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Diffusion tensor imaging (DTI) allows measuring fractional anisotropy and similar

microstructural indices of the brain white matter. Lower than normal fractional anisotropy

as well as higher than normal diffusivity is associated with loss of microstructural

integrity and neurodegeneration. Previous DTI studies in Parkinson’s disease (PD) have

demonstrated abnormal fractional anisotropy in multiple white matter regions, particularly

in the dopaminergic nuclei and dopaminergic pathways. However, DTI is not considered

a diagnostic marker for the earliest Parkinson’s disease since anisotropic alterations

present a temporally divergent pattern during the earliest Parkinson’s course. This article

reviews a majority of clinically employed DTI studies in PD, and it aims to prove the

utilities of DTI as a marker of diagnosing PD, correlating clinical symptomatology, tracking

disease progression, and treatment effects. To address the challenge of DTI being a

diagnostic marker for early PD, this article also provides a comparison of the results

from a longitudinal, early stage, multicenter clinical cohort of Parkinson’s research with

previous publications. This review provides evidences of DTI as a promising marker for

monitoring PD progression and classifying atypical PD types, and it also interprets the

possible pathophysiologic processes under the complex pattern of fractional anisotropic

changes in the first few years of PD. Recent technical advantages, limitations, and further

research strategies of clinical DTI in PD are additionally discussed.

Keywords: diffusion tensor imaging (DTI), fractional anisotropy (FA), Parkinson’s progression marker initiative

(PPMI), diffusion tensor tractography (DTT), dopaminergic pathway, substantia nigra (SN), Parkinsion’s disease

(PD)

INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer
disease. PD generally begins with motor symptoms, including bradykinesia, rigidity, resting
tremor, and postural instability. PD also includes numerous non-motor symptoms (such as
cognitive impairment, depression, sleep behavioral problems, and olfactory dysfunction) (1).
The classical neuropathologic hallmark of PD involves the loss of dopaminergic neurons in
the substantia nigra (SN), resulting in a decreased dopaminergic output through the cortico-
basal ganglia-thalamocortical motor circuit, which causes dysregulation of motor functions (2).
Another neuropathologic characteristic of PD is the presence of Lewy bodies (3) and neurites
in both neuron bodies and axons, including aggregates of the α-synuclein protein (4). When
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PD begins, the complex features of motor and non-motor
symptoms reflect the progression of underlying pathologies,
including α-synuclein immunoreactive inclusions in Lewy
bodies; loss of dopaminergic, cholinergic, serotonergic,
and noradrenergic projections from the brainstem to the
midbrain and basal forebrain; and, finally, to the neocortex
(5). Over the course of PD, patients commonly experienced
comorbid neuropsychiatric disturbances, including depression,
behavioral and cognitive deficits, and dementia, which need
to be differentiated from other neurodegenerative causes
such as dementia with Lewy bodies (DLB) and Alzheimer’s
disease. On the other hand, the term “parkinsonism” refers
to motor syndromes that also present in PD, including
bradykinesia, cogwheel rigidity, resting tremor, a slow shuffling
gait, and imbalance. The atypical causes of parkinsonism
that mimic idiopathic PD include multiple system atrophy
(MSA), progressive supranuclear palsy (PSP), or corticobasal
syndrome (CBS), as well as drug-induced parkinsonism
and others. The most common motor and non-motor
syndromes of PD, and other causes of parkinsonism that
are involved in PD differential diagnosis, are listed in
Table 1.

In PD, the loss of dopaminergic neurons and the accumulation
of Lewy bodies are typically accompanied by damage of
neuroglial cells and demyelination of axons with increasing
microglia concentration in extracellular spaces. It is therefore
plausible that the detection of extracellular microstructural
abnormalities in brain regions with dopaminergic neurons

TABLE 1 | Motor and non-motor syndromes of PD and other causes of

Parkinsonism.

Idiopathic PD

motor

syndromes

Diseases

showing

similar motor

dysfunctions

Idiopathic PD

non-motor

syndromes

Diseases

showing similar

non-motor

dysfunctions

- Resting tremor

- Bradykinesia

- Rigidity

- Postural

instability

- Freezing of gait

- Micrographia

- Decreased

facial

movements

- Unwanted

rapid

movements

- Other:

dystonia, speech

problem,

Difficulty

swallowing,

Sexual

Dysfunction,

Cramping

- Multiple system

atrophy (MSA)

- Progressive

supranuclear

palsy (PSP)

- Corticobasal

syndrome (CBS)

- Other:

Essential Tremor

(ET),

drug-induced

parkinsonism,

normal

-pressure

hydrocephalus

- Neurodegeneration:

Mild cognitive

impairment,

executive

dysfunction,

Dementia

- Mood and emotion:

depression, anxiety,

apathy

- Smell: hyposmia

- Sleep: REM

behavioral disorder,

Insomnia, Excessive

daytime sleepiness

- Hallucinations,

delusions

- Other: fatigue,

Autonomic, Pain,

Skin problems,

Impulsive behaviors

due to the side

effects of medication

- Dementia with

Lewy

bodies (DLB)

- Demented PD

(PDD) vs.

Alzheimer’s disease

- PD

with depression

and along dopaminergic pathways might be a biomarker of
incipient PD.

Diffusion Tensor Imaging (DTI), one of the magnetic
resonance imaging (MRI) sequences, has been employed
to measure white matter microstructural integrity in
neurodegenerative diseases, as well as to visualize brain
fiber connections via tractography (6). Many quantitative DTI
indices (as summarized in Table 2) could be derived from
a clinical DTI sequence. Fractional anisotropy (FA), radial
(RD), axial (AD), and mean diffusivity (MD) have been most
commonly used to describe the degree of random motion
of water molecules on a microscopic scale. Specifically, FA,
which measures the directionality of random water motion,
has been used to probe nerve fiber arrangements, axonal
integrity, and the degree of axonal myelination (64). FA is
clinically feasible to deduce the microstructural integrity of
brain tissues, especially preferred to oriented tissues, such as
white matter and fiber-tract architectures. MD measures the
magnitude of water diffusion. A high MD is thought to indicate
broad cellular damages including edema and necrosis. MD
is used clinically to capture these microstructural alterations
in both gray and white matter tissues (65). AD measures the
magnitude of diffusion along the main axis, and RD measures
the magnitude of transverse diffusion. In animal studies,
increased RD appears to describe myelin pathology-induced
myelin thinning (66), while decreased AD indicates acute axonal
injury but does not correlate with chronic axonal damage
(67). However, the clinical utilities of these DTI metrics have
to consider several limitations: (1) All these DTI metrics
lack validations with specific neuropathology in postmortem
brain. (2) The interpretation of RD/AD might be difficult
in voxels containing isotropic structure. Wheeler-Kingshott
and Cercignani (68) reported that fictitious changes between
RD and AD could occur in areas of low anisotropy, severe
pathology, partial volume, and crossing-fibers. They advised that
interpretations of RD/AD should be strongly discouraged
under such circumstances. (3) There is no appropriate
neurobiological implication for AD increases. Linking the
increased AD to axonal recovery (as a reverse response of axonal
injury) remains questioned, because many studies found AD
increase is associated with neurodegenerative disorders such
as dementia (69). Despite these limitations, the decreased FA
and increased MD have been found correlated with neuronal
degeneration (70) and degeneration caused by dopamine loss
(71). Further, previous studies (72, 73) reported that abnormal
FA values are detected in PD prior to atrophy, suggesting
the usefulness of DTI measures as a biomarker of PD in
clinical studies.

This study aims to review a majority of clinically employed
DTI studies in investigations of PD, together with a comparison
of the results from a longitudinal, early stage, multicenter clinical
cohort. It is sought to prove the utilities of DTI as a biomarker
of diagnosing PD, correlating clinical symptomatology, and
tracking disease progression and treatment effects on PD.
Advantages and challenges of clinical application of DTI in PD
will be discussed further.
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TABLE 2 | Summary 1of common microstructural and connectivity indices derived from DTI, as well as their utilities, interpretations, and clinical correlations in PD.

Measures Modality Analysis Interpretation of

abnormal indicates

Clinical correlation in PD

Microstructural indices

Fractional anisotropy

(FA)

Diffusion tensor

imaging

All analytic types Low FA: reduced integrity,

axonal loss, demyelination,

etc.

High FA: improved axonal

alignment, re-myelination,

crossing-fiber, etc.

- Low FA of the SN (7–12), NST (13), thalamic tract (anterior

nucleus) (14) correlated with motor dysfunction (UPDRS-III).

- Low FA of the basal ganglia regions correlated with non-motor

dysfunction (UPDRS except part III) (15).

- Low FA of the CC body correlated with the high risk of falls (16).

- Low FA of the PPN correlated with severe degree of FOG (17).

- Low FA of the entrance to the EC, lateral to the anterior horn of

the ventricle, and four ROIs in PFC correlated with severe PIGD

symptoms (18).

- Low FA correlated of the thalamus with a poor motor speed and

balance (19).

- Low FA of primarily the frontal and parietal regions correlated with

executive, visuospatial dysfunctions (20–24).

- Low FA of the parietal regions, CG, UF, ILF SLF, Fornix tracts,

correlated with low aggregate cognition, and memory (25, 26).

- Low FA of the thalamus (27), left deep temporal cortex (28)

correlated with the severe depression.

- Low FA of the frontal regions, IFOF correlated with severe

sadness (29).

- Low FA of the multiple brain tracts, IFL, SFL, cerebellum, IFOF

correlated with severe neuroinflammation (30, 31).

- Low FA of the Fornix correlated with excessive daytime

sleepiness (32).

- Low FA of the brainstem correlated with autonomic dysfunction

during REM sleep (33).

- Low FA of the gyrus rectus correlated with smell loss (34).

- Low anisotropy of the CC, Fornix correlated with severe olfactory

dysfunction (35).

- Low FA of the rostral SN correlated with low DAT-SBR of the

putamen (7).

Mean diffusivity (MD) Diffusion tensor

imaging

All analytic types High MD: atrophy,

damaged cellularity,

edema, necrosis, etc. less

specific to tissue type

- High MD of the SN (36), contralateral Put (37), GP (38), Genu,

EC, SCR, ACR (39) corrected with motor dysfunction (UPDRS-III).

