
[10:08 15/5/2009 Bioinformatics-btp220.tex] Page: i305 i305–i312

BIOINFORMATICS Vol. 25 ISMB 2009, pages i305–i312
doi:10.1093/bioinformatics/btp220

A unified statistical model to support local sequence order
independent similarity searching for ligand-binding sites and its
application to genome-based drug discovery
Lei Xie1,∗, Li Xie2 and Philip E. Bourne1,2

1San Diego Supercomputer Center and 2Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

ABSTRACT

Functional relationships between proteins that do not share global
structure similarity can be established by detecting their ligand-
binding-site similarity. For a large-scale comparison, it is critical
to accurately and efficiently assess the statistical significance of
this similarity. Here, we report an efficient statistical model that
supports local sequence order independent ligand–binding-site
similarity searching. Most existing statistical models only take into
account the matching vertices between two sites that are defined
by a fixed number of points. In reality, the boundary of the binding
site is not known or is dependent on the bound ligand making these
approaches limited. To address these shortcomings and to perform
binding-site mapping on a genome-wide scale, we developed
a sequence-order independent profile–profile alignment (SOIPPA)
algorithm that is able to detect local similarity between unknown
binding sites a priori. The SOIPPA scoring integrates geometric,
evolutionary and physical information into a unified framework.
However, this imposes a significant challenge in assessing the
statistical significance of the similarity because the conventional
probability model that is based on fixed-point matching cannot
be applied. Here we find that scores for binding-site matching
by SOIPPA follow an extreme value distribution (EVD). Benchmark
studies show that the EVD model performs at least two-orders
faster and is more accurate than the non-parametric statistical
method in the previous SOIPPA version. Efficient statistical analysis
makes it possible to apply SOIPPA to genome-based drug discovery.
Consequently, we have applied the approach to the structural
genome of Mycobacterium tuberculosis to construct a protein–ligand
interaction network. The network reveals highly connected proteins,
which represent suitable targets for promiscuous drugs.
Contact: lxie@sdsc.edu

1 INTRODUCTION
Evolutionary and functional relationships between proteins can
be reliably inferred by the comparison of their sequences and
benefits from a well-understood extreme value distribution (EVD)
model that can be applied on a large scale (Altschul et al., 1997;
Claverie, 1994; Levitt and Gerstein, 1998; Pearson, 1998). When
the sequence similarity is not statistically significant, remote protein
relationships can often still be detected by global 3D structure
comparison since protein structures are more conserved than protein
sequences. Although a rigorous statistical model for global structure
comparison is difficult to derive, it has been empirically shown that
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the structural comparison score follows an EVD if a summarized
structural alignment score, rather than a root mean square deviation
(RMSD), is used (Levitt and Gerstein, 1998). Recently increasing
evidence suggests that proteins can be related by their ligand-binding
sites even when global sequence or structure similarity cannot be
detected (Gerlt and Babbitt, 2001; Scheeff and Bourne, 2005; Weber
et al., 2004; Xie and Bourne, 2008). Consequently mapping of
protein space by ligand-binding site similarity will increase our
understanding of divergent and convergent evolution and the origin
of proteins (Gerlt and Babbitt, 2001; Gherardini et al., 2007; Scheeff
and Bourne, 2005; Xie and Bourne, 2008), and improve our ability to
predict unknown protein functions (Binkowski et al., 2003; Dobson
et al., 2004; Kinoshita et al., 2001; Kinoshita and Nakamura, 2003;
Kuhn et al., 2006; Laskowski et al., 2005; Pazos and Sternberg,
2004; Powers et al., 2006; Schmitt et al., 2003; Tseng et al., 2009).
Moreover, recently we have shown that such ligand–binding-site
mapping can contribute to the design of pharmaceuticals through
the detection of off-targets (Kinnings et al., 2009; Xie et al., 2009;
Xie et al., 2007).

