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Peripheral glutamate receptor and
transient receptor potential channel
mechanisms of craniofacial muscle pain
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Abstract

Temporomandibular joint disorder is a common chronic craniofacial pain condition, often involving persistent, widespread

craniofacial muscle pain. Although the etiology of chronic muscle pain is not well known, sufficient clinical and preclinical

information supports a contribution of trigeminal nociceptors to craniofacial muscle pain processing under various exper-

imental and pathological conditions. Here, we review cellular and molecular mechanisms underlying sensitization of muscle

nociceptive afferents. In particular, we summarize findings on pronociceptive roles of peripheral glutamate in humans, and we

discuss mechanistic contributions of glutamate receptors, including N-methyl-D-aspartate receptors and metabotropic

glutamate receptors, which have considerably increased our understanding of peripheral mechanisms of craniofacial

muscle pain. Several members of the transient receptor potential (TRP) family, such as transient receptor potential vanilloid

1 (TRPV1) and transient receptor potential ankyrin 1, also play essential roles in the development of spontaneous pain

and mechanical hypersensitivity in craniofacial muscles. Furthermore, glutamate receptors and TRP channels functionally and

bi-directionally interact to modulate trigeminal nociceptors. Activation of glutamate receptors invokes protein kinase C,

which leads to the phosphorylation of TRPV1. Sensitization of TRPV1 by inflammatory mediators and glutamate receptors in

combination with endogenous ligands contributes to masseter hyperalgesia. The distinct intracellular signaling pathways

through which both receptor systems engage and specific molecular regions of TRPV1 are offered as novel targets for the

development of mechanism-based treatment strategies for myogenous craniofacial pain conditions.
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Introduction

Craniofacial musculoskeletal pain conditions, including
those related to temporomandibular disorders (TMD),
are the most common persistent pain conditions arising
from oral and craniofacial structures. The presentation of
signs and symptoms of TMD vary and often involve the
temporomandibular joint (TMJ), nerves, tendons, liga-
ments, disks, bones, connective tissue, and muscles of
mastication.1 The pathophysiology of TMD-related pain
conditions is not well understood; it is multifactorial and
characterized by multiple symptoms involving structural
and inflammatory components.2–4 Management of the
debilitating pain associated with craniofacial deep tissues
is still largely inadequate due to its unclear etiology and
pathology, and the development of novel and effective
therapeutic interventions has been an ongoing effort in
both research and clinical communities.

Chronic muscle pain conditions, such as TMD, are
characterized by localized myalgia, tenderness upon
manual palpation, reduced force output, and limited
range of motion,5–7 all of which could result from
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sensitization of nociceptors.8 Thus, the prominent fea-
tures of persistent muscle pain conditions are spontane-
ous pain and primary mechanical hyperalgesia.
In addition, pain referral is also a common characteristic
of chronic muscle pain conditions, including TMD.7,8

To this end, there has been a steady increase in studies
over the past few decades exploring the roles of trigem-
inal nociceptors, either by exogenously administering
pronociceptive/inflammatory mediators or by inducing
tissue inflammation with various inflammatory agents.

Among many algogens and inflammatory mediators
implicated in muscle pain,9 peripheral glutamate and
its receptors are the most extensively studied in the con-
text of craniofacial muscle pain and hyperalgesia in
humans and rodents. Furthermore, there is intriguing
evidence that glutamate signaling pathways functionally
interact with transient receptor potential (TRP) ion
channels, which are another set of important players in
trigeminal nociceptor sensitization.10 Recent studies
have significantly advanced our knowledge of the
neural mechanisms of pathological craniofacial muscu-
loskeletal pain, and they offer important new insights for
the development of mechanism-based pharmacological
therapies in treating myogenous TMD. This review will
examine key findings from human and animal experi-
ments on peripheral glutamate, its receptors, and TRP
channels under acute and persistent pain conditions,
with a focus on the muscles of mastication.