- High MD of the basal ganglia regions correlated with non-motor

dysfunction (UPDRS except part III) (15).

- High MD of the CC body correlated with the higher risk of falls

(16).

- High MD of the PPN (17), PLIC (40) correlated with severe degree

of FOG.

- High MD of the entrance to the EC, lateral to the anterior horn

of the ventricle, and four ROIs in PFC correlated with severe PIGD

symptoms (18).

- High MD of the brainstem, thalamus, IC and SCR (41), the tracts

projecting to the right pre- and primary motor cortices correlated

with high tremor scores (42).

- High MD of the thalamus, SLF correlated with a worse motor

speed and balance (19).

- High MD of the frontal, parietal, temporal regions correlated with

executive dysfunction (21, 24, 43, 44).

- High MD of extensive regions, UF, ILF SLF tracts, correlated with

low global cognition dysfunction (26, 45, 46).

- High MD of the medial temporal region, Hippocampus, ILF, CG

correlated with memory dysfunction (47, 48).

- High MD of the IFL, SFL, cerebellum, IFOF correlated with high

inflammatory parameters (30).

- High MD of the temporal region, ILF, CG, Fornix correlated with

language dysfunction (47).

- High MD of the brainstem correlated with autonomic dysfunction

during REM sleep (33).

- High MD of the SN correlated with smell loss (49).

(Continued)

Frontiers in Neurology | www.frontiersin.org 3 September 2020 | Volume 11 | Article 531993

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zhang and Burock Diffusion Tensor Imaging in PD

TABLE 2 | Continued

Measures Modality Analysis Interpretation of

abnormal indicates

Clinical correlation in PD

Radial and axial

diffusivity (RD, AD)

Diffusion tensor

imaging

All analytic types High RD: de- or

dys-myelination, changes

in the axonal diameters or

density.

Low AD: axonal injury.

High AD: unclear

- High RD/AD of the SN (7), NST (13), EC, SCR, ACR, IFOF,

PTR (39), CST, CG, CC (50) correlated with motor dysfunction

(UPDRS-III).

- High RD/AD of the basal ganglia regions correlated with non-

motor dysfunction (UPDRS except part III) (15).

- High RD of the entrance to the EC, lateral to the anterior horn

of the ventricle, and four ROIs in PFC correlated with severe PIGD

symptoms (18).

- High RD of the prefrontal cortex region correlated with executive

and visuospatial dysfunction (51).

- High RD/AD of the CG associated with global cognitive decline

(50).

- High RD of the basal forebrain Cholinergic regions correlated with

memory and executive dysfunctions (52).

- High RD of the IFL, SFL, cerebellum, IFOF correlated with high

inflammatory parameters (30).

- High RD/AD of the SN correlated with smell loss (49).

Mean kurtosis (MK) Diffusion kurtosis

imaging using

multiple b values

ROI and whole

brain

High MK: more hindered

and restricted diffusion

environment.

Low MK: more

tissue complexity

- High MK of the SN correlated with motor dysfunction (H&Y, and

UPDRS-III) (53).

- High MK of the frontal, temporal, basal ganglia, limbic, and

paralimbic regions correlated with motor deficits (UPDRS-III) (54).

Free water (FW) Reconstructed

from DTI, using

bi-tensor model

ROIs, local tracts High FW: increased

extra-cellular space can be

attributed to atrophy

- High FW of the SN correlated with motor dysfunction (UPDRS-III,

H&Y) in overall PD and control groups (55, 56).

- High FW of the SN correlated with low cognition (MoCA) in PD

and control groups (55, 56).

- High FW of the posterior SN correlated with low DAT-SBR of the

putamen (55).

Connectivity indices:

Streamline/fiber

numbers, density or

volume

Diffusion tensor

tractography,

tensor density

imaging (TDI)

Local or whole

brain tracts

Low streamline profiles:

lost axons, disrupted

neuropathway, artifact or

crossing-fiber

- Low connectivity matrix of the pallidum–putamen connection

correlated with motor dysfunction (UPDRS-III) (57).

High connectivity matrix of sensorimotor cortex–putamen

correlated with motor dysfunction (UPDRS-III) (57).

- Low connectivity metrics between bilateral SMAs correlated with

smell loss and motor dysfunction (UPDRS-III) (58).

- Low fiber count of the NST correlated with motor dysfunction

(UPDRS-III) (59).

- Low fiber density of the basal ganglia local connections

correlated with motor dysfunction (UPDRS-III) (60).

Intracellular volume

fraction (Vic),

Orientation

dispersion index

(OD)

Multiple b values

fitted to the

neurite orientation

dispersion and

density imaging

(NODDI) model

Local tracts Likely to explain neurite

density

Low Vic and OD: neuronal

loss or loss of

neuronal fibers

- Low Vic and OD of the putamen and SNc correlated with

increased PD duration and UPDRS-III (61).

Connectome Graph theory and

network

measures

Whole brain

inter-Connectivity

Likely to explain structural

connectivity according to

global efficiency, clustering

coefficient, path length,

etc.

- Low local efficiency between putamen and local regions

correlated with motor dysfunction (UPDRS-III) (62).

- Low global efficiency and clustering coefficient correlated with

decreased CSF levels of a-synuclein, and Aβ42 – abnormal

aggregation (63).

SN, substantia nigra; NST, nigrostriatal tract; CC, corpus callosum; PPN, pedunculopontine nucleus; PLIC, posterior limb of the internal capsule; FOG, freezing of gait; PFC, prefrontal

cortex; PIGD, postural imbalance and gait difficulty; CG, cingulum, or cingulate tract; UF, uncinate fasciculus; ILF, inferior longitudinal fasciculus; SLF, superior longitudinal fasciculus;

IFOF, inferior fronto-occipital fasciculus; Put, putamen; GP, globus pallidum; EC, external capsule; IC, internal capsule; SCR, superior corona radiata; ACR, anterior corona radiata; PTR,

posterior thalamic radiation; CST, corticospinal tract; SMA, supplementary motor areas; DAT-SBR, striatal binding ratios on dopamine transporter single photon emission tomography;

REM sleep, rapid eye movement sleep.

Frontiers in Neurology | www.frontiersin.org 4 September 2020 | Volume 11 | Article 531993

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zhang and Burock Diffusion Tensor Imaging in PD

DTI ASSESSMENT OF PD DIAGNOSIS

Non-hypothesis Driven, Voxel-Wise DTI
Analyses in PD
The voxel-based whole brain analysis is a computational
approach to identify to what extent in brain anatomy there
are significant group differences in DTI indices, via a voxel-
by-voxel comparison throughout the entire brain. This analysis
automatically registers individual DTI maps to a template,
which reduces the significant differences in brain anatomy
between people. Registration algorithms can be intensity-based,
for example, voxel-based analyses (VBA) (74), or tract-based,
for example, tract-based spatial statistics (TBSS) (75). The
advantages of the whole brain analyses are fully automatic,
unbiased, unsupervised, without the need of prior hypotheses.
However, the disadvantages of the whole brain approaches could
be sensitive to various artifacts and technical issues, which
include mis-registration of brain tissues, mis-classification of
tissue types, etc. All these matters may confound the statistical
analysis and either decrease the sensitivity to true DTI effects
or increase the chance of false positives. Multiple studies
have utilized non-hypothesis driven DTI analyses (Table 3) in
comparing PD with healthy controls (HC). By analyzing datasets
with a large variety of sample ages, disease severity, medication
status, and non-motor symptoms, these studies reported a
heterogeneous, multifocal pattern of abnormal DTI changes. The
complex distribution of abnormal DTI changes is consistent
with the notion that PD is a multisystem disorder involving
several neurotransmitters beyond the loss of only dopamine. A
recent review (102) summarized the various anatomical regions
where abnormal DTI values correlated with a variety of PD
symptomatology, including motor and motor phenotypes as
well as non-motor features such as cognitive, mood, olfactory
dysfunction, hallucinations/psychosis, and sleep disturbance,
such as rapid eye movement sleep behavior disorder (RBD).
It is therefore conceivable that the inconsistent findings of
DTI abnormality across previous studies reflect the clinical
heterogeneity of the study population. In this context, it will
be indeed necessary to replicate these findings in a large
population, detect imaging-clinical correlations under unique
types of dysfunction, and track how these findings may alter
during the early course of PD.

The Parkinson’s Progression Markers
Initiative (PPMI) Findings
Previous studies have highlighted a very complex picture of
DTI as a PD-specific biomarker. For example, some studies
reported that PD exhibits significantly lower FA, but some
others showed PD has higher FA than HC subjects. To address
if an FA increase or decrease is a characteristic feature of
PD, we investigated the temporal changes of FA along the
early disease course, by analyzing data from a multicenter,
longitudinal PPMI (103) cohort (from now on termed “this
study”). The methodological details of data selection, MRI
acquisition, image processing, and analyses of this study are
described in the Supplementary Material S1–S3. Overall, the
PPMI data is characterized as early diagnosed cases (diagnosed

within 2 years), drug-naïve (de-novo) including 22% patients with
onset at young adulthood (i.e., age ≤ 50 years). Figures below
depict the findings resulted from this study, as a comparison with
the numerous results published previously.

Figure 1 shows statistical T-maps of FA differences between
PD groups within year-1 (Y0) or more than 3 years (Y3), and
demographically matched HC groups. Considering the impact of
age at PD onset, the figure illustrated results of group differences
separately for young-onset group (YPD, age of onset ≤ 50 years)
and typical-onset group (OPD, age of onset > 50 years). In
comparison between YPD(Y0) and YHC, significantly higher FA
was observed in patients in multiple brain regions, including the
bilateral corticospinal tract (CST), internal capsule, striatum (the
putamen, pallidum, and caudate nuclei), anterior and posterior
and superior corona radiata, as well as in white matter areas
that lie next to the motor and supplementary motor cortices.
Further, a comparison between YPD(Y3) and YHC showed that
higher FA in patients remained significant in the internal capsule,
striatum, corona radiata, and motor and supplementary motor
white matter areas, but with a lesser extent of distribution. In the
comparison between YPD and YHC groups, no region was found
with lower-than-normal FA. On the other hand, the comparison
between OPD(Y0) and OHC showed significantly higher FA
in patients only in the bilateral CST. The comparison between
OPD(Y3) and OHC showed prominently lower FA in patients in
the SN, midbrain, thalamus, and multifocal non-motor areas of
the white matter across all major lobes, while no area was found
with higher-than-normal FA.