A number of algorithms have been developed for the comparison
of ligand-binding sites (Artymiuk et al., 1994; Barker and Thornton,
2003; Binkowski et al., 2003; Brakoulias and Jackson, 2004;
Cammer et al., 2003; Campbell et al., 2003; Chen et al., 2005; Green,
2006; Ivanisenko et al., 2004; Jambon et al., 2003; Kinoshita et al.,
2001; Kinoshita and Nakamura, 2003; Kleywegt, 1999; Laskowski
et al., 2005; Mardia et al., 2007; Meng et al., 2004; Morris et al.,
2005; Pickering et al., 2001; Schmitt et al., 2003; Shulman-Peleg
et al., 2004; Siggers et al., 2005; Stark and Russell, 2003; Stark
et al., 2003; Torrance et al., 2005; Wallace et al., 1997; Zhang and
Grigorov, 2006). Using these algorithms, the similarity between
two sites is measured using geometric criteria such as RMSD
(Russell, 1998; Stark et al., 2003), spherical harmonic expansion
(Morris et al., 2005), residue conservation based on an amino-acid
substitution matrix (Binkowski et al., 2003; Laskowski et al., 2005)
or a Tanimoto Index (TI)-like measurement that is based on residue
clusters (Stark and Russell, 2003; Zhang and Grigorov, 2006),
atom types (Jambon et al., 2003; Schmitt et al., 2003) or surface
electrostatic potentials (Kinoshita et al., 2001). Correspondingly,
five types of probabilistic models have been developed to assess
the statistical significance of the ligand–binding-site match. Russell
(Russell, 1998) and Binkowski et al. (Binkowski and Joachimiak,
2008) build a score look-up table from millions of random matches.
Stark et al. have developed a geometrical model to estimate a priori
significance of RMSD in atomic positions (Stark et al., 2003).
Davies et al. extend the TI-based measurement to a Poisson Index
(PI) model that relies on a well-defined theoretical framework of
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Poisson processes (Davies et al., 2007). It has been shown that the PI
model significantly outperforms the TI model. Unlike the above two
models that only use crude classifications of residues, atomic types
or surface properties, Binkowski et al. (Binkowski et al., 2003) and
Laskowski et al. (Laskowski et al., 2005) assess the significance
of the similarity by quantitatively measuring the ligand–binding-
site sequence alignment based on amino-acid substitution matrices.
Chen et al. have devised a non-parametric statistical model that in
theory can be applied to any scoring function (Chen et al., 2005)
but still requires a predefined template site.

We have developed a new sequence-order-independent profile–
profile alignment (SOIPPA) algorithm for ligand-binding-site
comparison (Xie and Bourne, 2008). SOIPPA has several features
that distinguish it from other existing methods. Prior knowledge
of both the location and the boundary of the ligand-binding site is
not required. Instead, whole proteins are scanned to find the most
similar local patch in the spirit of local sequence alignment such as
the Smith–Waterman algorithm (Smith and Waterman, 1981). This
feature makes SOIPPAsuitable for practical problems since typically
the boundary of the ligand-binding site is not clearly defined and
depends on the bound ligand. In addition, two globally dissimilar
ligand-binding sites may share a similar sub-site to accommodate the
same molecular moiety even though the overall ligand is different
and can be detected by SOIPPA. SOIPPA integrates geometric,
evolutionary and physical information into a unified similarity score
akin to a sequence alignment score. Stated another way, SOIPPAuses
a quantitative measure of residue conservation as found in an amino-
acid substitution matrix or more sensitive profile–profile score.
However, unlike conventional sequence alignment, the SOIPPA
alignment is sequence order independent as its name suggests; a
necessary requirement when comparing local-binding sites, since
the associated functional residues may not follow the same sequence
order in different proteins.

The local alignment and the scoring function used by SOIPPA
impose a new challenge in assessing the statistical significance
of the binding-site comparison. Most of the existing statistical
models cannot be applied because they only take into account the
matching of a fixed number of vertices between two sites. Moreover,
the matching vertex algorithms only use a crude classification
of amino-acid conservation or atom physical properties rather
than the quantitative measurement used by SOIPPA. Although
the Binkowski–Laskowski model uses the summarized quantitative
residue conservation score, it only considers the sequence order
dependent case. A non-parametric statistical-based method has been
proposed previously (Binkowski et al., 2003; Chen et al., 2005; Xie
and Bourne, 2008; Xie et al., 2007). However, it requires a fixed size
for the template ligand-binding site. In addition, at least hundreds
of additional comparisons are needed to derive the background
distribution. As a result, it cannot be scaled to a genome-wide study
of binding-site comparisons.

