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ABSTRACT

N6-methyladenosine (m6A) is the most pervasive
modification in eukaryotic mRNAs. Numerous bio-
logical processes are regulated by this critical post-
transcriptional mark, such as gene expression, RNA
stability, RNA structure and translation. Recently,
various experimental techniques and computational
methods have been developed to characterize the
transcriptome-wide landscapes of m6A modification
for understanding its underlying mechanisms and
functions in mRNA regulation. However, the exper-
imental techniques are generally costly and time-
consuming, while the existing computational models
are usually designed only for m6A site prediction in a
single-species and have significant limitations in ac-
curacy, interpretability and generalizability. Here, we
propose a highly interpretable computational frame-
work, called MASS, based on a multi-task curricu-
lum learning strategy to capture m6A features across
multiple species simultaneously. Extensive compu-
tational experiments demonstrate the superior per-
formances of MASS when compared to the state-of-
the-art prediction methods. Furthermore, the contex-
tual sequence features of m6A captured by MASS
can be explained by the known critical binding mo-
tifs of the related RNA-binding proteins, which also
help elucidate the similarity and difference among
m6A features across species. In addition, based on
the predicted m6A profiles, we further delineate the
relationships between m6A and various properties
of gene regulation, including gene expression, RNA
stability, translation, RNA structure and histone mod-
ification. In summary, MASS may serve as a useful
tool for characterizing m6A modification and study-

ing its regulatory code. The source code of MASS
can be downloaded from https://github.com/mlcb-
thu/MASS.

INTRODUCTION

RNA modification is an evolutionarily conserved modifi-
cation closely associated with various biological processes
and human diseases (1–5). There exist over 160 types of
known RNA modifications to date, including the modifica-
tions in mRNAs, tRNAs, rRNAs and noncoding RNAs (6).
Among them, N6-methyladenosine (m6A) is the most abun-
dant mRNA modification and has emerged as a critical epi-
transcriptomic factor in diverse biological processes, such as
RNA splicing, translation and RNA stability maintenance,
immune response, DNA damage repair and development
(7–10). N6-methyladenosine is generated under the cat-
alyzation of a methyltransferase complex (also known as an
m6A writer) composing of METTL3, METTL14, WTAP,
RBM15, KIAA1429 and ZC3H13. To participate in vari-
ous biological processes, m6A is recognized and bound by
several RNA-binding proteins (also known as m6A read-
ers), including YTHDC1, YTHDC2 and YTHDF3. An
m6A modification can also be removed by several demethy-
lases (also known as m6A erasers), including FTO and
ALKBH5. A variety of m6A writers, readers and erasers
determines the diversity of the functions of this modifica-
tion. To identify transcriptome-wide m6A profiles, several
experimental techniques combined with next-generation se-
quencing have been developed, such as MeRIP-seq, m6A-
seq and miCLIP-seq, which can detect m6A sites at single-
nucleotide resolution (11–13). Recently, several new meth-
ods based on the Oxford nanopore direct RNA sequenc-
ing reads, such as Tombo and Epinano, have also been
used to detect m6A sites (14–17). Significant progress has
been made in characterizing m6A functions with the aid
of these experimental pipelines. However, these experi-
mental techniques are generally too expensive and time-
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consuming to be applied to large genomes of eukaryotes.
In addition, these high-throughput experiments may miss
a certain amount of m6A sites due to biases caused by
read mapping and the employed probing methods. On the
other hand, computational methods provide a relatively
cheap and effective tool complementary to current high-
throughput experimental profiling techniques. These in sil-
ico methods are able to not only predict m6A sites but
also capture the underlying sequence patterns related to this
modification.

Recently, machine learning has been applied in solving
many computational biology questions, such as the iden-
tification of RNA-binding protein (RBP) targets (18), the
prediction of translation stalling (19) and the detection of
single-cell DNA methylation states (20). A number of com-
putational methods have also been proposed to character-
ize the sequence features of m6A modification. For exam-
ple, Chen et al. proposed iRNA-Methyl, a machine learn-
ing based method that utilized a support vector machine
(SVM) framework to identify m6A sites (21). Zhou et al.
used a random forest based model to identify mammalian
m6A sites, which achieved an improved performance us-
ing novel features extracted from the contextual sequences
of the modification sites (22). Wei et al. proposed an en-
semble learning based method that trained several SVMs
with three different types of feature descriptors, includ-
ing physico-chemical information, position-specific infor-
mation and position-specific k-mer nucleotide propensi-
ties (23). Zhang et al. applied a convolutional neural net-
work (CNN) model combined with a recurrent neural net-
work (RNN) to capture both spatial and temporal features
of RNA sequences (24), which can also provide useful clues
into understanding the predicted m6A sites via the features
captured by the employed CNN. Although these computa-
tional methods have been shown capable of identifying a
number of novel m6A sites, they are quite limited in accu-
racy, interpretability and generalizability. Moreover, most
of the existing prediction frameworks are only designed
for single species, which means they cannot be directly ap-
plied to investigate the similarity and difference of m6A sites
among multiple species. Previous studies have shown that
the landscapes of m6A are highly conserved between hu-
man and mouse (12), and the evolution of m6A is processed
in parallel with that of consensus RNA sequence motifs
in primates (2). Therefore, identifying interpretable features
among multiple species may provide useful insights into un-
derstanding the biological roles of m6A modification and
discover potential regulatory factors that are shared among
different species. In addition, although it has been observed
that most of the detected m6A sites contain the consensus
motif DRACH (where D = A, G or U, R = A or G, H =
A, C, or U) (13,25,26), only a small fraction of the DRACH
motifs in the transcriptome can be methylated. Hence, cap-
turing the sequence patterns around the core DRACH mo-
tifs associated with m6A modification may offer novel in-
sights into its regulatory mechanisms.

