanoparticles spiked in a media (positive control) and (B) untreated cells (negative control).
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after 24 h and 48 h storage at different NP concentrations. 
While the zeta potential values remained considerably 
stable with lower NP concentrations, unlike the changes 
observed at higher concentrations. These changes are 
probably due to the adsorption of protein components 
within the media with the NPs. The colloidal stability 
mainly depends on the electrical double layer and the 
steric repulsion of the particles. The components in the 
cell culture media like serum albumin/globulins, amino 
acids, and ionic salts influence the hydrodynamic size 
and the charge of nanoparticles and these constituents 
may destabilize the nanoparticle suspension by adsorption 
leading to loss of surface integrity and function leading to 
profound aggregation by the electrostatic interactions.40

In addition, TQ degradation in the complete growth 
media was evaluated at the optimum culture conditions at 
37ºC using HPLC analysis as represented in Figure 7. As 
shown, approximately 18.0% and 77.0% of degradation 
occurred within 24 h and 48 h, respectively. Even though 
TQ exerts a considerable rate of degradation within 48 h in 
CGM at 37ºC, the use of PLGA as carrier played an impor
tant role in increasing the stability of TQ and enhance its 
bioavailability for safe delivery to the targeted cells.45

Cellular Uptake of the Nanoparticles
The cellular uptake of TQ nanoparticles was evaluated 
based on the principles of flow cytometry in which the 
forward-scattered light (FSC) is proportional to the cell 
size whereas the side-scattered light (SSC) is related to 
cell internal complexity.46 The color detection throughout 
this study was the green color emitted by coumarin-6 
fluorescent dye. In the beginning, parameters were set to 
exclude the free NPs (not being taken up) and the back
ground fluorescence of the untreated A375 cells as shown 
in Figure 8. Despite washing with ice-cold PBS to remove 
the non-internalized NPs, some nanoparticles were still 
present as shown in the Figure. These free nanoparticles 
exhibited high fluorescence with low forward scattering 
due to their small size compared to the cell size. 
Meanwhile, the cell that did not take up nanoparticles 
had lower fluorescence emissions. Therefore, the vertical 
line at value 12 on the forward scattering x-axis was set to 
exclude the background fluorescence of free nanoparticles 
while the horizontal line at value 100 on the fluorescence 
y-axis was set to exclude the background fluorescence 
from the untreated A375 cells. This comparable exclusion 
criterion was also used in other reports.47 The evaluation 

Figure 9 Flow cytometric analysis of A375 melanoma cells when incubated with coumarin-loaded nanoparticles in different concentration of nanoparticles suspension; (A) 
0.1 mg/mL, (B) 1.0 mg/mL, (C) 2.5 mg/mL, (D) 5.0 mg/mL and (E) 10.0 mg/mL incubated for 24 h.
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of cell uptake using the flow cytometry are demonstrated 
as histogram plots in Figure 9 for concentration-dependent 
assessment and Figure 10 for time-dependent assessment. 
Figure 11 shows the quantification data of coumarin-6 
(C6)-PLGA NP uptake by the A375 cells based on the 
mean fluorescence intensity. The highest intracellular 
uptake of C6-PLGA NP was at 1.0 mg/mL with time- 
dependent increase in cell uptake up to 24 h.

The study confirmed that the size and surface charge of 
the nanoparticles had contributed significantly to cellular 
uptake. The positive surface charge of the NPs interacted 
with the negatively charged cell membrane of the A375 

cells facilitating the internalization of the C6-PLGA NPs. 
This finding is supported by the reported effect of PLGA- 
nanoparticles that quickly escapes the endo-lysosomes and 
were efficiently internalized within the cell cytoplasm after 
10 min incubation time.48 This was attributed to the inter
action between the nanoparticles and the vesicular mem
branes leading to transiently localized destabilization of 
the cell membrane resulting in the escape of nanoparticles 
into the cytosol.