Here, we report a new statistical model that is nearly identical to
the well-known EVD used in sequence and structural alignment.
We find that the score of the local-site matching using SOIPPA
also follows an EVD, but independent on the sequence order and
the predefined ligand-binding site. Benchmark studies show that
the new statistical model performs at least two-orders faster than
the previous non-parametric method without sacrificing database
search sensitivity and specificity. The unified statistical framework
for sequence, structure and ligand-binding site comparison makes it

possible to study protein relationships at multi-scales. The algorithm
proposed in the article has been implemented in software SMAP
v1.4, which is available from http://funsite.sdsc.edu.

Owing to scalability and robustness of SOIPPA and the EVD
model, we have successfully applied SMAP to drug discovery,
including elucidation of the molecular mechanisms of drug side-
effects and repurposing of safe pharmaceuticals to target different
pathways (Kinnings et al., 2009; Xie et al., 2009; Xie et al., 2007).
Here, we report the construction of a structural genome-wide protein
interaction network of Mycobacterium tuberculosis using SMAP.
The network provides a first step in rationally designing multi-target
therapeutics to combat drug-resistance tuberculosis.

2 METHODS

2.1 Representation of protein structures
We represented protein structures using Delaunay tessellation of Cα atoms
that are characterized by geometric potentials (Xie and Bourne, 2008). The
regular tessellation generates a mesh surface surrounding the Cα atoms. A
normal vector that is perpendicular to the mesh surface can be assigned to
each Cα atom. The regular tessellation of the protein structure also encodes a
graph representation in 3D space. The nodes of the graph are the Cα atoms.
The connections in the regular tessellation form the edges. We used the
graph representation of the structure in the ligand-binding site comparison
described below.

2.1.1 Local protein sequence order independent alignment We aligned
two proteins using the sequence order independent profile–profile alignment
(SOIPPA) algorithm (Xie and Bourne, 2008). The algorithm is based on
finding the maximum-weight common sub-graph (MWCS) between two
encoded protein graphs. A weight is assigned according to the chemical
similarity or evolutionary correlation of the associated sites. In this article, the
McLachlan chemical similarity matrix (McLachlan, 1972) and BLOSUM45
substitution matrix (Henikoff and Henikoff, 1992) were used for chemical
similarity and for evolutionary correlation, respectively. The MWCS is
implemented with a branch-bound algorithm (Kumlander, 2004; Ostergard,
2001; Ostergard, 2002).

2.2 Scoring function for ligand-binding site similarity
After two structures are superimposed according to the alignment, the
binding-site similarity is measured using a Gaussian density function Sij

as follows:
Sij =

∑
i,j

(Mij ×paij ×pdij). (1)

where Mij is the residue similarity determined by the substitution matrix
between two residues of proteins i and j, respectively. Here the McLachlan
physical similarity matrix (McLachlan, 1972) and BLOSUM45 substitution
matrix were used (Henikoff and Henikoff, 1992). paij and pdij are deter-
mined as follows:

paij =
{

cos(αij), αij < π/2.0

0.0, αij > π/2.0
(2)

pdij =

⎧⎪⎨
⎪⎩

0.0, dij > 4.0

1.0, dij ≤ 2.0

exp(−(dij −2.0)2/2.0), 2.0<dij ≤4.0

(3)

where αijand dij is the angle and the distance between the two Cα atoms,
respectively. The angle is calculated from the inverse cosine of the dot
product between the normal vectors of the two Cα atoms. The parameters
used in the calculation are empirical and not optimized.
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Table 1. PDB chains used for deriving the background distribution for
SOIPPA score statistics