To overcome the shortcomings of the existing m6A pre-
diction methods, further characterize multiple-species m6A
sites and decipher the biological functions of m6A modifi-
cation, we propose a multi-task curriculum learning based
model, called MASS (M6A predictor for multiple SpecieS),

to predict m6A sites across different species. Multi-task
learning (27–29) is a learning strategy that trains a group
of related tasks simultaneously. Such a training strategy
enables the learning model to generalize better and share
information among different tasks and has been success-
fully used in a variety of learning problems (30–32). Natu-
rally, the identification of m6A sites across different species
can be defined as a multi-task learning problem. However,
the variation of genome sizes across different species gen-
erally makes it difficult to train multiple models simulta-
neously (33,34). To address this problem, we trained all
the tasks sequentially following the strategy of curriculum
learning which is a type of learning starting from rela-
tively easy tasks and gradually increasing task difficulty
(35,36). Such a curriculum learning strategy can be used
here to alleviate the influences of the variances in genome
sizes. Performance evaluation on data from the literature re-
vealed that our model outperforms the state-of-the-art pre-
diction methods, with at least 5% higher performance in
terms of the area under the precision-recall curve (AUPRC)
score. In addition, the sequence features captured by our
model can be well-mapped to the known binding motifs of
m6A-associated RBPs, which indicates that our model can
help characterize the complex mechanisms and functions of
m6A. Moreover, we screened for important conserved genes
enriched with m6A sites across different species, which may
provide useful molecular clues concerning m6A functions.
Our downstream analyses also revealed that MASS can be
applied to characterize properties of essential biological fac-
tors or processes associated with m6A, such as gene expres-
sion, RNA stability, RNA structure, translation, and his-
tone modification. To our best knowledge, MASS is the first
attempt to extract shared sequence features across multiple
species in the prediction of m6A sites. Our results demon-
strated that MASS can serve as a reliable tool to character-
ize m6A sites and offer novel insights into the underlying
regulatory mechanisms of m6A.

MATERIALS AND METHODS

Datasets

Three benchmark datasets were used in our computational
tests. The first one, denoted as sramp17, was a mammalian
dataset downloaded from the Ensembl database (http://
www.ensembl.org) according to the supplementary data of
SRAMP (22). Human and mouse data from this dataset
were used to evaluate our model on single species. The sec-
ond dataset, denoted as nano20, was adopted from the
nanopore direct RNA sequencing data collected in (14).
Here, the original nanopore sequencing signals were 1D nu-
meric vectors rather than modification marks on raw se-
quences. To make them suitable for our model, we processed
them according to the protocol described in (16) and con-
verted them into RNA modification data in the same for-
mat as in sramp17. The third dataset was downloaded from
RMBase v2.0 (http://rna.sysu.edu.cn/rmbase/), which con-
tains the m6A annotations of seven species, including ze-
brafish, human, mouse, rhesus, rat, chimpanzee and pig.
These data covered a dozen different cell lines or tissues
(including HepG2, brain, HEK293T, GM12878, HeLa,
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Figure 1. An overview of MASS. (A) Schematic illustration of the pipeline. Samples from multiple-species were first encoded by a one-hot encoder and then
fed into our multi-task learning model sequentially. The sequence of species was determined by the evolutionary distances based on the phylogenetic tree.
The multi-task learning model is composed of the shared feature extractor and several splitting classifiers, each corresponding to the prediction task of a
species. BN: batch normalization layer, BLSTM: bi-directional long short term memory units, Conv: convolutional layer, Dense: fully connected layer. (B)
Preparation of the training data. Since there are many more negative samples (unmethylated sites) than positive samples (methylated sites), we constructed
the balanced sample set by oversampling positive samples. The balanced sample set was then divided into mini-batches to train the model.

U2OS, H1A, H1B, NPC, ESC, LCL, CD8T, MT4, A549,
MONO-MAC-6, Huh7, Jurkat, iSLK and PBT003) from
the literature. In the above three datasets, only m6A sites
containing the DRACH motifs were retained as positive
samples. Those unmethylated adenosines in DRACH of the
whole transcriptome were used as negative samples (non-
m6A sites). Considering that non-m6A sites are much more
distributed in the transcriptome than m6A sites, we also
kept the positive-to-negative ratio as 1:10 as described in
(22). To generate input sequences, we expanded each site by
50 nucleotides (nts) upstream and downstream, respectively.
For each dataset, we randomly selected 80% of the input
sequences as training data to train our model, and 20% as
test data to assess our model performance. To further re-
duce the redundancy in sequence samples, we employed the
CD-HIT-EST tool (37) to remove test samples that have
a certain similarity (with a similarity score above 80%) to
the training samples. The statistics of the two datasets used
in our tests can be found in Supplementary Tables S5 and
S6. For the downstream analyses, the gene expression data
were collected from the GEO dataset with accession num-
ber GSM2072352, the mRNA half-lives and ribosome pro-
files were curated from (9) with GEO accession number
GSE49339 and the histone modification (H3K36me3) data
were downloaded from the GEO database with accession
numbers GSM733685 and GSM733711.