Figure 2 depicts temporal pattern of FA changes during the
early course of PD (from 0 to 79 months after the clinical
diagnosis was made) in the SN and CST. For comparison, FA of
the HC subjects at baseline are presented. The scatter plots are
separately illustrated for the YPD vs. YHC groups and OPD vs.
OHC groups. In CST, FA was significantly increased from the
first year through the third year for both YPD and OPD, and later
decreased to a normal level after the third year of clinical PD. In
the SN, FA reduced steadily for OPD throughout the PD course.

Despite a multifocal regional pattern of FA reduction, which
has been consistent with those commonly reported in literature,
this study presented a robust FA increase in extensive motor
areas in a large sample of the earliest and young-onset PD.
The FA increase in the CST and other motor areas is not
surprising because it has been also reported in previous studies
using PPMI data (89, 97, 98) or other pilot data (80, 85, 92).
Reduced FA is often found in neurodegenerative conditions,
such as aging, Alzheimer’s disease, and Parkinsonism, and is
believed to be attributed to demyelination, loss of axons, and
interrupted connection. It is unlikely that an FA increase is
interpreted as its opposite physiological meaning (e.g., axonal
regeneration, remyelination, redundant white matter networks)
in neurodegenerative disorders. A meta-analysis (104) revealed
that previous studies usually considered the FA increase to be due
to methodological confounding factors. For example, different
MRI scanners, field strength, and the number of diffusion
directions could result in variability of the FA measurement
and make group comparisons very difficult based on a multi-
center population. Another issue is that voxels composed of
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TABLE 3 | An overview of the non-hypothesis driven DTI studies in Parkinson’s disease.

Author,

year

Group Age Duration

(years)

UPDRS-III H&Y Medication Non-motor

syndromes

Region of FA

decrease/MD increase

Region of FA

increase/MD

decrease

Zhang

et al. (76)

25 HC

25 PD

58.4 (9.8)

58.4 (9.3)

5 (2–29) 48.0 (14.0) 1–3 Medicated w/o factory

dysfunction;

normal

cognition

[FA] bilateral cerebellar

hemispheres, right rectus

gyrus

[MD] bilateral orbitofrontal

cortices, bilateral inferior

temporal gyri

[FA] n.s.

[MD] bilateral

parietal lobes and

left MC

Rae et al.

(21)

15 HC

14 PD

64

(50–75)

65 (51–

78)

10 (4–20) 20 (14–32) 2.1

(1.5–3)

Medicated

(ON/OFF)

[FA] prefrontal and parietal

WM, the CC, and the

superior CST

[MD] prefrontal WM and

the CC

Zhan et al.

(11)

20 HC

12 PD

67.4 (8)

67.2 (8)

26.3 (12.2) Medicatd

(OFF)

[FA] superior and inferior

MC, superior postcentral

gyrus, posterior striatum,

frontal WM, and along

projections to the SMA, IC,

EC, in the proximity of the

Put, thalamus, and SN

Gallagher

et al. (22)

15 HC

15 PD

60.3 (10)

62.7 (6.5)

5.6 (5) 10 (12) 1.63 Medicated w/ executive

dysfunction

[FA] ALIC, ACR, body of

CC, SS, UF, and deep

cerebellar WM

[MD] similar and more

extensive than distribution

of FA

Kim et al.

(77)

64 HC

64 PD

63.0 (8.9)

62.9 (9)

5.3 (5.4) 2 (1-4) Medicated

(OFF)

Normal

cognition

[FA] n.s.

[MD] corticofugal tract, CG,

UF, FXST, CC, EC, SLF,

PTR, and tracts adjacent to

the precuneus and

supramarginal gyrus

Theilmann

et al. (23)

26 HC

25 PD

65.9 (8.4)

68.0 (8.9)

7.2 (4.8) 25.4 (8.9) 2.4 (0.3) Medicated

(ON)

w/ impaired

cognition

[FA] widespread, bilateral

frontal tracts, left parietal

and occipital tracts

[MD] widespread, bilateral

frontal tracts, parietal and

occipital tracts

Auning

et al. (51)

19 HC

18 PD

64.6 (6.5)

66.7 (5.1)

2.2 (1.1) 12.3 (6.8) 1.7 (0.6) Medicated Slightly

depressed

[FA] frontoparietal regions,

CC and the posterior CG

Diez-

Cirarda

et al. (78)

15 HC

37 PD

65.1 (7.0)

68.0 (6.2)

6.96 (5.6) 21.7 (10.3) 1.9 (0.5) Medicated

(ON)

w/impaired

cognition

[FA] right UF

[MD] n.s.

Jiang et al.

(79)

34 HC

31 PD

69.3 (8)

69.4 (8)

∼4 (2) ∼20 (9) ∼3 (1) Partly

medicated

w/ depression,

impaired

cognition and

self-care ability

[FA] CC, SLF, ILF, CG, optic

radiation, left IC and

subcortical arcuate fibers

Koshimori

et al. (43)

14 HC

16 PD

67.1 (5.1)

70.5 (5.6)

6.7 (4.2) 25.3 (15.3) Medicated

(ON)

w/ impaired

cognition

[FA] n.s.

[MD] larger area of bilateral

frontal and temporal

regions and smaller areas

of the left parietal and

occipital regions

Skidmore

et al. (80)

22 HC

20 PD

64 (9)

61 (13)

5–12 34 (14) 3

(1.5–5)

Medicated

(OFF)

w/ impaired

cognition,

depression

[FA] Rectal gyrus,

middle CG,

bilateral Put, left

thalamus

Vercruysse

et al. (81)

15 HC

15 PD

68.1 (6.5)

67.6 (5.6)

7.6 (5.3) 32.5 (9.1) 2.5

(2–2.5)

Medicated w/o freezing of

gait

[FA] body of CC

[MD] body of CC,

CST, pre-central

WM,

Anterior cerebellum

(Continued)
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TABLE 3 | Continued

Author,

year

Group Age Duration

(years)

UPDRS-III H&Y Medication Non-motor

syndromes

Region of FA

decrease/MD increase

Region of FA

increase/MD

decrease

Yoo et al.

(82)

18 HC

9 PD

54.4 (6.5)

59.6 (8.6)

10.6 (3.9) 14.4 (8.0) 2.2 (0.4) Medicated

(ON)

w/o impulse

control disorder

[FA] bilateral orbitofrontal,

medial prefrontal, anterior

cingulate areas

[MD] n.s.

Youn et al.

(17)

33 HC

42 PD

69.6 (5.8)

69.1 (6.4)

9.2 (4.0) 20.1 (10.6) 2.3 (0.3) Medicated

(ON)

w/ and w/o

freezing of gait

[FA] left thalamus, bilateral

orbitofrontal area, bilateral

SN

[MD] bilateral inferior

temporal cortex,

orbitofrontal cortex, insula

and left frontal area

Duncan

et al. (44)

50 HC

125 PD

65.8 (8.0)

66.0 (10.5)

0.51 (0.4) 26.8 (11)[b] 2 (1–3) Medicated

(ON)

w/ impaired

cognition

[FA] n.s.

[MD] forceps minor, CG,

SLF, ILF, IFOF, CST, CC

and IC

Price et al.

(83)

40 HC

40 PD

68.2 (4.6)

67.8 (5.4)

7.5 (5.1) 2.8 (3.4)

17.6 (10.7)

1.6 (0.8) Medicated

(ON)

w/ some

impaired

cognition

[FA] genu and body of CC,

forceps minor, ATR, IFOF

and UF

Lim et al.

(84)

25 HC

14 PD

68.5 (6.6)

69.7 (7.2)

4.4 (3.7) 22.4 (10.6) 1.6 (0.5) Medicated

(OFF)

w/o rapid eye

movement

sleep behavior

disorder

[FA] mainly in both frontal

Areas

[MD] widespread

Mole et al.

(85)

26 HC

24 PD

64.9 (8.1)

63.4 (10.8)

25 (11) 1.8 (0.4) Medicated

(OFF)

[FA] right UF [FA] CST, right

Put-SMA, bilateral

Thalamus-MC

Wang et al.

(86)

16 HC

16 PD

68.6 (2.6)

68.9 (6.0)

3.7 (2.9) 20.9 (10.6) Not

mentioned

w/o freezing of

gait

[FA] genu and body of CC,

left SCR

[MD] CC (genu, body,

splenium), right SCR, right

IC and EC, bilateral PTR,

SLF, and corona radiata

Wen et al.

(39)[a]
60 HC

54

HY1PD

87HY2PD

60.3

(10.8)

60.2 (9.6)

62.0 (9.3)

0.5 (0.5)

0.6 (0.6)

14.7 (5.7)[b]

25.1 (8.6) [b]
1

2

de-novo [FA] CC, forceps

minor, the thalamic

radiation, ACR,

SCR, and PLIC,

EC, SLF, ILF, IFOF

and CG

[MD]

aforementioned

WM tracts

Canu et al.

(87)

28 HC

28 PD

61.9 (8.3)

63.6 (6.5)

9.7 (5.4) 47.3 (8.2) 2.6 (0.5) Medicated

(ON)

w/o impulsive-

compulsive

behaviors, with

depression

[FA] n.s.

[MD] left pedunculopontine

tract and splenium of CC

Chen et al.

(88)

24 HC

18 PD

62.9 (3.7)

62.3 (4.6)

3.1 (2.8) 17.4 (8.7) Medicated

(OFF)

[FA] body of CC, fornix, left

hippocampus, and left

IFOF

Chen et al.

(24)

33 HC

24 PD

48.6 (7.8)

48.4 (6.5)

3.2 (3.0) 19.1 (13.6) 1.7 (1.0) Not

mentioned

w/ abnormal

executive and

visuospatial

function

[FA] right SLF, right

temporal WM, left inferior

and superior parietal WM,

bilateral ATR, bilateral

occipital WM, left IFOF, left

CST, left Put

[MD] left inferior parietal

WM, bilateral occipital WM,

right parietal WM, and right

posterior SLF

(Continued)
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TABLE 3 | Continued

Author,

year

Group Age Duration

(years)

UPDRS-III H&Y Medication Non-motor

syndromes

Region of FA

decrease/MD increase

Region of FA

increase/MD

decrease

Chiang

et al. (30)

67 HC

66 PD

56.8 (9.8)

58.1 (8.7)

9.4 (4.5) 22.7 (16.8) 2.0 (1.1) Medicated w/ inflammation [FA] left parietal and right

occipital ILF, left postcentral

and right parietal SLF, left

cerebellum, and left IFOF.