Peripheral glutamate induces craniofacial

muscle pain and hyperalgesia in humans

and experimental animals

Glutamate is a pain modulator in the human central
nervous system. In the periphery, glutamate acts as
an algogen and modulates nociceptor activities.
Local application of glutamate into the periphery also
induces excitation and sensitization of nociceptors.11,12

Consistent with these electrophysiological findings, glu-
tamate injection into the hindpaw produces rapid pain
responses and edema, indicating that peripheral gluta-
mate and its receptors play an important role in noci-
ception as well as in inflammation.13 In the orofacial

muscles, locally administered glutamate activates and
sensitizes muscle nociceptors.14,15 In addition, glutamate
injected into the masseter muscle produces significantly
greater edema volume and extracellular water content
than is produced by isotonic saline control injection.15

However, glutamate administered in the TMJ and
the knee joint does not lead to gross inflammatory
signs,12,16 indicating the need for further examination
of the role of exogenous glutamate on muscle inflamma-
tion. The activity of small diameter afferents evoked by
masseter injection of glutamate in rats closely correlates

with pain reports from human subjects who received
local injections of comparable dose of glutamate in the
masseter muscle.14 Interestingly, glutamate injection in
different craniofacial muscles produces different subjec-
tive pain levels. A greater subjective pain level is experi-
enced upon injection into the temporalis muscle than
upon injection into the masseter muscle.17 In the same
experiment, less pain was induced by injection in neck
muscle than in masseter muscle.18 Pain responses
evoked by masseter injection of glutamate in healthy
subjects are similar to pain experienced by persistent
myofascial TMD pain patients, with respect to sensory-
discriminative and affective-unpleasantness compo-
nents.19 Glutamate injection into latent myofascial trigger
points in humans produces greater pain intensity, greater
area of referred pain, and increased mechanical hyperal-
gesia than injection into nontrigger point control sites.20

These results suggest that exogenous glutamate can be
noxious in experimental animals and humans.

Endogenous glutamate also produces and modulates
pain under pathophysiological conditions. The source of
interstitial glutamate is not entirely clear, and neuronal
and nonneuronal sources could contribute.21–23 It is pre-
sumed, however, that peripheral terminals of primary
afferents could be a dominant source. Approximately
80% of trigeminal primary afferents express vesicular
glutamate transporter,24 suggesting that a majority of
trigeminal ganglia (TG) afferents are glutamatergic.
Electrical stimulation of sensory afferents or chemical
activation of nociceptors by capsaicin or formalin
increases glutamate concentration in tissue,23,25,26 sug-
gesting neural release of glutamate. Injection of botuli-
num toxin into the temporalis muscle produces a rapid
decrease in interstitial levels of muscular glutamate,27

suggesting constitutive release of glutamate as well.
Inflammation increases glutamate release in preclinical
models of osteoarthritis.28,29 Interestingly, masseter
inflammation induced by complete Freund’s adjuvant
(CFA) in rats upregulates the vesicular glutamate trans-
porter 2 gene in rat TG,30 indicating that glutamate
release is upregulated following tissue inflammation.
Acid injection into rat masseter muscle produces ectopic
discharge of muscle spindle afferents, which can cause
the release of glutamate from spindle afferent terminals
to affect adjacent nociceptors.31

In humans, tissue injury and inflammation also pro-
duces sustained increases of glutamate, as shown in
patients with chronic knee joint or tendon pain.32,33

Patients with trapezius myalgia show greater serotonin
and glutamate levels in trapezius muscle.34–36 Subjects
with chronic widespread pain, including fibromyalgia,
show increased glutamate concentrations in trapezius
muscle.37 Myofascial TMD patients show increased
interstitial glutamate in masseter muscle, but not
plasma glutamate, compared to healthy subjects.38
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Interstitial glutamate concentration in masseter muscle

of TMD patients appears to be affected by injury or

insult. Acute pain due to the insertion of microdialysis

needle to masseter muscle results in higher levels of inter-
stitial glutamate in myofascial TMD patients than in

healthy controls.39 Masseter injection of hypertonic

saline increases the release of glutamate.40 Monosodium

glutamate ingestion induces a greater increase of intersti-

tial glutamate and spontaneous pain in masseter muscle

of myofascial TMD patients than in healthy subjects.41

However, not all conditions are associated with increases
in the interstitial glutamate level in orofacial muscles.

Tooth clenching does not induce the release of glutamate

in masseter muscles of either myofascial TMD patients or

healthy subjects.42 Additionally, acidic saline injection

into masseter muscle does not increase glutamate release

in healthy subjects.43

Glutamate receptors in primary afferents

mediate masseter pain and hyperalgesia

Glutamate acts via N-methyl-D-aspartate (NMDA)

receptors, 2-amino-3–(3-hydroxy-5-methyl-isoxazol-4-yl)

propanoic acid (AMPA) receptors, kainate receptors,
and metabotropic glutamate receptors (mGluRs). Since

all of these receptors are expressed in the peripheral

terminals of small diameter cutaneous afferents,44,45 exog-

enous or endogenous glutamate could evoke or modulate

nociception through these receptors. The role of gluta-

mate receptors and endogenously released glutamate is

suggested in a series of studies using antagonists of glu-
tamate receptors. Masseter injection of MK801, an