Overview of MASS

Our multi-task curriculum learning based model consists
of three main parts, including data organization, feature
extractor and splitting classifiers (Figure 1). In data orga-
nization, we oversampled positive samples (with replace-
ment) to construct a balanced dataset and packed the pos-
itive and negative samples into mini-batches with a ratio
of 1:1. The input sequences were then encoded into binary
vectors based on a one-hot encoding strategy (Figure 1A
and B). The feature extractor designed for capturing fea-
tures shared among different species is composed of con-
volution layers, bi-directional Long Short Term Memory
(LSTM) units, and multi-head attention layers (i.e., multi-
ple concatenated attention layers), which are used for local
feature extraction, global feature extraction and learning
of feature importance scores of individual positions in the
input sequence, respectively (Figure 1A). A residual archi-
tecture that has been widely used in various deep learning
tasks (38,39) to attenuate gradient vanishing is also adopted
in our convolutional layers to build a deeper and more pre-
dictive neural network (40,41). The splitting classifiers are
multi-layer fully connected neural networks for predicting
the probabilities that the input sites of interest of the corre-
sponding species are methylated. Each classifier of the split-
ting classifiers corresponds to a particular species and is in-



3722 Nucleic Acids Research, 2021, Vol. 49, No. 7

dependent of each other. In the training process, the input
sequences are sampled and encoded in the data organiza-
tion component and the encoded vectors are then fed to
the feature extractor following the sequence of species de-
fined according to the phylogenetic tree to generate feature
maps. Finally, the m6A site prediction scores of different
species are computed by the corresponding splitting clas-
sifiers based on the feature maps, individually.

Sequence encoding by dilated convolution

To fully exploit input sequences, we employ a dilated con-
volution technique that was originally proposed in the com-
puter vision field (42–45) in the feature extractor of our
model. The filters of the dilated convolution layers con-
sider the combinations of long-range features, which thus
increases the diversities of the higher-level features captured
from the input sequences. More specifically, let F : Z → R

be a discrete function, �r = {i ∈ Z| − r ≤ i ≤ r} and k :
� → R be a discrete filter of size (2r + 1). Then, the 1D
dilated convolution operator can be defined as

(F ∗l k)(p) =
∑

i+l j=p

F(i )k( j ), (1)

where i represents the index of the discrete filter, j represents
the index of the given input, p represents the index of the fil-
tered input, *l stands for an l-dilated convolution and l rep-
resents the dilation factor (1-dilated convolution represents
the traditional discrete convolution operation). Here, the di-
lation factors for three concatenated dilated convolutional
layers are set to one, three and five, respectively, according
to the conventional gapped-k-mer strategy (22,46).

Multi-task curriculum learning with a shared representation

To integrate multi-species m6A data to improve the perfor-
mance of the prediction model, we designed a feature ex-
tractor shared across all species following the hard param-
eter sharing strategy (27) and then trained an independent
classifier for each species. For a given training set X consist-
ing of samples for T species and their corresponding label
set Y, which can be represented as

X = {X1, X2, ..., XT}, (2)

Y = {Y1, Y2, ..., YT}, (3)

where Xt stands for the sample set of the t-th species, and Yt
represents its corresponding label set. Then, the loss func-
tion J for our multi-task learning model can be defined as

J = 1
T

T∑

t=1

Et[−Ŷt log(Yt)], (4)

where Et represents the expectation of the cross entropy for
the t-th species, Ŷt is calculated by

Ŷt = Gt(F(Xt)), (5)

where F represents the shared feature extractor, and Gt rep-
resents the splitting classifier of the t-th species. Several is-
sues will arise if we apply multi-task learning directly to the

multi-species m6A site prediction problem (see Supplemen-
tary Note S1). To address these issues, we further apply a
curriculum learning strategy based on the known evolution-
ary relationships of all species in the training process of our
multi-task model. More specifically, given a species set S (|S|
= T) and their corresponding phylogenetic tree T, the sim-
ilarity between species si and sj can be defined as 1

di j
, where

dij represents the shortest path from si to sj on T. More de-
tails on the training process of our multi-task curriculum
learning model can be found in Algorithm 1.

Our multi-task curriculum learning model can alleviate
potential overfitting issues that are generally prone to oc-
cur in single-task models when the training set is not large
enough and thus facilitate the training process (47). After
training, common features across multiple species are cap-
tured by the feature extractor, which in principle should
be able to enhance the generalization capability and inter-
pretability of our model (47,48).

Multi-head attention mechanism for site weighting

Generally, not all features along the contextual sequence
contribute to the final prediction in classification tasks. To
enable our model to capture the importance scores of fea-
tures from individual input positions in different tasks, we
also adopt a special self-attention mechanism named multi-
head attention in our deep learning framework (49). More
specifically, the self-attention mechanism employed in our
model can be represented by a weighted sum over the fea-
tures of individual positions along the input sequence C ∈
R

L×d (L stands for the length of the input sequence, and d
stands for the feature dimension of each site), that is

ri =
L∑

j

λi j WjC j , (6)
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where ri ∈ R
dk stands for the response of the i-th site (dk

stands for a hyperparameter representing the response di-
mension), c j ∈ R

d stands for the j-th site in the sequence C,
W j ∈ R

dk×d stands for the learnable weight matrix, and �ij
stands for a scalar value that assigns weights to individual
sites along the sequence, which can be written as

λi j = [softmax(QK�)]i j , (7)

where Q and K can be represented as

Q = CWQ,

K = CWK , (8)

where WQ and WK ∈ R
d×dk represent the learnable weight

matrices. To provide a more powerful representation of fea-
ture subspace at different positions, we concatenate several
self-attention layers to construct a so-called multi-head at-
tention layer (49), that is,

R = Concat(r1, r2, ..., rN) ∗ W0, (9)

where W0 ∈ R
dm×d represents a learnable weight matrix, N

stands for the hyperparameter representing the number of
heads, R ∈ R

L×dm stands for the final output of the multi-
head attention layer and Concat( · ) stands for the concate-
nate operation. In this work, N is set to 8, as suggested by
the original paper in (49).