PDB ID Chain ID CATH ID

1YOZ A 1.10.3200
1YO7 A 1.20.1440
1B3U A 1.25.10
1PPR A 1.40.10
1AGM A 1.50.10
1MVF C 2.10.260
1C3K A 2.100.10
1N7V A 2.105.10, 2.60.330, 2.70.250
1GEN A 2.110.10
1GYD A 2.115.10
1A14 A 2.120.10
1A0R A 2.130.10
1AOM A 2.140.10
1P9H A 2.150.10
1EWW A 2.160.10
1T2R B 2.170.260
1MKN A 2.20.60
1YDU A 2.30.240
1XKC A 2.40.320
1KSA A 2.50.10
1ABR B 2.80.10
1B2P A 2.90.10
1VKB A 3.10.490
1BP1 A 3.15.10
1YBE A 3.20.140
2SIC C 3.30.350
1Y0K A 3.40.1540
1J7G A 3.50.80
1J5U A 3.55.10
2PVA A 3.60.60
1A2N A 3.65.10
1AXC A 3.70.10
1BWD A 3.75.10
1A4Y A 3.80.10
1YB5 A 3.90.180
4MT2 A 4.10.10

2.3 Statistical model
To derive a background distribution of raw scores for binding-site similarity,
36 structures with different CATH architectures were randomly selected from
the RCSB Protein Data Bank (PDB) (Berman et al., 2000; Deshpande et al.,
2005). These chains are shown in Table 1.

The residues from the above structures were randomly shuffled 100 times
to construct a total of 3600 structural models. Two structural models whose
templates belong to different CATH classes were aligned using the SOIPPA
algorithm. In the end, a total of 8 46 711 alignments were generated and used
in the model fitting. The alignment length ranges from 3 to 63. As shown in
Figure 1, the alignment scores for given alignment lengths fit EVD:

P(s>S)=1−exp(−exp(−Z)) (4)

where:

Z = S2 −μ

σ
(5)

where S is the raw SOIPPA similarity score. As shown in Figure 2, μ and σ

are fitted to the logarithm of N , which is the alignment length between two

Fig. 1. Fitting of the square of the SOIPPA raw scores to an extreme value
distribution (EVD) for alignment lengths N of 5, 15, 25 and 35, respectively.
The EVD is determined by two parameters μ and σ , which are estimated
from linear regression of the rearrangement of Equations 4 and 5 (see text
and Fig. 2) as S2 = μ + σ (–ln(–ln(1–P))).

proteins:

μ=a∗ ln(N)2 +b∗ ln(N)+c (6)

σ =d∗ ln(N)2 +e∗ ln(N)+ f (7)

Six parameters a, b, c, d, e and f are derived from the linear regression of the
above formula using R (http://www.r-project.org), resulting in a = 17.242,
b = −40.911, c = 46.138, d = 5.998, e = −12.370 and f = 25.441 for the
BLOSUM45 matrix and a = 5.963, b = −15.523, c = 21.690, d = 3.122, e =
−9.449 and f = 18.252 for the McLachlan similarity matrix, respectively.

2.4 Benchmark data
The benchmark data used in this article is the same as that from a previous
study (Xie and Bourne, 2008). In brief, a set of 247 protein monomer
chains, which are bound to the following ligands, ATP, ADP, NAD, FAD,
SAM and SAH, were selected as positive controls from the RCSB PDB
(Berman et al., 2000; Deshpande et al., 2005). One hundred and one protein
complex structures not bound to a ligand-containing ribose, adenine, flavin
and nicotinamide were extracted from the PDB as negative controls. The
sequence identity between each pair of chains was below 30%.

2.5 Performance evaluation
We evaluated sensitivity and specificity of the ligand-binding site search
using a true and false positive rate as defined in the previous article (Xie and
Bourne, 2008):

True positive rate = True positives

True positives + False negatives

False positive rate = False positives

False positives + True negatives

Time complexity of the algorithm was evaluated by querying 5000 non-
redundant PDB chains to two randomly selected structures (PDB id:
1AU1 and 1ZY9). Their chain lengths are 166 and 564, respectively. The
computation was executed on a personal computer with an Intel Xeon 3.00
GHz CPU.
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Fig. 2. The derived parameters μ and σ that determine a unique extreme
value distribution (EVD) for a specific alignment length can be fitted to a
quadratic function based on the logarithm of alignment length.