The highest intracellular uptake was at 1.0 mg/mL 
concentration. Higher concentrations had considerably 
decreased the cellular uptake probably because of NPs 

Figure 10 Flow cytometric analysis of A375 melanoma cells when incubated with coumarin-loaded nanoparticles treated with 1.0 mg/mL concentration of nanoparticles 
suspension at 3 different time points; (A) 2 h (B) 6 h, and (C) 24 h.
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aggregation in the complete growth medium as confirmed 
by the physical stability assay shown in Figure 6. In 
addition, the changes in the PDI of the nanoparticles 
were more obvious at the higher NP concentrations. The 
demonstrated NPs aggregation was more evident at high 
concentration (10 mg/mL); whereby the measured particle 
size in the complete growth medium was 291 nm com
pared to 189 nm at 1 mg/mL concentration. This explains 
how smaller particles are taken up at higher extent in 
biological cells compared to larger particles as evidenced 
by reports.49

At 1 mg/mL concentration, the time-dependent cell 
uptake demonstrated a proportional increase with time 
up to 24 h. This is consistent with other studies that 
reported the positive correlation between cell uptake and 

time until it reached a plateau or saturation.50,51 This 
may highlight the importance of the extending the nano
particles availability in the blood circulation or in the 
cancer tissue to enhance the internalization within can
cer cells.

The internalization of C6-PLGA nanoparticles into 
A375 cells was also visualized using fluorescence 
microscopy using 1.0 mg/mL concentration of C6- 
PLGA NPs for 2 h (Figure 12). Coumarin-6 is consid
ered suitable for cell uptake studies since it does not 
cause acute toxicity and is found stable post encapsula
tion with no instant release into the cellular media once 
internalized.52 As shown, the C6-PLGA NPs were seen 
inside the A375 cells and well distributed into the cyto
sol while some were allocated around the nucleus. The 

Figure 11 Cellular uptake mean fluorescence intensity (MFI) of coumarin-6 nanoparticles (C6-PLGA NPs) by A375 cell line at (A) different concentrations of nanoparticles 
and (B) three different times of incubation.
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images also confirmed the average size of the NPs 
though there are some aggregated NPs that could be 
seen.

In vitro Anticancer Activity of TQ and 
TQ-PLGA NPs
One of the properties of cancer tissues is that it tends to 
have a highly permeable vasculature allowing nanoparti
cles with a size of about 100–200 nm to pass easily and 
accumulate in the cancer tissue as described earlier. This 
allows the nanoparticle administered through the intrave
nous route to be passively delivered to the targeted 
cells.30,31 TQ-PLGA NP formulation had a size of 147.2 
nm, that was evaluated for its cytotoxic properties in A375 
melanoma cancer cells in comparison with the TQ 
solution.

The cytotoxicity assessment of TQ solution in A375 
cancer cells was determined at two-time intervals (24 h and 
48 h) using different concentrations as shown in Figure 13. 

Figure 12 Cellular uptake of coumarin-6 nanoparticles (C6-PLGA NPs) by A375 cell line as seen under fluorescence microscope after immunofluorescent staining of the 
actin cytoskeleton and the nucleus of the cells using TRITC-conjugated phalloidin (red) and DAPI (blue) respectively; (A) 40X, (B) 100X magnifications.

Figure 14 Cytotoxicity study (MTT assay) of blank nanoparticles and TQ-PLGA NPs in A375 human melanoma cancer cells. (A) 24 h and (B) 48 h.

Figure 13 Cell viability of A375 cells treated with different concentrations of TQ 
solution for 24 h and 48 h.
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The figure demonstrates a dose-dependent cytotoxic property 
of TQ solution that reached a significant level at concentra
tion of 50µg/mL, where the proliferation of melanoma cancer 
cells was inhibited by approximately 50%. As shown, the 
cytotoxic effects were significantly lower after 48 h treatment 
probably due to the low stability and degradation of TQ in the 
culture media. As such, a higher trend of TQ cytotoxicity was 
elicited among the cancer cells within the first 24 h of incu
bation. Low concentrations of TQ had not shown any inhi
bitory effect where the cells displayed nearly a 100% 
viability after 24 h treatment. This may be attributed to 
rapid proliferation of A375 cells with reported doubling 
time of 6–12 h in the first 24 h that is consistent with other 
reports.53