The multi-head attention layer in our model captures the
connections between distant locations along the input se-
quence, which thus enhances the learning ability of the pre-
diction model (49–51). In addition, the multi-head atten-
tion layer allows our model to capture coexisting sequence
patterns associated with m6A modification, which thus can
further increase the interpretability of the model.

Motif calling and global motif visualization

To interpret our model, we extracted and visualized the
sequence motifs captured by MASS. More specifically, we
scanned the entire input sequence to collect all subse-
quences that activate the convolutional filters (50,52,53),
and then computed the positional weight matrix (PWM) of
each motif based on the collected subsequences for the cor-
responding filter. For each species, we computed the PWMs
by feeding the trained neural network with the sequences
containing m6A sites from the test set. In particular, given
an input sequence of length N, and a sliding window of size
K and stride 1, we can obtain in total (N − K + 1) output val-
ues for each filter. Suppose that an output value is denoted
by oi, and its corresponding subsequence is represented by
ci = C[i : i + K ], where C stands for the input sequence. If
oi is larger than the average ō, ci is then collected to gener-
ate the PWM, which is also used as the local motif for our
downstream analyses.

Although motifs derived from the convolutional filters
provide direct visualization of the important sequence pat-
terns, they can only show the independent sequence fea-
tures, such as protein binding sites. Further analyses of pro-
tein cooperation based on the motif co-occurrences, how-
ever, cannot be performed in this way. To address this prob-
lem, we employed a method called ‘class optimization’ vi-
sualization, which was originally proposed in the computer

vision field (54,55) and had also been used in sequence anal-
yses (53). More specifically, we maximized the prediction
score P+(S) of an input sequence S (represented as a four-
row matrix of scalars) while keeping the neural network
model weights unchanged as follows:

argmax
S

P+(S) − γ |S|22, (10)

where � is the regularization parameter. With the above ob-
jective function, the sequence S is optimized through a gra-
dient descent optimizer and adjusted at each training step
to gain a higher output score. We then converted such a (lo-
cally) optimized sequence S into a PWM with a softmax
function. In contrast to the local motifs, this optimized se-
quence depicts all possible sequence patterns that simulta-
neously determine a specific class (representing the methy-
lated sites here).

Model training and model selection

To train our multi-task learning model, we split our dataset
into three independent parts, i.e., training, validation and
test sets. The mini-batch gradient descent algorithm was
used in the training process. To make the training process
more stable, we also applied the Adam algorithm (56) that
can determine the learning rate automatically based on the
current batch gradient. The ‘save best’ strategy, as described
in (57,58), was adopted during the training procedure. To
gain a better performance, we applied a line search strat-
egy (59,60) to determine the setting of hyperparameters, in-
cluding learning rate, the number of units, and the filter size
of our model. In particular, we first randomly initialized
all of the hyperparameters to train a basic model. Then we
searched one hyperparameter with the others fixed in a rea-
sonable range according to a 5-fold cross-validation proce-
dure. This process was repeated until all hyperparameters
were determined. The five-fold validation results and the fi-
nal values of hyperparameters are shown in Supplementary
Table S7. After all the hyperparameters were determined,
they were used to train MASS again on the whole dataset.

Our implementation of MASS relied on the TensorLayer
(61), a TensorFlow-based deep learning library. In addition,
the NVIDIA TITAN X was used to speed up the training
process.

Single species and multiple species training

To our best knowledge, there exists no multi-species model
for m6A prediction that can capture both single species
and cross-species features simultaneously. Here, we evalu-
ated our model from both single-species and multi-species
perspectives to demonstrate that it can predict m6A sites
precisely. For our multi-task learning task, we considered
several test settings with different configurations of species.
We first trained individual single species models, and then
gradually added a species according to its evolutionary dis-
tance to human. In particular, we considered different set-
tings with two, three, five and seven species, respectively. We
also compared the performance of MASS to that of the
existing methods, including SRAMP and DeepM6ASeq.
Since DeepM6ASeq (24) is not particularly designed for
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multi-species training, we evaluated its performance only
on single species. For the SRAMP model (22), as the orig-
inated paper did not provide the source code for train-
ing, we did not include it in the performance compari-
son on the nanopore sequencing data and the multi-species
prediction task, which would require the retraining of the
model.

RESULTS

MASS accurately predicts m6A sites

We first assessed the prediction performance of MASS on
single-species data from the sramp17 dataset from (22).
In particular, we tested MASS on the data concern-
ing human and mouse. We also compared its perfor-
mance to that of two existing methods: SRAMP (22) and
DeepM6ASeq (24). Since SRAMP processes long reads by
cutting them into short reads with DRACH motifs and gen-
erates a prediction score for each short read, here we used its
highest prediction score among all reads as the final score
for a given sequence, as described in (24). As shown in Fig-
ure 2, MASS trained on single-species data (denoted by
MASS-Single) showed the best performance in terms of the
two classical metrics, i.e., area under the receiver operating
characteristic (AUROC) and area under the precision-recall
curve (AUPRC), compared to the two baseline classifiers. In
particular, our model on the human data achieved AUROC
and AUPRC scores of 0.858 and 0.394, respectively, which
were 3.8% and 9.4% higher than those of DeepM6ASeq and
3.1%, and 6.4% higher than those of SRAMP, respectively
(Figure 2A and Supplementary Figure S1a). For the mouse
dataset, our model achieved AUROC and AUPRC scores
of 0.841 and 0.357, respectively, which were 4.2% and 8.2%
higher than those of DeepM6ASeq, and 3.2% and 4.4%
higher than those of SRAMP, respectively. On average, the
AUROC scores of MASS-Single were 4.9% and 3.8% higher
than those of DeepM6ASeq and SRAMP, respectively, and
AUPRC scores were 29.9% and 16.5% higher than those
of DeepM6ASeq and SRAMP, respectively (Figure 2B
and Supplementary Figure S1b). Although our model
was only slightly better in terms of AUROC, it achieved
much higher AUPRC scores than the baselines. Note that
AUPRC is more critical and informative than AUROC
for an imbalanced dataset (62,63). Thus, the test results
on single-species data showed that our model can predict
more accurate m6A sites than the state-of-the-art baseline
methods.