2.6 Construction of the protein–ligand interaction
network of M. tuberculosis

We first download the genome of M. tuberculosis H37Rv strain from the
TB Database (www.tbdb.org). All available non-redundant M. tuberculosis
structures were extracted from the PDB. These structures cover 232 out
of 3999 open reading frames in the whole M. tuberculosis genome. We
compared the biological units of the 232 structures with each other using
SMAP; a total of 232 × (232 – 1)/2 = 26 796 pairs were generated.Apredicted
M. tuberculosis protein–ligand interaction network is constructed. In the
network, the node is one of the 232 structures. An edge is formed if
SMAP P-value is less than 1.0E–7 for the pair-wise alignment between two
structures. The nodes are ranked based on their connectivity to others from
high to low.

2.7 Determination of the druggability of the predicted
M. tuberculosis targets

The druggability of the top 18-ranked proteins was assessed by using them
as queries to scan a set of 305 protein–drug complex structures. The drug-
binding structures were extracted from SuperTarget (Gunther et al., 2008).
The binding site in the M. tuberculosis target was predicted from the
alignment between the target and the drug-binding site. Finally, the drug was
docked to the predicted drug-binding site using the protein–ligand docking
software eHiTs (Zsoldos et al., 2007).

3 RESULTS

3.1 EVD for the SOIPPA alignment score
We have improved both the speed and accuracy of our original
ligand-binding site similarity search algorithm (Xie and Bourne,
2008) using the new statistical model. Previously the statistical
significance of the ligand-binding site similarity was estimated based
on a non-parametric statistical method (Xie and Bourne, 2008). It
required hundreds of additional comparisons for each binding site
to establish a background distribution. Here, we report a unified
statistical framework similar to that used in sequence and structure
comparison (Levitt and Gerstein, 1998) where the significance
of binding-site similarity can be estimated at least two orders of
magnitude faster than for the original non-parametric method.

We find that the probability density distribution of the square of
the raw binding-site similarity score fits EVD that is only dependent
on the alignment length, as shown in Figure 1. The EVD is uniquely
determined by two parameters μ and σ (see ‘Methods’ section),
which can be fitted to the logarithm of the number of aligned
residues (Fig. 2). Thus the P-value of the observed similarity can
be computed analytically from the given distribution for any pair of
ligand-binding sites with any number of residues.

Fig. 3. Computational time for 5000 randomly selected non-redundant
chains searched against two structures with chain lengths of 564 (red triangle)
and 166 (black diamond), respectively.

3.1.1 Performance of the EVD model The new EVD model
improves the database search speed of SOIPPA by at least two-
order of magnitude when compared to the non-parametric method
that requires hundreds of comparisons to derive a background
distribution (Xie and Bourne, 2008; Xie et al., 2007). Using the EVD
model, the majority of computation is spent in the MWCS optimum
alignment step. As shown in Figure 3, the total computational time
for each comparison is approximately linearly dependent on the
number of residues in the structure, although the underlying MWCS
algorithm itself is NP hard. Because we use the geometric potential
to reduce the search space, the computational time also depends on
the surface properties of the structure. A structure with a smooth
surface will be much faster than a structure with a rough surface. It
takes ∼60 s to compare two polypeptide chains each of 500 residues.

Moreover, the sensitivity and specificity of the database search is
not sacrificed but slightly improved when compared with the non-
parametric statistical method (Xie and Bourne, 2008). As shown
in Figure 4, the true positive rate increases around 2% and 1% for
BLOSUM45 and McLachlan substitution matrix, respectively, when
the false positive rate is 1%. The benchmark that is used for the
evaluation is given in the method section. As shown previously (Xie
and Bourne, 2008), a weighted scoring scheme as used by SOIPPA
outperforms a non-weighted vertex matching method as used by
most-existing algorithms. Thus, SOIPPA using the EVD statistical
model represents progress toward establishing a robust, accurate and
scalable ligand-binding-site-comparison methodology.

3.1.2 Application to drug discovery Given the improved speed
and accuracy of SOIPPA, the new statistical model permits us to
search for ligand–binding-site similarity on a genome-wide scale.
We have implemented both the SOIPPA and the EVD model into
software called SMAP. Using SMAP, we have successfully identified
off-targets for several pharmaceuticals either already on the market
or in clinical trials. In one case we have revealed a complex
off-target-binding network for cholesteryl ester transporter protein
(CETP) inhibitors (Xie et al., 2009). The identified off-targets are
involved in both positive and negative control of blood pressure,
providing a molecular basis for the underlying clinical indications
of CETP inhibitors.
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Fig. 4. Percentage of false positive rate versus true positive rate for the
original SOIPPA algorithm (Xie and Bourne, 2008) (solid) and the improved
SMAP implementation (dashed with circles) using (a) BLOSUM45 and (b)
McLachlan substitution matrices. The details of the benchmark used are
given in the method section.