NMDA receptor antagonist, attenuates nocifensive

behaviors in lightly anesthetized rats, reduces masseter

muscle swelling, and decreases c-fos expression in the sub-

nucleus caudalis (Vc) induced by the masseteric injection

of mustard oil.46,47 Masseter injection of MK801 also

alleviates nocifensive responses during masseter infusion
of hypertonic saline, which is accompanied by a reduction

in c-fos upregulation in Vc.48 Pretreatment of masseter

with AP5, another antagonist of the NMDA receptor,

attenuates development of CFA-induced reduction in

bite force, but posttreatment does not reverse the hyper-

algesia.49 The blockade of NMDA receptors in the mas-
seter muscle also decreases glutamate-evoked masseter

afferent activities.50 Consistently, in humans, pain and

mechanical hyperalgesia induced by masseter injection

of glutamate is attenuated by treatment of masseter

with ketamine, which blocks NMDA receptors.51 These

results indicate that peripheral NMDA receptors contrib-

ute to inflammation, nociception, and hyperalgesia in
masseter muscles.

Peripheral mGluRs are also implicated in masseter

hyperalgesia. R,S-3,5-dihydroxyphenylglycol (DHPG),

a group I mGluR agonist, produces mechanical hyper-
algesia in masseter muscle, which is prevented by
pretreatment of the masseter with 2-methyl-6-(phenyle-
thynyl)pyridine hydrochloride (MPEP), a selective
mGluR 5 antagonist, but not by 7-(hydroxyimino)cyclo-
propa[b]chromen-1a-carboxylate ethyl ester, a selective
mGluR 1 antagonist.52,53

Transient receptor potential vanilloid 1 and

transient receptor potential ankyrin 1

contribute to pain and hyperalgesia from

craniofacial muscles

Microneurographic recordings in human peroneal nerve
from muscles show that intramuscular injection of cap-
saicin produces cramping pain and activates mechano-
sensitive group III (thinly myelinated) and group IV
(unmyelinated) fibers.54 Capsaicin injection into masse-
ter muscle also produces intense deep pain sensations
and inhibits motor unit firing.55 Transient receptor
potential vanilloid 1 (TRPV1), a receptor for capsaicin,
is expressed in a small subpopulation of small to
medium-diameter masseter afferents in rat TG.56,57

TRPV1 and transient receptor potential ankyrin 1
(TRPA1) are expressed in approximately 25% and
10% of masseter afferents.56 Direct injection of capsaicin
activates mechanosensitive group IV nociceptors in gas-
trocnemius muscle in rats.58 Capsaicin or mustard oil
injection into rat masseter muscle produces characteris-
tic nocifensive responses followed by the development of
mechanical hyperalgesia of masseter muscle in lightly
anesthetized rats.56,59,60 These capsaicin- and mustard
oil-evoked nociception and hyperalgesia are inhibited
by TRPV1 and TRPA1 antagonists, respectively, sup-
porting a role of TRPV1 and TRPA1 in acute and path-
ological pain responses in the masseter muscle.56

Preclinical studies using various muscle pain models
further support the contribution of TRPV1 and TRPA1
in muscle pain. Hydrogen peroxide injected into gastroc-
nemius muscle in mice produces ongoing pain, assessed
by guarding behaviors and conditioned place aversion,
which is attenuated by pharmacological and genetic
knockout of TRPA1.61 TRPV1 antagonist reduces
exercise-induced muscle hyperalgesia in rats.62 In rat
masseter muscle, CFA-induced mechanical hyperalgesia
is inhibited by the injection of TRPV1 or TRPA1 antag-
onists.30,63 In mice, genetic and pharmacological
inhibition of TRPV1 or TRPA1 antagonist attenuates
CFA-induced spontaneous pain from masseter muscle,
assessed by mouse grimace scale and conditioned place
preference.64,65 Simultaneous inhibition of TRPV1 and
TRPA1 produces greater conditioned place preference
than the respective inhibition, suggesting additive
inhibitory effects on ongoing pain.64 Since masseter
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inflammation increases the expression of TRPV1 and