To further demonstrate the generalizability of our model
to plants and data from other sequencing technologies, such
as nanopore direct RNA sequencing, we also compared
the performance of our model on a nanopore direct RNA
sequencing data from Arabidopsis (called nano20) derived
from (14) with DeepM6ASeq. As shown in Supplementary
Figure S4, MASS trained on nano20 achieved an AUROC
of 0.706 and an AUPRC of 0.442, which were 15% and
27.8% higher than those of DeeepM6ASeq, respectively.
This simple but promising comparison result showed that
our model can potentially be applied to data from a broad
range of species and sequencing technologies to make a
quality prediction of m6A sites.

Next, we evaluated the prediction performance of our
multi-task learning model on multiple-species data derived
from RMBase 2.0 (64), also using DeepM6ASeq as a base-
line for comparison. When trained all seven species, MASS
achieved an AUROC score of 0.911 and an AUPRC score
of 0.647 on human, which were 2.2% and 11.9% higher than
those of DeepM6ASeq, respectively (Figure 2C and Supple-
mentary Figure S1c). Similar comparison results are given
for chimpanzee in Figure 2D and Supplementary Figure
S1d. We also assessed the performances of our model in
different test settings, including models trained on single-
species, two-species, three-species, five-species and seven-
species data (Supplementary Table S1, and Supplementary
Figures S2 and S3). These tests showed that our multi-task
model trained on multi-species data can improve the predic-
tion of m6A sites compared to the model trained on single-
species data. Overall, the evaluation results demonstrated
that integrating multi-species data through the multi-task
learning framework employed in our model can improve the
m6A site prediction results.

MASS depicts the landscapes of m6A across multiple species

Once our model was validated, we applied it to predict the
m6A modification likelihood of each DRACH motif in all
mRNA transcripts of different species, particularly human
and mouse. The DRACH motifs with predicted probabil-
ities >0.5 were collected as putative m6A sites. The den-
sities of putative m6A sites along mRNAs (including 5

′
-

UTR, CDS and 3
′
-UTR regions) were calculated by av-

eraging the results from all mRNAs. We also compared
the prediction results to those of MASS-Single and base-
line methods, including DeepM6ASeq and SRAMP. We ob-
served that the m6A sites predicted by all four models were
mainly located in the 3

′
-UTR regions and significantly en-

riched near the stop codons and the tails of 3
′
-UTR re-

gions (Figure 3). Although the distributions of most of
the m6A sites predicted by the four different models were
consistent with each other, there were several distinct re-
gions between the prediction results of our model and the
other models. For example, the densities of the m6A sites
predicted by MASS and MASS-Single were slightly higher
than those predicted by DeepM6ASeq and SRAMP in the
5

′
-UTR and CDS regions, while much lower in the 3

′
-UTR

regions (Figure 3A and B). The overall distributions of pre-
dicted m6A sites were highly consistent with the previously
known trend about the distributions of CLIP-seq peaks of
the m6A reader YTHDF1 (65). We also applied MASS to
illustrate the distributions of m6A along mRNAs in all the
seven species and observed similar distributions among the
six mammals, but different distributions among mammals
and zebrafish (Figure 3C). These similarities and differences
between the predicted landscapes of m6A sites of different
species were also consistent with the previous known pat-
terns concerning the distributions of m6A sites in the tran-
scriptomes of the species obtained through the m6A bind-
ing proteins (including YTHDF1, YTHDF2 and WTAP)
or m6A antibodies, respectively (12,65–69). These results
suggested that our multi-species model can depict the land-
scapes of m6A in multiple species in a reasonably accurate
manner.
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Figure 2. The performance of different models on single-species data from the sramp17 dataset and multi-species data from the RMBase 2.0. (A and B) The
AUPRC (area under the corresponding PR curve) scores of MASS-Single, DeepM6ASeq and SRAMP on the sramp17 single-species data for human (a)
and mouse (b), respectively. (C and D) The AUPRC scores of MASS-Single, MASS-2species, MASS-3species, MASS-5species, MASS and DeepM6ASeq
on the RMBase 2.0 data in human (c) and chimpanzee (d), respectively. MASS-k species represents our model trained using samples from k species. MASS
represents our model using the samples from all the species.