Here, we further apply SMAP to an all-against-all ligand–binding-
site comparison across the M. tuberculosis structural genome in
an effort to construct a genome-scale protein–ligand interaction
network. Our purpose is to discover protein clusters that have similar
ligand–binding sites and hence are good drug target candidates
to rationally design promiscuous drugs that are able to inhibit
multiple targets. It is believed that multi-target therapy is more
effective than single-target therapy to treat parasitic diseases such as
drug-resistant tuberculosis (Kitano, 2007). In addition, such protein–
ligand interaction networks may provide molecular insights into
the mechanism of drug resistance (Raman and Chandra, 2008). In
our initial study of 232 non-redundant M. tuberculosis proteins,
SMAP generates a highly connected network with highly a confident
P-value cut-off of 1.0e–7. As shown in Figure 5, 144 proteins
form a large single linkage cluster. The top 18 mostly highly
connected proteins are listed in Table 2. The list is dominated
by dehydrogenases and reductases, including the most-studied
M. tuberculosis drug target Enoyl-[acyl-carrier-protein] reductase
(InhA). The drug isoniazid that targets InhA has been the most used
first-line anti-tuberculosis therapy for decades. The gene Rv3303c
that encodes the most connected dihydrolipoamide dehydrogenase
(LPDA) in the network is found to be up-regulated during infection
and growth in vivo (Deb et al., 2002). Besides dehydrogenases
and reductases, other highly connected proteins such as inorganic
polyphosphate/ATP–NAD kinase and serine protease PEPD play
key roles in bacterial survival but to date orthologs have not been
found in higher-order eukaryotes (Brown and Kornberg, 2008;
Ribeiro-Guimarães and Pessolani, 2007). Recently, inhibitors of
inorganic polyphosphate/ATP–NAD kinase have been developed
(Bonnac et al., 2007). Thus, most of the proteins listed in Table 2
are potential novel drug targets for the development of efficient
anti-tuberculosis chemotherapeutics.

To further assess the druggability of the enzymes that are listed in
Table 2, but have not been actively pursued by the pharmaceutical
industry, using SMAP we compared and superimposed them with
complex structures that bind to existing drugs in PDB. The
superimposition generates a predicted binding pose of the drug with

Fig. 5. Predicted protein–ligand interaction network of M. tuberculosis.
Proteins that are predicted to have similar binding sites are connected.
Squares represent the top 18 most connected proteins.

the target. The surrounding residues of the drug can be considered
as the predicted drug-binding site. Furthermore, we docked the drug
molecules to the predicted drug-binding site using the software
eHiTs (Zsoldos et al., 2007). The estimated binding affinity indicated
whether or not the predicted binding site is favorable for drug
binding. In addition, it provided valuable clues for repurposing safe
pharmaceuticals to treat tuberculosis (Kinnings et al., 2009). As
shown in Table 2, most of the predicted binding sites were similar to
a known drug-binding site with high statistical significance (P-value
<1.0E–4). Moreover, the docking scores suggested that the drug-like
molecule could fit into most binding sites.

4 DISCUSSION
Unlike similar sequences or structures, sequence order is not
always conserved between two similar functional sites. This presents
a problem in achieving the optimum alignment of two ligand-
binding sites. Further, most current alignment algorithms only use
a crude classification of amino-acid conservation rather than a
quantitative measurement such as those presented in an amino-
acid substitution matrix. Exceptions can be found (Binkowski
et al., 2003; Laskowski et al., 2005; Pazos and Sternberg, 2004;
Powers et al., 2006) but sequence order constraints are usually
imposed. To address the issues of sequence order independence
and evolutionary conservation, we encode amino-acid residues
in the ligand-binding site as an undirected graph. Using the
graph representation, two ligand-binding sites can be aligned by
finding the MWCS. Although the maximum-size clique algorithm
without weights has been widely used in chemo and bioinformatics,
incorporation of the weights into the comparison makes fundamental
differences. Analogous to conventional sequence alignment without
weights, the similarity between two aligned sequences can only
be measured with sequence identity. With weights such as a
value from a substitution matrix incorporated into the sequence
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Table 2. Top 18 mostly connected proteins (number of neighbors > 12) in the protein–ligand interaction network of M.tuberculosis