[MD] left ILF, right SLF, left

cerebellum, and left IFOF

Cousineau

et al. (89)[a]
179 HC

412 PD

<2 1–2 de-novo [FA] CC, CST,

nigro-subthalamo-

putaminal-

thalamocortical

connections

Georgiopoulos

et al. (90)

13 HC

22 PD

68

(65–70)

68 (67–

70)

7 (2) 20 (16–27) 2

(1.5–3)

Medicated

(ON)

w/ olfactory

dysfunction

[FA] n.s.

[MD] left CST,

bilateral PLIC,

neural tracts

adjacent to left SN

Kamagata

et al. (54)

28 HC

30 PD

66.5

(10.8)

67.6 (9.8)

6.4 (3.7) 16.1 (8.8) 2.1 (0.9) Medicated [FA] left temporal, left

limbic, and paralimbic

areas

[MD] left frontal, left

temporal, left limbic, and

paralimbic areas

Lee et al.

(91)

30 HC

21 PD

68.6 (6.0)

66.2 (6.8)

7.0 (4.2) 16.4 (5.1) 1.8 (0.5) medicated w/o visual

hallucination

[FA] the bilateral

fronto-temporo-parietal

areas, midbrain and pons

[MD] n.s.

Luo et al.

(41)

26 HC

30 PD-

TD

53.4 (10)

54.5 (8)

2.0 (1.7) 25.4 (12) 1.6 (0.5) Partly

medicated

(OFF)

[FA] n.s.

[MD] MCP, SCP, cerebral

peduncles, thalamus, IC,

and SCR, fornix, ILF,

and IFOF

Chen et al.

(92)

30 HC

30 PD

58.0 (9.3)

64.3 (10.3)

5.2 (3.6) 17.9 (9.3) 1.8 (0.9) Medicated

(ON)

No psychiatric,

neurological

disorder

[FA] olfactory tract,

hippocampal CG, SLF

(temporal part)

[FA] Corticospinal

tract

Guimaraes

et al. (50)

137 HC

132 PD

57.8 (9.4)

60.9 (9.8)

7.8 (6.4) 16 (8.2) 2.8 (1.3) Medicated

(ON)

[FA] genu, body, and

splenium of CC, IC and

EC, corona radiata, PTR,

SS, CG and SLF

Li et al. (93) 22 HC

31 PD

59.7 (8.6)

60.5 (9.3)

26.4 (10.1) 1.6 (0.5) Not

mentioned

w/ depression,

memory,

olfactory

dysfunction

[FA] bilateral ALIC, bilateral

EC, right ACR, genu, body

and pad of CC, left sagittal

layer.

Minett

et al. (94)

48 HC

93 PD

66.0 (7.9)

64.3 (10.8)

0.5 (0.0) 25.9 (1.1) 1.9 (0.1) Medicated

(ON)

Normal

cognition

[FA] n.s.

[MD] bilateral corona

radiata, IC and EC, CC,

IFOF, SFOF, forceps minor,

CG, SLD, ILF

Pietracupa

et al. (95)

19 HC

16 PD

66.7 (7.7)

69.7 (11)

9.5 (6.2) 29.8 (17) 2.5 (1.1) Medicated

(ON/OFF)

w/o freezing of

gait

[FA] n.s.

[MD] right cingulum

(angular bundle)

Rektor

et al. (96)

21 HC

20 PD

57.9 (7.2)

61.9 (7.6)

<5 1–.5 Medicated

(ON)

normal

cognition

[FA] n.s.

[MD] left SCR, SLF, EC, IC,

temporal, and

prefrontal WM

(Continued)
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TABLE 3 | Continued

Author,

year

Group Age Duration

(years)

UPDRS-III H&Y Medication Non-motor

syndromes

Region of FA

decrease/MD increase

Region of FA

increase/MD

decrease

Taylor et al.

(97)[a]
45 HC

71 PD

59.6 (11)

61.3 (9)

<2 0.7 (1.6)[b]

21.3 (8.9) [b]
Medicated

(OFF)

Normal

cognition

[FA] Midbrain,

CST, pontine and

cerebellar WM,

anterior CC, right

ACR, Left ILF,

IFOF, ACR

Wen et al.

(98)[a]
61 HC

52 PD-

TD

60.2

(10.8)

60.5 (9.6)

0.63(0.7) 0.6 (1.4)[b]

19.8 (9.5) [b]
1–2 de-novo Normal

cognition

[FA] Left ATR,

IFOF, bilateral ILF,

SLF, SS, right CST

[MD] n.s.

Guan et al.

(99)

46 HC

65 PD

57.8 (9.4)

55.5 (9.5)

4.7 (3.9) 27.1 (14.4) 2.3 (0.7) Medicated

(OFF)

[FA] right UF

[MD] right EC and forceps

minor, left CG

This

study[a]
15 YHC

25

YPD(Y0)

19

YPD(Y3)

60 OHC

104

OPD(Y0)

72OPD(Y3)

42.3 (6)

46.1 (4)

50.6 (4)

63.4 (8)

63.8 (7)

67.2 (7)

0.3 (0.2)

4.4 (0.8)

0.4 (0.2)

4.3 (0.7)

0.2 (0.4)[b]

18.0 (7.8[b]

25.2 (12)[b]

0.7 (1.5)[b]

20.5 (8.6)[b]

29.1 (12) [b]

1.6(0.5)

1.8 (0.4)

1.6 (0.5)

1.9 (0.6)

Medicated

(OFF)

Partly

Medicated (OFF)

w/o cognitive

impairment

Mildly

impaired cognition

[FA of YPD] n.s.

[FA of OPD(Y>3)] genu,

body and splenium of CC,

CG, SN, midbrain,

geniculate nuclei of the

thalamus, fronto- parieto-

occipito- temporal

multifocal non-motor areas

[FA of YPD] CST,

ALIC, PLIC,

striatum (Put,

pallidum, caudate),

PTR, SCR, white

matter adjacent to

SMA, MC and

postcentral cortex

[FA of

OPD(Y0-1)] CST

[a]Studies using PPMI data. Other studies in the list were using independent data source. [b]Measured by MDS-UPDRS version. UPDRS-III = motor exams (part-III) of the Unified

Parkinson’s Disease Rating scale (100); MDS-UPDRS-III = motor exams (part-III) of the Movement Disorder Society – sponsored revision of the Unified Parkinson’s Disease Rating

scale (101). n.s., not significant; WM, white matter; CC, corpus callosum; CST, corticospinal tract; Put, putamen; SN, substantia nigra; MC, motor cortex or precentral gyrus; SMA,

supplementary motor areas; IC, internal capsule; EC, external capsule; ALIC, anterior limb of internal capsule; ACR, anterior corona radiata; SS, sagittal stratum; UF, uncinate fasciculus;

CG, cingulum, or cingulate tract; FXST, crus of fornix or stria terminalis; SLF, superior longitudinal fasciculus; PTR, posterior thalamic radiation; ILF, inferior longitudinal fasciculus; IFOF,

inferior fronto-occipital fasciculus; ATR, anterior thalamic radiation; SCR, superior corona radiata; PLIC, posterior limb of internal capsule; GM, gray matter; SFOF, superior fronto-occipital

fasciculus; MCP, middle cerebral peduncle; SCP, superior cerebral peduncle; PD-TD, tremor dominant PD; YPD and OPD, PD onset age ≤ 50 years and > 50 years; YHC and OHC,

healthy controls age ≤ 50 years and > 50 years.

fiber populations with different spatial orientations (so called
“crossing-fibers”) may result in an average increase in FA.
There are about 90% white matter voxels containing crossing-
fibers (105). Crossing-fibers may affect an anisotropy analysis
and might lead to difficulties in interpreting FA increases
(106). In addition, a concomitant FA increase may also
be due to the variability in ROI sizes, with less or more
inclusion of voxels containing surrounding isotropic neurons
with low FA. However, the coexistence of FA increase and
FA reduction in this study is consistent with the previous
meta-analysis (107), which by accounting for heterogeneities
of 39 published articles revealed FA increase in the CST and
caudate nuclei, and FA decrease in the SN, corpus callosum,
cingulate, and temporal areas. With an increasing number of
consistent findings, an elevated FA in early PD cannot merely
be attributed to methodological confounding factors but could
instead indicate some pathophysiological correspondences of
the disease. Possible interpretations of the FA increase include
compensatory responses or excitatory reactions, which have been
proposed by many fMRI (108), perfusion (109), and glucose

metabolic (110) studies as a PD-related anatomical pattern of
motor dysfunction (PDRD). Compensatory increased structural
connectivity could be parallel to hyper-functional activation in
similar motor areas (111) and are particularly activated in young
aged PD (112). A previous study (98), also using PPMI data,
found an FA increase in the tremor dominant (TD) phenotype,
but not in the postural instability and gait difficulty (PIGD)
phenotype of PD, suggesting that the compensatory white matter
reorganization is more specific to the TD type in early PD.
Moreover, an earlier study (73) using pilot data reported a whole-
brain FA increase only in the akinetic-rigid (AR) phenotype of
PD. It is therefore highly encouraged to have more investigations
to validate whether the pattern of FA increase is selectively
associated with a specific phenotype of motor dysfunction (i.e.,
TD vs. PIGD or AR subtypes), in addition to several existing
pilot cohorts showing conflicting results (18, 19, 41, 113).
Although there is a lack of research to date, the pattern of
coexisting FA divergency in early PD is likely also explained
by the pathophysiology of inhibition (reduced white matter
integrity) through direct pathways and disinhibition (increased
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FIGURE 1 | Statistical t-maps of fractional anisotropy (FA) maps, superimposed on a T1WI, of the significant differences between the first-year PD(Y0) or after the

3rd-year PD(Y3) patients and demographically matched HC (ANCOVA p ≤ 0.001, uncorrected for multiple comparison), separated for young onset (YPD) and old

onset (OPD) groups, and demographically matched young (YHC) and old (OHC) controls. Clusters in warm colors indicate regions of higher FA values in PD than HC;

clusters in cool colors indicate the opposite. This figure is illustrative and is created by the author.

white matter integrity) through indirect pathways in the basal
ganglia (114).