TRPA1 in TG,30,63 upregulation of TRPV1 and

TRPA1 likely contributes to the hyperalgesia. These

results suggest that activation of TRPV1 and TRPA1
mediates spontaneous pain and mechanical hyperalgesia

in a rodent model of masseter inflammation. It is likely

that inflamed masseter muscle increases levels of endog-

enous ligands of TRPV1 and TRPA1. For example,

9(S)-hydroxyoctadecadienoic acid (HODE) or 13(S)-

HODE are oxidized linoleic acid metabolites that have

been suggested to be endogenous ligands of TRPV1.66

TRPA1 is activated by multiple endogenous electro-

philes such as hydrogen peroxide.61,67 CFA-induced

spontaneous pain from masseter muscle is reduced in

mice by scavenging the oxidized linoleic acid metabolites

or hydrogen peroxide.65

These findings indicate that the TRPV1-expressing
population of nociceptors are likely primary mediators

of masseter inflammation. Supporting this notion, chem-

ical ablation of TRPV1-expressing primary afferents

using resiniferatoxin injected into Vc or chemogenetic

inhibition of TRPV1-lineage masseter afferent terminals

attenuates both development of spontaneous pain and

reduction in bite force following masseter inflamma-
tion.65 Furthermore, ablation of neurokinin1 receptor-

expressing projection neurons in Vc also produces the

same effects. In contrast to the inhibitory effects of

ablating TRPV1-expressing afferents, the inhibition of

TRPV1 molecules only modestly reversed decreased

bite force following CFA injection into masseter
muscle and the inhibition of TRPA1 did not affect bite

force at all.64,65 Although the source of this discrepancy

is unknown, it is hypothesized that unknown molecules

expressed in TRPV1-positive masseter afferents mediate

bite-evoked nociception under masseter inflammation.

Masseter inflammation influences expression of multiple

genes from TG implicated in pain processing,68 and
further investigation of their contribution to muscle

hyperalgesia, especially in bite-evoked pain, is necessary.

Activation of TRP channels leads to

glutamate receptor signaling

The signaling through glutamate receptors and TRP

channels are important mediators of craniofacial

muscle pain. Interestingly, these two pathways intersect

in the trigeminal nociceptive mechanisms. It has been

suggested that interactions of glutamate receptors and

TRPV1 occur in trigeminal deep tissue afferents includ-

ing TMJ and masseter muscle nociceptors.69,70 Deep
tissue injection of glutamate sensitizes trigeminal noci-

ceptors to enhance the activation of deep tissue afferents

and Vc neurons by subsequent capsaicin injection.69,70

In contrast, deep tissue injection of capsaicin reduces the

activation of Vc neurons and prevents glutamate-
induced activation of deep tissue afferents.69,70 Results
in humans are consistent with this mode of interaction
between glutamate receptors and TRPV1 signaling:
Preceding glutamate administration into masseter
causes sensitization to subsequent administration of cap-
saicin resulting in increasing pain levels and electromyo-
graphic activities of the masseter muscle,71,72 whereas
preceding capsaicin administration is associated with a
desensitization of nociceptors to subsequent injection of
glutamate.72 Injection of hot or acidic glutamate solu-
tion produces greater pain,73,74 which also suggests heat-
and acid-mediated regulation of TRPV1.10

Activation of TRP channels in nociceptors can induce
the release of neuropeptides and glutamate from periph-
eral terminals at the site of injection to produce neuro-
genic inflammation. TRPV1 is a Ca2þ-permeable ion
channel, and its activation in primary afferents induces
Ca2þ influx to produce Ca2þ-dependent vesicular
release. This process is independent of voltage-
dependent sodium channel activation or action potential
firing75 and is consistent with the lack of effect of local
anesthetics on capsaicin-induced inflammation of
TMJ.76 Capsaicin injection into masseter muscle
increases baseline discharge of Vc neurons and masseter
nerve sensitivity.77 Masseter injection of MPEP, a
mGluR5 antagonist, prevents capsaicin-induced hyper-
sensitivity of masseter nerve.77 In skin, capsaicin injec-
tion increases glutamate release in subcutaneous tissue,
which can be attenuated by treatment with a mixture of
antagonists against NMDA, AMPA, and mGluR1/5.25