PDB id Protein name Gene name Links SMAP P-valuea Drug PDB idb eHits Score

1xdi Dihydrolipoamide Dehydrogenase LPDA Rv3303c 24 0.000 NMG −5.56
2ied Enoyl-[acyl-carrier-protein] reductase [NADH] Rv1484 20 Drug target of isoniazid
1u0r Inorganic polyphosphate/ATP-NAD kinase Rv1695 20 9.904E-6 FNM −4.59
1me5 Alkyl hydroperoxide reductase ahpD Rv2429 20 7.187E-4 P1Z −4.23
2i3g N-acetyl-gamma-glutamyl-phosphate reductase Rv1652 17 1.810E-7 2ML −3.98
1ted Chalcone/stilbene synthase family protein Rv1372 17 5.119E-6 OHA −5.12
3ddn D-3-phosphoglycerate dehydrogenase Rv2996c 16 8.245E-6 ROC −8.00
3cy1 Cytochrome P450 121 Rv2276 16 Drug metabolizing enzyme
1y8t Serine Protease PEPD Rv0983 16 9.565E-4 505 −3.96
2vp8 Dihydropteroate Synthase 2 Rv1207 15 9.458E-4 E3O −4.66
2q74 Inositol-1-monophosphatase Rv2701c 15 8.944E-5 ID2 −2.57
2c7g NADPH-ferredoxin reductase fprA Rv3106 14 9.992E-16 URF −4.34
2c45 Aspartate 1-Decarboxylase Precursor Rv3601c 14 1.259E-3 RIS −0.38
1nfr 3-α-(or 20-β)-hydroxysteroid dehydrogenase Rv2002 14 1.000E-9 TOY −5.15
2qj3 Malonyl CoA-acyl carrier protein transacylase Rv2243 12 2.507E-5 E3O −4.38
2a87 Thioredoxin reductase Rv3913 12 4.957E-11 RBF −6.07
1yl7 Dihydrodipicolinate reductase Rv2773c 12 3.918E-5 BA3 −3.78
1v92 NSFL1 cofactor p47 Rv2150c 12 >1.000E-2 – –

aPresents the lowest P-value between the identified hub proteins and 305 proteins binding with existing drugs in PDB.
bPresents the drugs with the lowest eHiTs score when docked to the identified hub proteins.

comparison, similarity scores can capture more evolutionary and
physio-chemical information and give more statistically meaningful
results. As demonstrated previously, the MWCS-based SOIPPA
algorithm outperform the non-weighted method (Xie and Bourne,
2008). However, the SOIPPA algorithm imposes new challenges
on the efficient assessment of statistical significance because the
conventional probability model that is developed based on vertex
matching cannot be applied. Previously, a background distribution
has been derived from hundreds of random alignments. Then the
P-value is estimated using a non-parametric statistical method. In
this article, we have found that the weighted score from the MWCS
alignment follows EVD nearly identical to global sequence and
structure alignment. It allows us to develop an efficient unified
statistical framework to compare two proteins at multiple scales. The
EVD model eliminates the requirement for additional alignments
that are used to generate the background distribution, and thus speeds
up the computation for a pair-wise comparison of ligand-binding
sites by at least 100-fold. As a result, it is possible for us to apply
ligand-binding site similarity searching to complete genomes. It took
less than 1 week to compute an all-against-all comparison of the
M. tuberculosis structural genome on a PC with one 3.0 GHz CPU.