Hypothesis Driven DTI Analyses in PD
DTI Changes in SN and SN Subdivisions
In contrast to the voxel-based whole-brain analysis, the
hypothesis-driven region-of-interest (ROI) analysis is often used
to identify DTI abnormalities in patients with PD in regions that
are known to be specific to the characteristic PD pathologies. SN
is one of the main sites of selective loss of dopaminergic neurons
in PD, because there is already a loss of 60–80% dopaminergic
neurons in the SN before PDmotor symptoms emerge (115, 116).
Table 4 lists 32 independent studies that analyzed DTI in the total
SN area and SN sub-regions in order to identify substantial DTI
alterations in patients with PD. These studies were included in
four previous meta-analyses and reviews (104, 131, 135, 136).
Except for two studies that reported elevated FA values in the
SN of PD, 11 studies found no FA abnormalities. The other 19
studies reported significantly reduced FA values in the entire SN.
Aside from FA, only a few studies found an MD increase in the

SN, while most others found no significant MD abnormalities,
suggesting FA is a better contributive index in identifying nigral
abnormalities in PD. However, it remains unclear whether or
not FA alterations in the entire SN (Type A ROI subdivision as
illustrated in Table 4) is sensitive to capture the dopamine loss
in PD.

Molecular and neuropathological studies (137) of PD have
highlighted that progressive loss of dopaminergic neurons is
primarily involved in the pars compacta (SNc), which contains
rich pigment neuromelanin formed by dopaminergic neurons,
and lies in the inferior and posterior part of the SN, in contrast to
the pars reticulata (SNr), which lies lateral to the SNc. Therefore,
focusing the microstructural alterations on SN subregions, such
as the SNc, would appear to be ideal and vital in identifying
dopamine loss-related abnormality. In general practice, it is
challenging to delineate the SNc on DTI image because there
are no well-defined borders of this substructure. An earlier
study (129) reported that reduced FA in the caudal and lateral
sub-regions of the SN could completely separate patients with
PD from HC with 100% diagnostic accuracy. The authors
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FIGURE 2 | Scatter plots and binominal trend lines of FA changes during the course of PD (from 0 to 72 months after PD diagnosis) in the substantia nigra and the

corticospinal tract, separated for young onset (YPD) and old onset (OPD) groups. FA values of the HC subjects are also separated into demographically comparable

groups (OHC and YHC). This figure is illustrative and is created by the author.

proposed that FA measurements in the caudal and lateral sub-
regions of the SN, presumably coinciding with the histological
described SNc location (ROI subdivision Type B1), have the
best diagnostic value for PD. However, eight subsequent studies
with the same SN subdivision (subdivision Type B) reported
discrepant findings: two studies (13, 132) likely replicated the
findings of FA reduction in the dorsal lateral sub-region of the SN
in PD; five other studies (7, 8, 55, 104, 131) found no significant
FA differences between PD and HC in any SN sub-region; and

one (130) reported elevated FA in all the SN sub-regions in
PD. Technical difficulties outlining the sub-regions may explain
these discrepant findings. To combat these issues, several studies
(9, 36, 133) have divided the SN into two or three segments
from the anterior top position through the posterior bottom
position (ROI subdivision Type C). All these studies reported
significantly decreased FA in the caudal (or inferior) segment
of SN in patients with PD as compared with HC. Among these
studies, Langley 2016 (9) used a mask of caudal zone in the
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SN that was previously established in a brain atlas based on
magnetization transfer MRI that is sensitive to neuromelanin.
This mask (i.e., the inferior portion of SN) supposedly coincides
with the neuromelanin accumulation site. Another study (134)
localized SN subfields using DTI tractography to segment the
SN into an internal and an external part (ROI subdivision Type
D), claiming that each part represents the SNc (the internal SN)
and SNr (the external SN), respectively. However, no significant
differences in FA or MD values between patients with PD and
HC were identified in any of these subdivisions. It is likely that
differences in delineating and partitioning the SN sub-regions
across DTI studies are largely responsible for the inconsistent
findings. Further methodological improvements are needed to
ultimately demonstrate that microstructural alterations in SNc
are a sensitive marker for diagnosing PD.

DTI Changes in Dopaminergic Tracts
The classical pathophysiological model of PD and recent updates
have been established based on experimental and clinical
studies (138–141), which consists of functional disabilities of
two main pathways: an “indirect circuit,” which interconnects
neocortex-putamen-external pallidum/subthalamic nucleus-SN,
and a “direct circuit,” which interconnects neocortex-putamen-
internal pallidum-SN-thalamus-neocortex. Under the conditions
of PD, the reduced dopamine (results from neuronal loss in the
SN) inhibits the indirect pathway, resulting in slow movement,
and excites the direct pathway that may lead to unwanted
movement such as resting tremor. Figure 3 (left panel) illustrates
an example of these basial ganglia pathways on DTI imaging.
Neuroanatomically, the dopaminergic pathway, meaning the
structural connection between SN and putamen, has been
assumed to contain dual effects of activities onto the indirect
and direct pathways. Detecting white matter damage to these
neuromodulator pathways could add to the understanding of
PD pathophysiology.

Diffusion tensor tractography, as an alternative DTI-based
approach, offers a possibility to detect the disrupted connections
of the dopaminergic pathway and may aid the early diagnosis
of PD. White matter tracts that connect the SN and striatum,
namely the nigrostriatal tract (NST), are considered one of the
major dopaminergic pathways, and have been shown clinically
applicable in viewing anatomy of the healthy human brain
(142), as well as targeting deep brain stimulation (DBS) (143,
144). Although diffusion tensor tractography could not reach
much detailed pathophysiologic meanings due to the limited
resolution and directional information, it might still indirectly
reflect a functional dysregulation of the dopaminergic circuits
on a neuroanatomical basis. Figure 3 (right panel) shows an
example of the nigrostriatal tractography in a healthy PPMI
subject. An early DTI study (120) measured DTI indices in 11
oval ROIs that were arrayed along a line between the SN and
caudate/putamen complex, and reported significantly lower than
normal FA values in patients with parkinsonism at all disease
stages. With the advances of DTI tractography, recent studies
(13, 59, 89, 145, 146) have assessed the FA and tract connectivity
profiles of the NST in identifying differences of nigrostriatal
connection between patients with PD and healthy subjects. Most

of these studies reported either an FA decrease (along with an
increase in RD) (13, 59) in PD or reduced tract connectivity (59,
145, 146). Some studies (13, 59, 60) also found that reductions
in FA or tract profiles are associated with the severity of motor
dysfunctions in PD patients. These consistent findings provide
a possible explanation of PD pathophysiological mechanism,
that is, the main motor manifestations of PD are related to the
diminished connectivity of this dopaminergic circuit. Although
based on a small sample, Menke et al. (147) demonstrated that
the combination of volumes of the SN and the NST could
achieve 100% sensitivity and 80% specificity for PD classification.
Taken together, these studies suggest that DTI tractography is
a promising, complementary marker of PD diagnosis. On the
other hand, a tractographic analysis of the NST also benefits
new PD treatment strategies that target the nigrostriatal pathway,
such as deep brain stimulation, dopamine graft implantation, and
infusion of glial-cell-line–derived neurotrophic factor.

Other white matter circuits that may be involved in
PD pathology are of research interests. Braak et al. (3)
suggested that Lewy bodies are mainly confined to the medulla
oblongata/pontine tegmentum and olfactory bulb/anterior
olfactory nucleus in the earliest stages of PD. Using voxel-based
analysis, two studies (90, 148) found PD is associated with
abnormal diffusivity in white matter tracts adjacent to the
olfactory sulcus. Although tractography of the olfactory tract
is practically difficult in this area, using ROI drawing, some
studies (92, 119, 122) reported low FA of the olfactory tract in
PD. Another interesting approach is the tractographic analysis in
corticothalamic connections of PD. The reduction of dopamine
in SN results in abnormal activation of connections between
the thalamus and the motor cortices. This may subsequently
lead to inhibition of basal ganglia output and dysfunction in
the cortical-subcortical circuits. Several studies have focused on
the DTI connection of the corticothalamic tracts (14, 60, 85).
However, diverse FA changes were reported in these studies.

DTI ASSESSMENT OF CLINICAL
SYMPTOMATOLOGY AND DOPAMINE
TRANSPORTER

PD is characterized as a wide variety of motor and non-
motor symptoms, while the neuropathological processes
underlying these heterogeneous symptoms are not fully
understood. Assessing imaging-clinical correlations in PD
has been considered useful for adding further insights into
neuropathological underpinnings of PD symptomatology.
Table 2 summarizes the findings of correlations between
available DTI metrics and clinical assessments.

DTI Correlates of Motor Dysfunction
A previous article (102) provided a thorough review of the
correlations between diffusivity abnormalities and PD motor
symptoms, but it lacked information about FA. Many studies,
including the analyses with PPMI data, have reported significant
correlations between decreased FA in the SN and increased
severity of the motor symptoms, which are assessed by the motor

Frontiers in Neurology | www.frontiersin.org 12 September 2020 | Volume 11 | Article 531993

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zhang and Burock Diffusion Tensor Imaging in PD

TABLE 4 | Overview of studies in comparison of FA/MD differences in the SN and SN subregions between PD and HC.

First Author, Year No. of

PD/HC

Age of

PD

Duration

(years)

UPDRS-III H&Y ROI

sub-

division

FA decrease MD increase

Peran et al. (117) 30/22 61.9 (11.1) 4.5 (± 2.5) 12 (± 6) 1.6 Type A1 SN n.s.

Du et al. (118) 16/16 4.8 (3.0) 23.1 (12.3) Type A1 SN

(contra-lateral)

n.s.

Zhan et al. (11) 12/20 67.4 (8.0) 26.3 (12.2) Type A1 SN n.s.