The same mixture of antagonists attenuates capsaicin-
induced thermal hyperalgesia.25 Similarly, an NMDA
receptor antagonist inhibits capsaicin-induced release
of neuropeptides in spinal cord,78 and NMDA-
mediated release of substance P in central afferent ter-
minals is eliminated by capsaicin-induced ablation of
nociceptive afferents.79 These reports suggest that release
of neuropeptides from TRPV1-expressing afferent termi-
nals is enhanced by positive feedback from peripheral
glutamate receptors. Likewise, nocifensive behavioral
and neuronal activation in Vc by mustard oil, an agonist
of TRPA1, is also reduced by NMDA receptor antago-
nist.46,47 Overall, these results indicate that the activa-
tion of nociceptive terminals by TRP channel agonists
can induce the release of glutamate from peripheral ter-
minals and the activation of peripheral glutamate recep-
tors, which subsequently produces further release of
glutamate and peripheral sensitization. This interpreta-
tion appears to be contradictory to the desensitizing
effects of capsaicin injection on glutamate-induced
responses.69,70,72 Although the source of discrepancy is
not clear, it is possibly due to a lack of understanding of
the different functional consequences of TRPV1 activa-
tion by endogenous ligands versus capsaicin. Strong
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activation of TRPV1 by capsaicin produces Ca2þ-depen-
dent desensitization of TRPV1 and afferent terminals,

whereas persistent low-level TRPV1 activation may con-
tribute to long-lasting pain.80,81 The mechanisms of TRP

channel activation leading to glutamate receptor regula-

tion need to be further determined.

Activation of glutamate receptors

regulates TRP channel signaling

NMDA and AMPA receptors, as well as mGluR5 are

excitatory receptors, and their activation in nociceptive
afferents likely leads to the activation of nociceptors.

Interestingly, however, mechanical hyperalgesia of mas-

seter muscle induced by the injection of NMDA is pre-

vented by pretreatment of the masseter with TRPV1

antagonist.82 NMDA receptor subunits and TRPV1
are colocalized in masseter afferents, and NMDA treat-

ment sensitizes capsaicin responses in dissociated TG

neurons.82 Masseter injection of NMDA increases

serine phosphorylation of TRPV1, which is dependent
on calmodulin-dependent kinase II and protein kinase C

(PKC), but not protein kinase A (PKA).82 In particular,

phosphorylation at TRPV1 S800 is increased by NMDA

in dissociated TG neurons.83 This effect is dependent on
PKC and A-kinase anchoring protein 150 (AKAP150),83

which is a scaffolding protein for harboring PKC and

TRPV1.84 In addition to NMDA, mechanical hyperal-

gesia of masseter muscle induced by masseter injection

of DHPG, an agonist of mGluR1/5, is also prevented by
the treatment of masseter muscle with TRPV1 antago-

nist.85 mGluR1/5 can cause TRPV1 sensitization in pri-

mary afferents through multiple pathways. For example,

DHPG directly activates TRPV1 by inducing de novo
synthesis of diacylglycerol.86 DHPG has also been

shown to decrease capsaicin-induced desensitization of

TRPV1 through PKA by inducing de novo synthesis of

prostaglandin E2.87 These mechanisms do not require
the involvement of PKC, whereas DHPG-induced

mechanical hyperalgesia of masseter muscle is attenuat-

ed by the pharmacological inhibition of PKC or by dis-

rupting the interaction of TRPV1 with AKAP150.85

DHPG-induced sensitization of capsaicin-evoked cur-
rents depends on PKC but not PKA. Interestingly,

TRPV1 antagonist prevents mechanical hyperalgesia of

masseter muscle produced by the injection of PKC acti-

vator but not by PKA activator.85 Masseter injection
of DHPG induces PKC-dependent phosphorylation of

TRPV1 S800, suggesting that TRPV1 S800 phosphory-

lation is a common site of convergence in pathways of

glutamate-induced regulation of TRPV1. TRPV1 S800 is
located within the carboxy-terminal domain, which

includes multiple regulatory domains for TRPV1 func-

tion.81 TRPV1 S800 is a PKC-specific phosphorylation

site that produces functional sensitization upon activa-
tion, which can be mediated by multiple modalities of
agonistic stimuli such as capsaicin, heat, and proton.88

Therefore, glutamate receptor-mediated regulation
of TRPV1 through PKC-induced phosphorylation of
S800 could be implicated in hyperalgesia. Indeed, a
recent study determined a causal role of TRPV1 phos-
phorylation to masseter hyperalgesia using a knock-in
mouse line in which mouse TRPV1 S801, an orthologue
residue of rat TRPV1 S800, is mutated to alanine pre-
venting PKC-induced phosphorylation of the residue.89

Spontaneous pain following CFA injection into masseter
muscle is reduced in the knock-in mice. Masseter injec-
tion of TRPV1 antagonist further decreases spontaneous
pain in both knock-in and wild-type (WT) genotypes,
and the extent of inhibition is greater in WT than
knock-in, suggesting that CFA-induced spontaneous
pain is mediated by TRPV1 S801 phosphorylation-
dependent and independent mechanisms.89