MASS provides a protein-binding perspective for understand-
ing m6A functions

To interpret our deep learning model, we also visualized
and analyzed the sequence features captured by our model
from both local segments of the input or the entire input
(see ‘Materials and Methods’ section). In particular, we first
collected the local sequence features (i.e., within the local
segments) captured by 300 convolution filters (each with a
length of 18 nts) that were highly active in the first convo-
lution layer of the feature extractor in our model. These se-
quences features were then overlaid together to generate po-
sition weight matrices (PWMs) that were regarded as local
motifs. Next, we visualized these local motifs and mapped
them to the known binding motifs of RBPs obtained from
the CISBP-RNA database. As expected, the consensus mo-
tifs of m6A (‘GGACU’) and the binding motifs of several
m6A-associated RBPs repeatedly occurred in our identified
local motifs for each species (Figure 4 and Supplementary

Figure S4). The analysis results suggested that our model
is able to capture the local sequence features of m6A sites
that can be aligned well with the site recognition patterns
of m6A related binding proteins. For example, the binding
motif of HNRNPA2B1, a mediator of an m6A associated
process (70), well matches to the local motifs identified by
our model in chimpanzee (Figure 4). Overall, an average of
21.94% of the 300 local motifs captured by MASS (see Sup-
plementary Table S2) from seven species can be annotated
by TOMTOM (71). Since a number of motifs from several
species contained in CISBP-RNA of several species were
not derived directly from experiments, in order to further
verify that the sequence features captured by our model are
valid, we also compared the local sequence patterns cap-
tured by our model to those motifs obtained from other
databases that are fully verified by experiments, including
Dominguez2018 (72), Ray2013 (73) and ATtRACT (74).
The results showed that the sequence features captured by
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Figure 3. The distributions of the predicted m6A sites along mRNAs. (A and B) The distributions of the m6A sites on human mRNAs (a) and mouse
mRNAs (b) predicted by different models, including MASS, MASS-Single, SRAMP and DeepM6ASeq. (C) The distributions of the m6A sites predicted
by MASS for all the seven species, including zebrafish, human, mouse, chimpanzee, rhesus, rat and pig.

our model can also significantly match the motifs in these
databases (see Supplementary Figure S6 for the details).

Though the local motifs are able to depict certain prop-
erties of m6A, the long-range co-occurrence motifs around
m6A sites (i.e., along with the entire input sequences, which
were also called the global motifs hereafter) can provide
another angle to investigate the underlying mechanisms of
m6A. Here, we applied a technique called class optimiza-
tion (54) to capture such global sequence motifs of m6A.
We found that for all seven species, there existed a ‘GGACA’
motif at the 5

′
end of the input sequence (Figure 5A, dashed

gray box) and a ‘GGUG’ motif near the center of the input
sequence (Figure 5A, solid gray box). Previous studies indi-
cated that the distribution of SRSF1-binding sites is highly
correlated with m6A sites (75,76). In addition, we found that
the ‘GGUG’ motif identified by MASS can be matched to
the binding motif of TAF15, a binding partner of the m6A
reader RBMX (77), which may also help explain the co-
occurrence of ‘GGUG’ motif and m6A. To test whether the
single-species model (i.e., trained using only single-species
data) can capture these co-occurrence motifs or not, we also
analyzed the optimized input sequences of MASS-Single
using the same procedure as in the multi-species model.
However, we did not observe any co-occurrence motifs in all
the seven species (Figure 5B), which thus demonstrated the
advantages of integrating multi-species data in our multi-
task learning model to capture the global sequence features
of m6A. These results suggested that the global motifs de-

rived from our multi-species model can help characterize
the complex mechanisms and functions of m6A modifica-
tion.

MASS detects important conserved genes enriched with m6A
sites among different species

Based on the distributions of the predicted m6A sites in mR-
NAs, we defined a variable called the m6A capacity to as-
sess the overall enrichment of m6A in an mRNA transcript
(see Supplementary Note S2). We computed the m6A ca-
pacities of all mRNA transcripts in the seven species based
on the prediction results of our model. The mRNAs with
m6A capacities above the median were regarded as high
m6A capacity transcripts. We then compared the numbers
of high m6A capacity transcripts (including their orthologs)
shared among different species (from two to seven species)
between MASS and MASS-Single, which were trained us-
ing multiple-species and single-species data (see ‘Materials
and Methods’ section), respectively. Our comparison results
showed that MASS was able to identify more conservation
across different species (from two to seven) than the single-
species model (Figure 6), implying that our multi-species
model can capture more common features of m6A among
species than the single-species one.

Furthermore, we screened for mRNAs with high m6A
capacities shared among all the seven species derived by
MASS and MASS-Single, respectively. We found that most
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Figure 4. Local sequence motifs (i.e., within short segments) captured by our model. For each species, we show three examples of the most significant
mappings of the local sequence motifs captured by our model to the CIS-BP-RNA motif database. The motifs derived from the CIS-BP-RNA database
and our model are shown on the top and bottom, respectively.

of the high-m6A-capacity mRNAs derived by our model
were related to m6A functions (Table 1). For example,
among all the identified genes, TUBB2A, which encodes
a protein participating in mitosis and intracellular trans-
port processes, had been found to interact with the gen-
eral m6A writer METTL3 (78). We also found that there
were more mRNAs in the MASS set that have support from
the m6A literature than in the MASS-Single set (Table 1).
For example, CSNK1D is one of the genes in the MASS
set and it was reported previously that the deletion of the
m6A locus in its 3

′
-UTR may elongate the circadian period

of mouse cells (79). These observations indicated that high-
m6A-capacity transcripts conserved among the species may

be highly regulated by m6A for important consensus biolog-
ical functions. These results also suggested that our model
derived from multi-species data can provide new insights
into understanding the regulatory functions of m6A in mR-
NAs.