Nagae et al. (113) 21/20 61.1 (7.7) 5.5 (3.4) 31.4 (10)[b] 2.2 Type A1 SN (contra-,

ipsi-lateral)

SN (ipsi-,

contra-lateral)

Johsi et al. (119) 24/26 61.9 (4.9) 2.9 (2.9) 22.2 (11) 1.6 Type A1 n.s. Not tested

Chen et al. (92) 30/30 64.3 (10.3) 5.2 (3.6) 17.9 (9) 1.8 Type A1 n.s. n.s.

This study[a] 482/146[a] 61.5 (9.4) 1.9 (1.4) 23.4 (11)[b] 1.7 Type A1 SN n.s.

Yoshikawa et al. (120) 12/8 71.3 (7.7) 1–3 Type A2 SN Not tested

Chan et al. (121) 73/78 63.6 (9.8) 5.0 (± 4.1) 2.4 Type A2 SN n.s.

Rolheiser et al. (122) 14/14 56.0 (4.8) 2.5 (1.5) 1.3 Type A2 SN n.s.

Wang et al. (123) 30/30 64.5 (3.4) 5.2 (2.0) 33.6 (14.1) 2 Type A2 SN[c] n.s.

Skorpil et al. (124) 14/15 64 (43–73) 32.1 (6) 1.75 Type A2 SN n.s.

Perea et al. (125) 12/13 67.5 (4.0) 19.6 (7.1) Type A2 n.s. n.s.

Li et al. (126) 23/23 65.6

(46–77)

Type A2 SN n.s.

Kamagata et al. (61) 58/36 68.8 (7.5) 7.4 (4.4) 18.0 (8.5) 2.5 Type A2 SN

(contra-lateral)

SN (contra-,

ipsi-, bi-lateral)

Loane et al. (127) 18/14 56.8 (6.8) 3.9 (2.2) 26.2 (9.2) Type A2 n.s. n.s.

Wei et al. (12) 22/22 61.4 (9.7) <2 Type A2 SN Not tested

Gattellaro et al. (128) 10/10 63.8 (15.7) Type A3 not tested SN

Chan et al. (16) 21/19 72.0 (4.8) 2.2 Type A3 n.s. SN

Jiang et al. (79) 31/34 69.4 (8.0) 4.4 20.4 2.6 Type A3 SN n.s.

Vaillancourt et al.

(129)

14/14 57.2 (9.6) 1.3 (± 0.9) 18 (± 8.1) 1.7 Type B1 SN (posterior>

middle>anterior)

Not tested

Prakash et al. (8) 11/12 60.4 (9.3) 5.7 (4.2) 23.5 (9.5) 2.1 Type B1 n.s.(asymmetric) n.s.

(asymmetric)

Schwarz et al. (104) 32/27 64.8 (11.8) 6.4 (± 4.2) 26.1 (13.9) 1.7 Type B1 n.s. SN (all ROIs)

Lenfeldt et al. (130) 122/34 70.3 (9.7) 2.1 (± 2.0) 26.1 (10.6) Type B1 SN (all ROIs)[c] n.s.

Schuff et al. (7)[a] 153/67[a] 61.0 (10) <2 22 (9)[b] 1.6 Type B1 n.s. n.s.

Zhang et al. (53) 72/72 66.8 (5.4) 1.1 (± 0.6) 14.9 (3.9) 1.67 Type B1 SN (averaged

ROIs)

Not tested

Hirata et al. (131) 72/42 62.6 (11.8) 5.7 (± 5.5) 28.7 (14) Type B1 n.s. Not tested

Knossalla et al. (132) 10/10 57.9 (10.6) 12.9 (11) 1.4 Type B1 SNc (posterior) Not tested

Ofori et al. (55)[a] 28/20

78/56 [a]

64.7 (8.2)

61.6 (9.2)

3.4 (± 1.7)

0.7 (± 0.7)

29.8 (9)[b]

22.9 (9) [b]
Type B2

Type B2

n.s.

n.s.

Not tested

Not tested

Du et al. (133) 40/28 60.8 (8.2) 4.2 (± 4.7) 23.5 (15) 1.7 Type C1 SN (inferior) n.s.

Langley et al. (9) 20/17 60.3 (8.4) 23.2 (9) Type C1 NM SN

(inferior)

NM SN (inferior)

Scherfler et al. (36) 16/14 68.1 (6.1) 3.7 (± 3.7) 20 (10.3) 2.3 Type C2 SN

(inferior-medial)

SN (middle,

inferior-medial)

Menke et al. (134) 10/10 63.7 6.7) 6.1 (± 4.4) 2.3 Type D n.s. n.s.

ROI subdivision. Type A1: volume-of-interest of whole SN was auto-transformed from standard atlas; Type A2: manually ROI drawn in a middle slice (or a few slices) of SN; Type A3:

one ball/cubical/ellipsoid ROI manually I drawn in a middle slice on each side of SN; Type B1: Middle segment of bilateral SN: three (anterior-medial, middle and posterior-lateral), or

Type B2: two (anterior-medial and posterior-lateral) ball/cubical ROIs of SN on each side; Type C1: the whole volume of SN was divided into superior (SNr) and inferior (SNc) segments;

Type C2: the whole volume of SN was divided into superior, middle and inferior segment; Type D = SN was divided into lateral SNr (lateral part) and SNc (medial part) based on

connectivity profiles. n.s., not significant; SN, substantia nigra; NM SN, neuromelanin-portion of SN; SNr, substantia nigra pars reticula; SNc, substantia nigra pars compacta. [a]Studies

using PPMI data. [b]Measured by MDS-UPDRS version. [c]PD has significantly increased FA than HC.
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FIGURE 3 | (A) Left half-panel: basal ganglia nuclei and connections of the direct and indirect pathways for movement. Right half-panel: diffusion tensor tractography

of all fiber streamlines that path through the SN. (B) Isolation of the nigrostriatal tract (NST) between SN and inferior Put/GP in a healthy subject. Diffusion tensor

tractographic streamlines on the right hemisphere shows the nigrostriatal tract anatomically connects through brainstem, SN and Put/GP. A part of the streamlines

further connects through the Thal, and finally projects into the premotor cortex. Fiber orientation is R-G-B coded. Note, DTI tractography does not separate the

afferent and efferent directions. SN, substantia nigra; Put, putamen; GP, globus pallidus; Caud, caudate nucleus; Thal, thalamus; STN, subthalamic nuclei. This figure

is illustrative and is created by the author.

exams (part-III) of the Unified Parkinson’s Disease Rating Scale
(UPDRS) (7–12, 61, 92) or H&Y scales (113, 121). However,
some other studies failed to observe significant correlations.
One reason for the discrepant reports of previous studies is
the variation of “on-medication” or “off-medication” conditions
in real-time examination of the PD patients. Dopaminergic
treatments have substantial effects on the clinical measurement
of motor symptoms such as UPDRS, whereas they have less
effects on structural imaging such as DTI. Another complication
is that, unlike quantitative imaging measurement, UPDRS is
a subject measurement and depends on observers’ experiences
(149). Nevertheless, the consistent correlation findings from
many previous studies imply that nigral FA values could offer
an objective assessment of severity of the PD motor dysfunction,
when clinical motor measurement is not affected by real-time
treatment effects.

Investigations of the correlations betweenDTI and subtypes of
motor dysfunctions remain rudimentary. A few studies revealed
significant correlations between DTI changes and severities in
terms of freezing of gait (17, 40), risk of falling (16), severity
of postural instability and gait disturbance (PIGD) symptoms
(18), motor speed and balance (19), and the degree of tremor
(41, 42). Some studies, using DTI for classifying PD motor
subtypes (73, 95), have found differentiable group effects only,
but no substantial clinical correlations were observed in patients.
The abnormal DTI changes in specific regions are considered
useful biomarkers that characterize PD symptomology or
differentiate PD phenotypes, and thus may provide an enormous
potential for managing treatment directions of PD. However,
it should be cautioned that the diversity of the subtype

definition and the substantial instability in motor scoring
might hamper the actual imaging-clinical correlations and
interpretations. More reliable, objective measures of motor
subtypes are necessary to validate these subtype-associated DTI
changes conclusively.

DTI Correlates of Non-motor Dysfunction
Cognitive impairment is one of the major non-motor syndromes
in PD. In patients with non-demented PD, the relationships
between white matter integrity and global cognition, functions
of various cognitive domains have been investigated in
multiple studies (as illustrated in Table 2). For example, global
cognitive function measured by Mini-Mental State Examination
(MMSE) or Montreal Cognitive Assessment (MoCA) has been
found to be associated with abnormal DTI variables in the
bilateral frontal, parietal, and temporal regions, long association
tracts connecting these cortices, and the hippocampus (25,
26, 43, 45, 95). Executive dysfunctions are associated with
abnormal DTI variables widely distributed in the parietal
and frontal regions (20–23, 43–45, 51). Declined verbal and
semantic fluency and visuospatial memory are associated with
abnormal diffusion variables in the parietal and frontal regions
(23, 24, 44, 51). Worsened performance of language and
attention is associated with abnormal diffusivities in frontal and
temporal regions and the fornix (46, 47). Memory impairments
are correlated with the frontal and hippocampal diffusivity
abnormalities (45, 48, 52). Overall, the characteristic white
matter abnormalities associated with cognitive impairment
in PD can be summarized as follows: multiple regions are
involved with a heterogeneous pattern; abnormal diffusion
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variables are widely distributed in white matter adjacent to
cortices and limbic subcortices; the diffusion abnormalities
are predominantly shown as the diffusivity changes but not
the FA.

DTI correlates with other non-motor manifestations
in PD have been comprehensively reviewed in a previous
article (102). Briefly, DTI alterations in the thalamus (27),
damaged long association tracts connecting to the frontal
cortices, are associated with depression (28) and sadness
(29). Diffusion changes of the hippocampus are found to
be related to the impaired visuospatial memory, leading to
visual hallucinations (150) in the advanced stages of PD.
Diffusivity changes in the brainstem, midbrain, and pons are
associated with autonomic dysfunction during a rapid eye
movement (REM) sleep (33), and diffusion alterations of the
limbic fornix are associated with excessive daytime sleepiness
(32). However, most of these studies have been limited to
small sample sizes, resulting in a low statistical power, and
conflictions in terms of findings and interpretations. Further
replication studies are needed to elucidate these abnormalities
in more details and to truly aid the unique insights into
PD symptomology.