Masseter hyperalgesia induced by CFA or the injec-
tion of NMDA is also attenuated by TRPA1 inhibitor,
suggesting interaction of NMDA receptor and TRPA1
in masseter afferents.63 Although mechanisms underly-
ing glutamate receptor and TRPA1 are not known, and
need to be determined, it is noteworthy that TRPA1
phosphorylation also contributes to nociception.90

Conclusions and future studies

Glutamate receptor and TRPV1 channel mechanisms in
craniofacial muscle pain are summarized in Figure 1.
Based on the current literature discussed herein, we
hypothesize that intricate interactions of glutamate
receptors and TRP channels contribute to the develop-
ment and maintenance of craniofacial muscle nocicep-
tion and hyperalgesia. In our model, glutamate receptors
and TRP channels interact bi-directionally to modulate
trigeminal nociceptors. Glutamate receptor activation
leads to PKC-dependent phosphorylation of TRPV1,
which contributes to hyperalgesia. Despite the advances
in understanding of these mechanisms, questions remain.
Activation of glutamate receptors does not directly acti-
vate TRP channels; therefore, endogenous ligands for
TRP channels must participate. It will be critical to
determine if putative endogenous ligands for TRP chan-
nels are increased in craniofacial muscles under chronic
muscle pain conditions, including TMD. It will be also
interesting to determine if glutamate receptor-TRP
channel interactions contribute to hyperalgesia in other
craniofacial muscle pain models such as prolonged
mouth opening.91 Importantly, glutamate-evoked mas-
seter pain was greater in women than in men.14,17

Masseteric injection of ketamine attenuates pain and
mechanical hyperalgesia evoked by masseter injection
of glutamate in men, but this effect was not observed

Chung and Ro 5



in women.51,92 Estrogen upregulates NMDA receptor
subunits, which may lead to sex differences in NMDA-
evoked masseter afferent discharge.93 It will be of
interest to determine sex differences in glutamate-TRP
interaction in trigeminal muscle nociceptors. Better
understanding of peripheral mechanisms of craniofacial
muscle pain conditions should help us to develop better

strategies for the management of chronic craniofacial
muscle pain. For example, manipulation of TRP channel
phosphorylation or disruption of glutamate receptor-
TRP channel interactions can attenuate masseter hyper-
algesia. Functional silencing of masseter nociceptors
may also provide effective treatment for widespread
craniofacial muscle pain.

Figure 1. Model of glutamate receptor-TRP channel mechanisms in craniofacial muscle hyperalgesia.
Two TRPV1-expressing afferent terminals within masseter muscle are diagrammed. TRP channels contribute to both glutamate release
from masseter afferents and their sensitization. Although glutamate release (top) and sensitization (bottom) are diagrammed in separate
afferent terminals for clarity, these two processes should occur in the same afferent terminals. [1] Injury or inflammation of craniofacial
muscle should produce various chemical substances that either directly activate nociceptive TRP channels (e.g., oxidized linoleic acid
metabolites or hydrogen peroxide) or [2] sensitize TRPV1 through the activation of protein kinases (e.g., nerve growth factor (NGF),
prostaglandin E2 (PGE2), or bradykinin). [3] Activation of TRP channels mediates calcium influx to induce glutamate release from afferent
terminals. [4] Released glutamate activates metabotropic or ionotropic glutamate receptor, which further enhances glutamate release
providing positive feedback. [5] Released glutamate should act in an autocrine or paracrine manner to activate glutamate receptors.
Glutamate receptor activation leads to activation of PKC, [6] which in turn phosphorylates TRPV1, especially S800 in rats. [7] Receptor
activation by inflammatory mediators leads to signaling through PKC, PKA, and PI3K to further sensitize TRPV1. [8] TRPV1 integrates the
effects of endogenous ligands, signaling from inflammatory mediators and glutamate receptors to eventually produce masseter
hyperalgesia.
TRP: transient receptor potential; mGluR: metabotropic glutamate receptor; NMDAR: N-methyl-D-aspartate receptor; TRPV1: transient
receptor potential vanilloid 1; TRPA1: transient receptor potential ankyrin 1; NGF: nerve growth factor; PGE2: prostaglandin E2; PI3K:
phosphoinositide 3-kinase; PKA: protein kinase A; PKC: protein kinase C.
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