The algorithm presented in this article can be further improved
in the future. The Mclachlan (McLachlan, 1972) and BLOSUM45
(Henikoff and Henikoff, 1992) amino-acid substitution matrixes
used in this study are derived from whole proteins or domains and
hence are not customized for the ligand-binding site. By using a
scoring matrix that is specific to an individual binding site, the
performance of inferring protein functions can be dramatically
improved (Tseng et al., 2009; Tseng and Liang, 2006). It will be
interesting to apply the EVD model developed here using a ligand-
binding-site-specific scoring matrix. Moreover, it is a challenge to
randomly sample ligand-binding site space by taking into account
both protein surface geometry and amino-acid composition. The
common practice is to use a non-redundant set of thousands of

PDB structures to build a look-up table (Binkowski and Joachimiak,
2008). However, the structural coverage in PDB is highly biased (Xie
and Bourne, 2005). This bias is especially true for ligand-binding
sites. The PDB is dominated by ligands such as nucleotides and
their analogs. More fundamental, growing evidence indicates that
protein space could be continuous and related by ligand-binding sites
(Andreeva and Murzin, 2006; Bashton and Chothia, 2007; Choi and
Kim, 2006; Fong et al., 2007; Friedberg and Godzik, 2005; Grishin,
2001; Kolodny et al., 2006; Pan and Bardwell, 2006; Reeves et al.,
2006; Shindyalov and Bourne, 2000; Taylor, 2007; Winstanley et al.,
2005; Xie and Bourne, 2008). Thus, it may not be appropriate to
derive the background distribution directly from existing structures
as they are not structurally, functionally and evolutionarily random.
Keeping this in mind, we selected a set of structures from different
CATH classes and built random models seeded from them. These
models are the least likely to be directly related. However, one
may argue that the number of models that are used to generate the
background distribution is still small. Although the sequence space
can be sufficiently sampled by varying the sequence composition and
order, the random geometric sampling is limited by total number of
residues in the 36 structures, which is in the order of 107. To improve
the random sampling of the protein surface, decoy structures could
be used as in structural comparison (Taylor, 2006). We are in
the process of developing the random decoy structure model and
deriving a more robust and reliable statistical model for the ligand-
binding site search. Finally, the geometric statistical model may also
be affected by how we represent the protein structure. Because we
only use a Cα representation in SOIPPA for the purpose of applying
it to homology models, it is not clear if the EVD estimation is
applicable to the ligand-binding site comparison when using an
all-atom presentation.

Our initial study of the M. tuberculosis protein–ligand interaction
network indicates that it is possible to design promiscuous drugs that
are able to inhibit multiple proteins within the organism because
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a number of proteins share the similar ligand-binding sites with
each other. The predicted binding network may also establish new
opportunities to combat drug resistance. There are three types of
known drug resistance mechanisms: (i) mutations in the drug targets
and the regulatory genes through SOS response such as cytochrome
P450 (Johnson et al., 2006), (ii) activation of efflux pumps and
drug modifying enzymes (Nguyen and Thompson, 2006) and (iii)
acquisition of drug detoxification genes through horizontal gene
transfer (Smith and Romesberg, 2007). Recently, Raman et al. have
constructed and analyzed a TB protein–protein interaction network
and identified several resistance pathways involving the above
mechanisms (Raman and Chandra, 2008). There is no doubt that a
detailed ligand-binding site analysis between the drug target and the
genes that are responsible for drug resistance will provide invaluable
clues in designing drugs that inhibit not only essential genes but also
co-targets that are not necessarily essential for the bacteria to survive
but mediate drug resistance. Even in our initial small-scale study, we
identify one of such protein, cytochrome P450 121 that has shown
significant binding-site promiscuity with a number of potential drug
targets (rank 8 in Table 2). To develop antibacterial therapies that
are less liable to drug resistance, the inhibitor should be designed to
retain binding to the primary targets but reduce binding to co-targets
such as cytochrome P450. Another strategy is to develop combined
therapeutics that inhibits the target and the co-target simultaneously.
More studies are required to validate our findings. We need to
understand how proteins are involved in metabolic, gene regulation
and signal transduction pathways; what roles they play in drug
resistance and whether or not they have cross-reactivity with human
proteins. A chemical systems biology approach, which integrates the
protein–ligand interaction network outlined in the article along with
the reconstruction and the simulation of the biological pathways,
will play a critical future role in addressing these issues. Our own
efforts in this direction are on going.
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