As demonstrated after 50µg/mL concentration of TQ, 
the dose-dependent response reached a plateau at approxi
mately 50% cell viability. The IC50 concentration of TQ- 
solution in A375 cells was between 50 µg/mL and 100 µg/ 
mL with 48.0% and 51.1% at 24 h, and 35.6% and 55.1% 
at 48 h, respectively. The reported IC50 concentration of 
TQ was significantly higher than other studies conducted 
on melanoma cells lines and this difference may be attrib
uted to difference of cell line virulence and proliferation.54

In the developed formulation of TQ (TQ-PLGA NP), 
the A375 cells showed a concentration-dependent cyto
toxic effect as shown in Figure 14. As shown, the cyto
toxic effects of TQ-PLGA NPs reached its maximum rate 
at the concentration of 7.5 mg/mL with 34.2% cell viabi
lity within 24 h of treatment.

The blank nanoparticle suspension had also demon
strated cytotoxic effects in cancer cells as the viability 
decrease to 40.3% at the highest concentration of the 
nanoparticles after 48 h of incubation. Based on other 
observations, PLGA nanoparticles of 200 nm size are 
unlikely to exhibit cytotoxic effects at concentration 
range of 10 µg/mL to 300 µg/mL.55,56

The observed effect of blank nanoparticles may be 
attributed to particles aggregation at higher concentrations 
imposing more toxicity among the cells.57 The positively 
charged NPs tend to aggregate more due to the bridging 
flocculation between negatively charged proteins and posi
tively charged NPs.40

Based on the release profile of the optimized nanoparti
cle formulation, 56.7% of the encapsulated TQ was released 
from the nanoparticles within the first 24 h. therefore less 
cytotoxic effects were observed after 24 h due to the slower 
release of TQ from the drug carrier. TQ-PLGA NPs had 
considerably higher cytotoxicity than blank nanoparticles in 

the first 24 h incubation. However, the difference was not 
significant after 48 h which can be attributed to the rapid 
release (~56.7%) of TQ in the first 24 h and the degradation 
of TQ in the culture media (77.0% after 48 h).

The IC50 concentration of TQ-PLGA NPs in A375 
cells was between 2.5 mg/mL and 5 mg/mL with 41.0% 
and 52.6% cell viability at 24 h and 37.5–68.3% cell 
viability at 48 h, respectively. The highest cytotoxic effects 
of the developed NPs in the A375 cells were achieved at 
7.5 mg/mL concentration at 48 h.

As shown in the figure, higher concentrations of TQ 
were required to produce the same cytotoxic effects when 
encapsulated in PLGA NPs. The privileges of using this 
formulation despite the higher concentration include the 
added advantages of nanocarriers in vivo settings when 
compared with free TQ solution. The nanocarriers will 
contribute in increasing the bioavailability of TQ by 
enhancing aqueous solubility, increasing the half-life in 
the circulation, and enhance the targeted accumulation of 
nanoparticles within cancer tissue.30,58

Conclusion
In this study the TQ-loaded PLGA nanoparticles (TQ- 
PLGA NPs) were successfully prepared with a particle 
size of 147.2 nm with a positive zeta potential and high 
encapsulation efficiency. The TQ-PLGA NPs were taken 
up effectively by the cancer cells in a time-dependent 
manner up to 24 h. The optimum cell uptake and cytotoxi
city of the TQ-PLGA NPs in cancer cells were challenged 
by the stability of TQ, aggregation and the rate of release. 
TQ stability in the cell culture media was rarely consid
ered in previous studies and our study highlights the sig
nificance of TQ stability in the treatment medium. The 
challenges of TQ stability in aqueous solutions and the 
demonstrated cytotoxic effects in cancer cells demand 
further investigation with extrapolation to more in vitro 
and in vivo experiments considering its application as 
a cancer chemotherapeutic agent.
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