To further explore the molecular functions of the m6A
methylated transcripts, we also selected the top 10% mR-
NAs with the highest m6A capacities for the gene ontology
(GO) enrichment analysis in each species. GO molecular
function terms that were significantly enriched (P < 0.05)
in each species were collected (Figure 7). We found that
several terms, including structural molecular activity, pro-
tein binding, and sequence-specific DNA binding were re-
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Figure 5. Global sequence motifs (i.e., within the entire input sequence) captured by our model. (A) The global sequence motifs of each species derived
by the ‘class optimization’ of MASS, which was trained on multiple-species data. The ‘GGACA’ pattern in the dashed gray box can be matched to the
binding motif of SRSF1, which has been reported to by closely related to the functions of m6A (75,76). The ‘GGUG’ motif in the solid gray boxes can
be mapped to the binding motifs of TAF15, which is an interactor of the m6A reader RBMX. (B) The co-occurrence features were missed in the global
sequence motifs of each species derived by the model trained on single-species data.

peatedly enriched in different species (Supplementary Table
S3; also see Supplementary Table S4 for complete results),
which implied that m6A may play a critical role in protein
formation and protein binding processes (80,81). We also
analyzed the most significantly enriched molecular function
terms in each species, and found that the highly enriched
terms were similar among mouse, rat and human (Figure
7), which further verified the conservation of m6A profiles
between human and mouse (12). Though more experiments
are still needed, our prediction results may provide useful
molecular hints for further studies of m6A regulation.

MASS can be applied to characterize the properties of gene
regulation

In this section, we show that, based on the prediction results
of MASS, we can further analyze the associations between
m6A modification and the biological processes, such as gene
expression regulation, RNA stability, RNA structure, trans-
lation and histone modification.

mRNAs with high m6A capacities are repressed in expression.
It is well known that m6A can be widely involved in multi-
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Table 1. The set of the mRNAs with high-m6A-capacities derived by MASS (which was trained on multiple-species data) had more support from the
literature than that derived by MASS-Single (which was trained on single-species data)

Intersection MASS (multi-species only) MASS-Single (single species only)

Gene Description Reference Gene Description Reference Gene Description Reference

TUBB2A METTL3 interactor BioGRID CSNK1D elongate the
circadian
period in vivo

(79) ACTC1 KIAA1429
interactor

BioGRID

HLA-A RA-associated
m6A-SNPs

(90) NME1-
NME2

miCLIP targets (91) TRIM10

ACTC1 METTL3 and
METTL14 interactor

BioGRID TUBA1A m6A enriched
gene

(92) HBG1

HLA-C KIAA1429 interactor BioGRID GH2
MIR181A2

DDX39A METTL3 interactor BioGRID CCL3L3
PPAN-P2RY11 m6A related gene (91) CSH2
ALDH16A1 METTL14 interactor (93) CSH1
DHRS4L2 High level m6A (94) NME2
ACTG2 TUBA8
RAB37 CSHL1
HLA-B
ACTA1
HLA-G
TRIM26
HLA-F
HLA-E
RAB26

Figure 6. Comparison of the numbers of shared mRNAs with high m6A
capacities derived by MASS and MASS-Single across different species.

ple biological processes including RNA stability, splicing,
translation and pre-miRNA processing (9,82–84). There-
fore, we speculated that m6A can also play an important
role in gene expression regulation. To examine the relation-
ship between the predicted m6A profiles and gene expres-
sion, we compared the expression levels of mRNAs with
m6A capacities above the average to those with m6A capac-
ities below the average. As a result, mRNAs with high m6A
capacities were significantly down-regulated (Figure 8A, P
= 2.78 × 10−27, Wilcoxon rank sum test), which can also be
supported by the observations reported in previous stud-
ies (9,78).

mRNAs with higher m6A capacities are more unstable.
Though we observed a negative impact of m6A on gene ex-
pression, the regulation mechanisms of m6A in determining
mRNA stability are not obvious. To further depict the rela-
tionship between mRNA stability and m6A, we collected
mRNA half-lives from (9) and associated them with the
corresponding m6A capacities derived from the m6A pre-
diction results. In particular, we compared the half-lives
of mRNAs with m6A capacities greater than the average
(>Avg.) to those with m6A capacities lower than the av-
erage (<Avg.), and found that mRNAs with higher m6A
capacities were generally more unstable (Figure 8B, P =
9.35 × 10−95, Wilcoxon rank sum test). This observation
is also consistent with the previous reports indicating that
m6A promotes mRNA decay by promoting the binding of
m6A readers (9). This further verified that the m6A capacity
derived by our model can represent the overall methylation
states of the corresponding mRNAs.

mRNAs with higher m6A capacities show higher translation
efficiency. We further investigated the association between
mRNA translation efficiency and the corresponding m6A
capacities derived by our model. We first collected two repli-
cated data sets concerning mRNA translation efficiency
from the literature (9). Then, we compared the translation
rates of mRNAs with m6A capacities greater than the aver-
age (>Avg.) to those of mRNAs with m6A capacities lower
than the average (<Avg.), and observed that mRNAs with
higher m6A capacities were translated in slower rates (Fig-
ure 8C, P = 9.78 × 10−31, Wilcoxon rank sum test). Previous
studies had demonstrated the functions of m6A in control-
ling mRNA translation efficiency (83,85,86), and our anal-
ysis results were consistent with the conclusions drawn from
these studies, which thus also provided another implicit ev-
idence to support the performance of our model.
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Figure 7. The GO (gene ontology) enrichment analysis for the set of top genes with the highest m6A capacities (see Supplementary Note S2 for the detailed
definition) in each species. Here, we only show GO terms that were among the top five significant ones in each species.

m6A shows a preference for single-stranded regions of RNAs.
Since the secondary structures of RNAs are also involved
in the regulation of RNAs, we hypothesized that m6A
sites were non-uniformly distributed in different types of
RNA structural regions. To test this hypothesis, we first
collected the parallel analysis of RNA structure (PARS)
data from (87) and annotated three types of regions, in-
cluding single-stranded regions (SSs), double-stranded re-
gions (DSs) and poised regions (PRs, i.e., regions that can-
not be defined as DSs or SSs) according to the descriptions
in the original paper (87). Then we compared the proba-
bilities of the predicted m6A sites located in the aforemen-
tioned three different types of RNA structural regions (Fig-
ure 8D). We found that the potentials of m6A sites in single-
stranded regions were significantly greater than those in
double-stranded regions (P = 2.11 × 10−12, Wilcoxon rank
sum test) and poised regions (P = 5.41 × 10−4, Wilcoxon
rank sum test; the effect sizes are given in Supplementary
Table S1). The preference for m6A single-stranded regions
in RNAs suggested that m6A may play a certain role in reg-
ulating RNA structures, which are also supported by the
experimental results in previous studies (80,81).