DTI Correlates of Striatal DAT-SPECT
Dopamine transporter single photon emission tomography
(DAT-SPECT) provides a meaningful measurement of striatal
dopaminergic deafferentation. The best quantitative assessment
on DAT-SPECT is to measure the striatal dopamine transporters
binding ratio (SBR) in the left and right putamen and caudate
nucleus. Studies have demonstrated substantial SBR signal loss in
early PD patient relative to controls (151, 152). Recent machine
learning techniques (such as using the support vector machine,
SVM) have shown that the SBR measures achieve high accuracies
(97–100%) in predicting early PD (153, 154). Additionally, the
SBR has been shown strongly correlated with the number of
dopaminergic neurons in substantia nigra (155). Pathological
data also confirmed that quantitative measures of SBR enhance
the accuracy of detecting dopaminergic neuron loss in PD (156),
suggesting that SBR might be a reliable diagnostic biomarker
of PD. Therefore, identifying a significant relationship between
abnormal DTI and diminished SBR would support the idea that
DTI alteration in the dopaminergic area is a potential marker
of PD pathology. Recent findings showed a strong relationship
between abnormal DTI [including decreased free water (FW)
(7, 55) and increased FW (157) of the SN] and decreased
putaminal SBR in PD patients. Furthermore, the progressive
reduction of nigral FA has been shown correlated with the rate
of SBR reduction over the first year of the PPMI patients (158).
Aside from a few studies (159, 160) that reported controversial
findings, the strong inter-modality correlations suggest that
the abnormal DTI changes in the SN are, at least indirectly,
associated with the loss of dopaminergic neurons in PD. Thus,
this supports the usefulness of nigral DTI measures in linking
neurodegeneration to the characterized dopaminergic deficiency
in PD.

DTI ASSESSMENT OF PD PROGRESSION
AND TREATMENT EFFECT

Although it remains a question using the DTI as a diagnostic
marker of early PD, many previous studies have reported
stable, region-specific, cross-sectional correlations between DTI
alterations in the dopaminergic regions and motor symptom
severities, suggesting the usefulness of longitudinal DTI as a
reliable biomarker for monitoring PD progression. A recent
longitudinal DTI study (127) has found increased rate of DTI
abnormalities (i.e., FA decrease and MD increase) in the SN
of PD patients over a 19.3-month follow-up. Ofori et al. (161)
reported significant FW increases in the posterior SN at 1-
year follow-up of PD. Further, the same authors’ group (162)
confirmed these longitudinal FW increases using PPMI data
(103 PD at baseline, the 1st, 2nd, and 4th year) in comparison
with unchanged FW in the control group (49 HC at baseline,
the 1st year). Another longitudinal study (158) measuring FA
and diffusivity variables of the PPMI data (122 PD vs. 50 age
matched HC at baseline and 1-year follow-up) reported that PD
has the highest annual rate of 3.6 ± 1.4% FA reduction in the
SN, followed with a moderate rate of FA reduction in the basal
ganglia, in comparison with the non-significant DTI changes in
HC. Several longitudinal DTI studies identified other vulnerable
regions over the PD progression: a recent study (163) found
PD had a greater decrease in FA and increase in MD in the
rostral brainstem, compared to controls; a 2-years longitudinal
DTI study (164) reported a decrease in FA in the putamen of
PD patients; another cohort (94) with 18-month follow-up of
PD patients with cognitive impairment revealed greater MD
increases in frontal white matter than those patients with normal
cognition. These studies have presented a similar topology
(mainly in the SN, also involved in the midbrain, thalamus, and
to some extent to the frontal white matter) of FA decrease/MD
increase over the PD course. This anatomical pattern of
longitudinal DTI changes is consistent with the regional spread
of Lewy body and the accumulation of Lewy neurites during
PD progression (5). According to the generally consistent
findings, longitudinal DTI shows a promising PD progression
marker and could be valuable for monitoring and evaluating
treatment effects.

Outcome measures that are most commonly used for
tracking the PD treatment effects are the standard UPDRS
scores (165, 166) and, sometimes, the dopamine transporter
imaging (167). A PPMI study (168) followed 423 patients from
treatment beginning to year-5 and found that dopaminergic
therapy provides significant improvements in the Movement
Disorder Society revised UPDRS (MDS-UPDRS) scores and the
SBR calculated from DAT-SPECT. However, these functional
outcome measures may appear significantly different depending
on whether they are evaluated at ON or OFF medication
status. Tracking the long-term treatment effects using DTI
measures could be promising as DTI is used to identify chronic
responses of the brain microstructure, and thus is considered
to be less affected by the ON or OFF medication status at
the imaging time. Figure 4 depicts individual trajectories of
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nigral FA values extracted from the PPMI data (134 patients
and 75 healthy subjects) over a maximum of 36 months (data
information is provided in Supplementary Material S1–S3). It
shows that the untreated PD patients exhibit on average a
steeper decline in FA than HC subjects, while the treated PD
patients maintain their respective FA levels to a decline that
begins in the 3rd year of medication. This finding supports
the fact that early PD is generally responsive to medications.
Taken together with recent PPMI findings that nigral FA is
associated with disease duration and motor rating scales (97,
169), we suggest that disease modifying effects of levodopa
treatment can be measured by longitudinal changes of nigral
FA, at least in the first few years of treatment. Further DTI
studies of PD clinical trials are needed to validate whether this is
indeed true.

DTI ASSESSMENT OF DIFFERENTIAL
DIAGNOSIS

Differentiation Between PD and Atypical
PD
It is important to diagnostically differentiate between idiopathic
PD and atypical parkinsonism (aPD), including the three
most common sporadic neurodegenerative syndromes: multiple
system atrophy (MSA), progressive supranuclear palsy (PSP),
and corticobasal syndrome (CBS), because interventional
management and prognosis could be different and difficult for
aPDs. DTI shows a substantial value in such differentiation.

Compared to idiopathic PD, various DTI studies have
demonstrated reduced FA and/or increased MD in the
pons, cerebellum, middle cerebellar peduncles (MCP),
and putamen in patients with a Parkinsonian type of MSA
(MSA-P) (88, 126, 170–174). Several cross-validation studies
(173, 175–178) reported that diffusion measurement has
73–94% sensitivity and 89–94% specificity, and 89–100%
area under curve (AUC) in discriminating MSA-P from
idiopathic PD.

PSP and CBS are neurodegenerative disorders characterized
by abnormal tau pathology in the form of globose neurofibrillary
tangles, tufted astrocytes, coiled bodies, and threads, with a
predominance of 4-repeat (4R) tau isoforms (179). Both diseases
provoke symptoms characteristic of PD. A recent review (180)
suggests that quantitative measures and visual assessments of
atrophy in the superior cerebellar peduncles (SCP) are substantial
for differentiating PSP from PD, suggesting microstructural
analysis of this key anatomymay provide supportive information.
DTI studies (174, 181–183) showed that patients with PSP
present strikingly decreased FA and increased MD in the SCP
in comparison to patients with idiopathic PD. Studies (174, 184)
examining FA of the SCP yielded 86–94% sensitivity and 88–94%
specificity for differentiating PSP from PD. Although there are
few related investigations in literature, a previous study reported
significantly decreased FA and increased MD in the posterior
callosal truncus in CBS patients in comparison to PD. Measuring
MD of the truncus yielded a 78% AUC in discriminating between
CBS and PD.

In summary, PD and aPD are differentiable according to their
unique anatomical distributions of microstructural abnormalities
detected by reduced FA and increased MD. For example,
abnormal DTI in the cerebellum and MCP may be primarily
involved in MSA-P; DTI of the SCP is mostly vulnerable in PSP;
and abnormal DTI in the supratentorial white matter regions
is primarily involved in CBS. Additional evidence that supports
these regionally specific changes in PSP and CBS are the high
progressive rate of DTI abnormalities (185) and the progressive
atrophy (186, 187) in respective key regions of PSP and CBS
observed in previous longitudinal imaging studies. For idiopathic
PD, the predominant DTI changes are characterized in the SN
and the basal ganglia.

Differentiation Between PD and Associated
Cognitive Impairment and Dementia
Cognitive impairment, one of the non-motor symptoms, is
particularly problematic in PD. Mild cognitive impairment
(MCI) occurs in approximately 30% of PD patients (188). Up to
80% of late-staged PD patients eventually develop an associated
dementia (PDD) (189, 190). In general, subtle cognitive deficits
occur in early-staged PD patients, and dementia typically occurs
in elderly patients or patients in advanced stages. With matched
stages and ages, PD patients with MCI (PD-MCI) show a
decreased FA and increased MD compared to cognitively normal
PD (PD-CN) predominantly in the frontal and interhemispheric
white matter (i.e., genu and body of the corpus callosum)
(45, 191–193). The PDD group, when compared to the non-
demented PD group, showed FA decrease and/or MD increase
in the bilateral cingulate tract (194–196), hippocampus (26),
prefrontal white matter, and the genu of the corpus callosum
(196, 197). In addition, cognitive status, measured by MMSE
or MoCA, was associated with abnormal DTI changes in the
corpus callosum, anterior cingulate, and several frontal white
matter areas (26, 195, 196, 198). Moreover, Shchuz’s study (199)
suggested that degeneration of the nucleus basalis of Meynert
measured by DTI predicts the onset of cognitive impairment,
whereas a PPMI study (200) could not confirmDTI as a predictor
for further cognitive decline.

The neuropathological basis of dementia in PD is not yet
clear. Detectable DTI alterations in the white matter connecting
to the neocortex and limbic cortex, including the frontal white
matter, the corpus callosum, cingulum, and hippocampus may
provide meaningful information in identifying dementia from
PD. Consistent with Braak’s stages V-VI (3), when α-synuclein
spreads to neocortex particularly to the frontal, temporal, and
limbic cortices, the abnormal DTI changes in these neuronal
fibers play an important role in manifesting dementia processing
in PD. On the other hand, the primary mechanisms of cognitive
impairment in PD have been manifested by atrophy and
reduced glucose hypometabolism in the cerebral cortices (e.g., the
temporoparietal cortices) and limbic cortices (e.g., the posterior
cingulate gyrus and the hippocampus) (201). White matter
burden might occur secondarily or indirectly after the gray
matter pathologies such as cortical accumulations of amyloid
beta and tau. Further, a study (202) reported that PD with early
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FIGURE 4 | Individual trajectories of the nigral FA changes over time, separately illustrated for HC, treated (medicated), and untreated (de-novo) PD groups. The thick

black lines indicate the mean trajectory of FA changes over time at each group level. Time is represented as the MRI intervals, starting from the baseline MRI through

the latest follow-up MRI. This figure is illustrative and is created by the author.

onset of MCI (onset at PD < 1 year) exhibited lower FA and
higher diffusivities in the frontal white matter than PD with late
onset of MCI (onset at PD ≥1 year). In this context, whether
the cognitive decline and dementia are manifested by age or
dopamine deficiency needs further investigations.

A few studies (25, 203) using DTI in differentiation between
PDD and Lewy body dementia (LBD) found generally similar
regions of reduced FA in both disorders. A few other studies
(51, 125) comparing PDD with Alzheimer’s disease suggested
that PDD may exhibit greater white matter abnormalities than
Alzheimer’s disease, whereas Novellin et al. (204) suggested the
controversial findings. Due to the limited number investigations
and the conflicting results, whether DTI can reliably differentiate
PDD from LBD or Alzheimer’s disease remains unknown.

DEVELOPMENTS IN DTI TECHNIQUES

Advanced Diffusion Imaging Technology
Table 5 lists a comparison of imaging parameters in conventional
DTI, PPMI, and advanced diffusion imaging techniques.
To date, DTI is not broadly applied in clinically standard
MRI examinations. In clinical practice, the conventional DTI
sequence, especially for scanning patients, has to be performed
within 10min or so. The limited scan time results in problems
such as low resolution, noise, artifacts, distortion and crossing-
fibers, and reduces qualities of the DTI image and its
quantitative measures. Technical developments and limitations
of DTI studies in clinical PD have been well-documented
in recent review papers (107, 205). New developments of

diffusion imaging techniques, such as high angular resolution
diffusion imaging (HARDI) (206) and diffusion spectrum
imaging (DSI) (207), have shown improvements including
increased signal sensitivity and resolution, gaining details of
intravoxel directions and allowing a better differentiation of the
crossing fibers or the joining fibers. These novel techniques
are primarily used for mapping human brain connectome and
brain fiber atlas building. Optimization of these sequences to
be a clinically tolerable acquisition will be necessary for their
clinical application.

Variables Beyond Traditional DTI Indices
Beyond the commonly employed DTI metrics including FA and
diffusivities, other quantitative indices that derived from special
diffusion sequence or post-image modeling provide additional
information on PD biomarker research. FW is an index
generated from bi-tensor diffusion model (208) and estimates
fractional volume of free water within a voxel without bias from
directional dependence and cellular environmental restrictions.
FW expresses atrophy-based microstructural degenerations and
is also used to correct partial volume effects on FA and MD
measures. FW has been found more sensitive than FA in
identifying abnormalities in the SN (55), significantly correlated
with UPDRS (157), and persistently increased in 1, 2, and 4
years of PD (161, 209). Diffusion kurtosis (210) is an index
modeled from multiple b-values. Mean kurtosis (MK) estimates
non-gaussian forms of diffusion and indicates microstructural
complexity such as water leakage through cell membranes and
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TABLE 5 | Comparison of DTI scan parameters in conventional DTI, PPMI study,

and advanced diffusion imaging techniques.

Scan

parameters

Conventional DTI

(employed in clinical

PD studies)

PPMI Sophisticated

techniques

(e.g., HARDI,

DSI)

Magnetic fields 1.5–3 Tesla 3 Tesla 3,7 Tesla or

greater

Number of b = 0

(s/mm2 )

Usually one (can be

multiple)

One One or multiple

Maximum b value

(s/mm2 )

800, 1,000, or 2,000 1,000 1,000, 2,000 or

more

Spatial resolution 1 × 1 × 2.5–2 × 2 × 2

mm3 (or larger)

2 × 2 × 2

mm3

3 × 3 × 2 mm3

(or larger)

Number of

directions

12–80 64 256 and more

Approximate

scan time

4–10min (or longer) 8min 20–50min (or

longer)

Tractography Yes (quality depends

on direction number)

Yes Yes, with

improved quality

Clinical feasibility Yes Yes Not yet

myelin breakdown. It resolves the adverse effects of crossing-
fibers, which may influence the accuracy the FA assessment,
and thus provide better efficiency in diagnosing early PD (53,
211). More recently, there are increasing interests in the use of
structural connectome measures to identify abnormal structural
connectivity in PD or in PD motor-subtypes through network-
based statistical analysis (57, 63, 212–217). The commonly
used indices derived from DTI, together with their biological
interpretations and clinical correlations in PD, are summarized
in Table 2. Notably, none of the aforementioned variables
are specific to PD neuropathology. Postmortem studies are
compulsory to confirm these imaging-pathological correlations.

DTI in Gray Matter
Voxel-based whole brain analyses provide fully automated
processing and become popular in DTI studies in PD. However,
these analyses have been predominantly focused on white
matter structures, because the approaches highly depend on
reliable co-registration and spatial normalization methods, while
most image registration algorisms used for DTI analyses are
established based on white matter skeleton (such as TBSS) or
FA intensity, and accompany a use of FA mask (usually sets at
absolute FA > 0.2) to constrain DTI analyses within the white
matter. These techniques provide substantial improvements of
white matter registration, but the accuracy of gray matter
registration is sacrificed. Although the motor dysfunctions in
PD could be examined through white matter in the pyramidal
and extrapyramidal motor pathways, the non-motor symptoms
are primarily driven by abnormalities in the cortical and limbic
subcortical gray matter (218). Specifically, cortical deficits can be
presented in early PD with mild cognitive impairments (219).
Therefore, identifying PD-related gray matter microstructural
abnormality would be crucial, because it can alert treatment
strategies and potentially prevent patients from developing

to dementia. Recent technical advantages in DTI processing,
including cortical surface-based (220) registration, such as
using FreeSurfer (https://surfer.nmr.mgh.harvard.edu/), as well
as gray matter skeleton-based registration, such as using
Gray matter-based Spatial Statistics (GBSS) (221, 222), permit
highly reliable DTI analyses of the gray matter. On the
other hand, diffusivity variables are considered having a better
sensitivity than FA in capturing neurodegenerative abnormalities
in gray matter (223). Using a FreeSurfer registration, and
intracortical MD measures of the PPMI data, two recent
studies (224, 225) with cross-sectional and longitudinal (within
1-year follow up) analyses have found that compared to
controls, PD patients had significantly increased MD in the
frontal and occipital cortices; among PD patients these cortical
MD changes correlated with worsened cognitive performance;
furthermore, the posterior-cortical (i.e., medial temporal and
temporo-occipital)MD significantly correlated with the increases
of serum neurofilament light chain. These DTI studies in
gray matter benefits the understanding of neuropathologic
mechanisms underlying PD, especially those accompanied with
cognitive impairments.

CONCLUSION

This review outlines the clinical utilities of the low-cost, non-
invasive diffusion tensor MRI for biomarker of diagnosing PD,
correlating PD symptomatology, assessing PD progression, and
differentiating atypical types of parkinsonism. The robustness
of the findings provides compelling evidences that DTI may
be a promising marker for monitoring PD progressing and
classifying atypical PD types. Therefore, it provides outcome
measures to clinical trials and helps clinicians find better
patient management. But the utility of DTI for diagnosing
early PD is still challenging. Another merit is that, together
with the findings on PPMI data, this review presented a
divergent pattern of temporal FA changes in the earliest
stage of PD. In particular, FA increase is pronounced in
the young onset PD and in the earliest years of PD.
These observations help to improve understanding of the
pathophysiologic basis (e.g., the compensatory mechanisms,
excitations of the inhibitory circuits) during the earliest stages
of PD.

Limitations of clinical utilities of DTI shall be mentioned:
(1) Because alterations of all DTI variables generally explain
the non-specific biological features, they only permit indirect
interpretations of the pathogenesis underlying PD. More
investigations of imaging-pathological correlations are
needed to corroborate a direct implication. Clinical DTI
scans are subjected to low resolution, crossing-fibers, noise,
and distortions. These factors affect a precise delineation
of the key substructures [e.g., SNc, olfactory bulbs and
tracts, locus coeruleus, nucleus accumbens, and small fiber
connections in the brainstem (226)] that might be specific
to PD pathology. Advanced diffusion techniques, such
as high-resolution, high filed MRI, improved distortion-
corrections, as well as solutions of fiber crossings, will lead
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to better qualities of DTI analyses, but it is rather important
to develop clinically feasible parameters upon these novel
techniques. (3) DTI variables are highly dependent on scan
parameters, such as MRI field strength, number of encoding
directions, and maximum b values. To finally benefit the
individual definition and interventions of PD, DTI measures
across different MRI centers need to be harmonized, and
standardized cutoff points for these DTI measures need to
be established.

Further research studies are required to address (1) whether
anatomically specific DTI changes are related to the core
motor symptom domains (e.g., tremor, rigidity, bradykinesia,
gait or postural problems) of PD and how DTI could be
able to distinguish these motor subtypes; (2) how DTI change
is associated with PD-risks (e.g., prodromal syndromes, risk
genes) and whether this DTI change could predict further
conversions to PD; (3) whether combining DTI analyses with
other imaging modalities (e.g., MRI volumetric and thickness
analyses, task-based and resting-state functional MRI, DAT-
SPECT and neuroimaging of dopamine or alpha-synuclein,
etc.), and clinical evaluations (227) could improve precisions in
diagnosing early PD; (4) whether the advanced DTI analyses
help the understanding of the brainstem reticular circuits and
their roles in the brainstem neurotransmitter systems and
how they impact the PD non-motor features (e.g., autonomic
syndromes, sleep difficult and sleep behavior problems, pain,
fatigue, etc.); and (5) lastly, further validation studies need to
take into account of the age of PD onset, disease duration, and
whether the non-motor features (especially cognitive deficits)
present at the same time as the motor features, whether
the PD patients are examined with MRI under an ON or
OFF medication status, as well as the history and dosage
of medication.
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