Predicted m6A potentials are positively correlated with
H3K36me3 densities. Recently, it has been shown that
H3K36me3 can guide m6A deposition by recruiting
METTL14, which is a component of an m6A writer com-
plex (88). Thus, we hypothesized that the m6A profiles de-
rived from MASS can be extensively correlated with the en-
richment of H3K36me3 at the transcriptome scale. To verify
the speculated correlation between H3K36me3 and m6A,
we collected the H3k36me3 peaks and calculated the av-
erage m6A potentials in each H3K36me3 peak region ac-
cording to the predicted results of MASS. We found that
the average m6A potentials were positively correlated with

the densities of H3k36me3 peaks (Figure 8E), which sug-
gested a broad association between H3K36me3 and m6A.
This result further demonstrated the reliability of our pre-
diction results and implied that our model may be applied
to investigate the relationships between m6A and other his-
tone modifications.

DISCUSSION

In this paper, we propose a deep learning framework
based on multi-task curriculum learning to predict the
transcriptome-wide likelihoods of m6A sites across multi-
ple species. To our best knowledge, this is the first attempt
to model the m6A profiles of multiple species simultane-
ously. In our multi-task learning model, the consensus fea-
tures of m6A shared among multiple species are learned
in the shared feature extractor, which can reduce poten-
tial species-specific bias in the experimental data. Therefore,
this strategy increases the accuracy and generalization ca-
pacity of our model in predicting novel m6A sites. In ad-
dition, characterizing the m6A profiles of different species
simultaneously can shed light on the similarity and the dif-
ference of m6A patterns among different species. Though
several deep learning based models have already been pro-
posed for m6A site prediction in recent years (24,89), most
of them are insufficient in model interpretability. Here, our
model provides both local and global views of the sequence
features, which can help interpret the deep learning model
from a protein–RNA binding perspective. Moreover, since
our multi-task learning model efficiently and logically inte-
grates m6A data from multiple species, it can capture more
consensus and specific features of m6A in different species
than the single-species model or the existing methods.

In the downstream analyses, we further investigated the
relationships between m6A and gene expression, RNA sta-
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Figure 8. Downstream analyses of the relationships between m6A and other biological processes. (A) Comparison of the gene expressions between mRNAs
with m6A capacities higher than the average (> Avg.) and those with m6A capacities less than the average (< Avg.). mRNAs with higher m6A capacities are
significantly less expressed (P = 2.78 × 10−27, Wilcoxon rank sum test), ‘FPKM’: fragments per kilobase per million mapped fragments. (B) Comparison of
the stability between mRNAs with m6A capacities higher than the average (> Avg.) and those with m6A capacities less than the average (< Avg.). mRNAs
with higher m6A capacities were significantly more unstable (P = 9.35 × 10−95, Wilcoxon rank sum test). (C) Comparisons of translation rates (represented
by the number of ribosome-bound fragments) between mRNAs with m6A capacities higher than the average (> Avg.) and those with m6A capacities less
than the average (< Avg.), which shows that high m6A capacity RNAs translate faster (P = 5.95 × 10−30, Wilcoxon rank sum test). ‘RPKM’: reads per
kilo base per million mapped reads. (D) Comparisons of m6A potentials in different RNA structure types. The predicted m6A potentials in single-stranded
regions (SS) were higher that those in double-stranded (DS) regions (P = 2.11 × 10−12, Wilcoxon rank sum test) and poised regions (PRs, P = 5.41 ×
10−4, Wilcoxon rank sum test). (E) The scatter plot of average m6A potentials normalized by peak lengths and H3K36me3 peak densities transformed by
log2. The predicted m6A potentials were positively correlated to H3K36me3 densities (Pearson correlation = 0.55, P = 0.0, two-tailed t-test).
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bility, translation efficiency, RNA structure stability and hi-
stone modification. The analyses based on our prediction
results were highly consistent with the conclusions drawn
in the previous studies, suggesting that the potential ap-
plications of our model in solving m6A-associated biologi-
cal problems. Note that the data that we used here to cal-
culate the associations between m6A and other variables
were mainly collected from different cell lines or tissues.
Thus, further experiments to control relevant variables are
still needed. In addition, the current version of our multi-
species model only considers seven vertebrate species (i.e.,
plants and prokaryotes are not included), which may pre-
vent our model from uncovering the similarities and differ-
ences of m6A patterns either between animals and plants or
between eukaryotes and prokaryotes. Therefore, integrating
data from more species will be regarded as an important di-
rection in our future work.

Contact for reagent and resource sharing

Further information and requests for resource sharing may
be directed to and will be fulfilled by the corresponding au-
thors Dr. Jianyang Zeng (zengjy321@tsinghua.edu.cn) and
Dr. Tao Jiang (jiang@cs.ucr.edu).
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