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SUMMARY

The prefrontal cortex (PFC) plays a prominent role in performing flexible cogni-
tive functions and working memory, yet the underlying computational principle
remains poorly understood. Here, we trained a rate-based recurrent neural
network (RNN) to explore how the context rules are encoded, maintained across
seconds-long mnemonic delay, and subsequently used in a context-dependent
decision-making task. The trained networks replicated key experimentally
observed features in the PFC of rodent and monkey experiments, such as mixed
selectivity, neuronal sequential activity, and rotation dynamics. To uncover the
high-dimensional neural dynamical system, we further proposed a geometric
framework to quantify and visualize population coding and sensory integration
in a temporally defined manner. We employed dynamic epoch-wise principal
component analysis (PCA) to define multiple task-specific subspaces and task-
related axes, and computed the angles between task-related axes and these sub-
spaces. In low-dimensional neural representations, the trained RNNfirst encoded
the context cues in a cue-specific subspace, and then maintained the cue informa-
tion with a stable low-activity state persisting during the delay epoch, and further
formed line attractors for sensor integration through low-dimensional neural tra-
jectories to guide decision-making.We demonstrated via intensive computer sim-
ulations that the geometric manifolds encoding the context information were
robust to varying degrees of weight perturbation in both space and time. Overall,
our analysis framework provides clear geometric interpretations and quantifica-
tion of information coding, maintenance, and integration, yielding new insight
into the computational mechanisms of context-dependent computation.

INTRODUCTION

Cognitive flexibility is an important characteristic that enables animals or humans to selectively switch be-

tween sensory inputs to generate appropriate behavioral responses (Diamond, 2013; Scott, 1962; Miyake

and Friedman, 2012). This important process has been associated with various goal-directed behaviors,

including multi-tasking and decision-making (Thea, 2012; Dajani and Uddin, 2015; Le et al., 2018; Pezzulo

et al., 2014). Impaired cognitive flexibility has been observed among individuals with mental illnesses, such

as schizophrenia, (Woodward et al., 2012; Maud et al., 2012) and those at risk for mental disorders (Murphy

et al., 2012; Chamberlain et al., 2007; Vaghi et al., 2017). Therefore, identifying the computational principle

underlying cognitive flexibility may improve our understanding of brain dysfunction. The prefrontal cortex

(PFC) is known to contribute to cognitive flexibility, serving as the main storage of temporary workingmem-

ory (WM) to represent andmaintain contextual information (Baddeley, 2003; Miller, 2000; Todd et al., 2009).

Neurophysiological recordings have shown that single PFC cells respond selectively to different task-

related parameters (White and Wise, 1999; Eiselt and Nieder, 2016; Hyman et al., 2013; Machens et al.,

2010; Rigotti et al., 2013) and the activity of PFC pyramidal neurons can maintain WM to perform

context-dependent computation (Wallis et al., 2001). However, due to the heterogeneity and diversity of

single-neuron responses, it remains challenging to understand how task-modulated single-neuron activ-

ities integrate task-related information to guide subsequent decision-making. To address this knowledge

gap, researchers relied on population coding to understand the maintenance and manipulation of context

information in decision-making tasks (Meyers et al., 2008; Cichy et al., 2014; King and Dehaene, 2014;
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Lundqvist et al., 2016). In the literature, several computational theories and analysis methods have been

proposed (Wu et al., 2020; Mante et al., 2013). However, how the sensory information is integrated via dy-

namic population coding in a context-dependent manner remains poorly understood. Meanwhile, an intu-

itive and interpretable dynamical systems framework for context-dependent WM and decision making is

lacking.

Recurrent neural networks (RNNs) have been widely used for modeling a wide range of neural circuits, such

as the PFC and parietal cortex, in performing various cognitive tasks (Rajan et al., 2016; Hennequin et al.,

2014; Sussillo et al., 2015). However, computational mechanisms of RNNs in performing those tasks remain

elusive because of the black box modeling. In this paper, we trained an RNN to perform a delayed context-

dependent task (Figure 1A) and proposed a geometric analysis framework to understand dynamic popu-

lation coding and information integration. We found that the trained RNN captured critical physiological

properties consistent with reported experimental data. Additionally, the trained RNN showed some emer-

gent features of neuronal activity observed in the PFC, such as the mixed selectivity and sequential activity.

Based on dimensionality reduction of population responses, we defined task epoch-specific subspaces and

dynamic attractors during the sensory integration epoch, and showed that the context-configured network

state is temporally tuned to regulate sensory integration to guide decision-making. Together, our analysis

framework not only helps uncover the computational mechanisms of encoding andmaintenance of context

information in decision-making but also helps illustrate information integration based on interpretable

geometric concepts.

RESULTS

Trained RNN for performing a delayed context-dependent integration task

We trained the RNN to perform a delayed context-dependent WM or decision-making task (Figure 1B). At

each trial, the network received two types of noisy inputs: sensory stimulus and cue stimulus. The sensory input

units encoded the momentary motion and color evidence toward two target directions. The cue input units

encoded the contextual signal, instructing the network to discriminate a specific type of sensory input. The

choice output units encoded the response direction. All units had non-negative and non-saturating firing rates

to mimic the properties of biological neurons (Priebe and Ferster, 2008; Abbott and Chance, 2005).

Upon successful convergence of RNN training (Figures 1C and 1D), psychometric tests showed that the

trained RNN captured critical physiological properties consistent with experimental findings (Figure 1E).

For example, the trained network achieved better performance with higher color coherence stimulus in

the color context, but not in themotion context; and vice versa (Figure 1E). Units in the trained RNN showed

diverse firing rate profiles at different task epochs (Figure 1F). Furthermore, we analyzed the impact of the

proportion of zero recurrent weights on the task performance (Figure S1A). The trained RNN exhibited a

strong self-connection (Figure S1B). Additionally, recurrent weight perturbation analyses were also used

to assess the stability of the trained RNN (Figure S2).

Single Unit Responses

Mixed selectivity

Mixed selectivity of PFC neurons is important for implementing complex cognitive functions, manifesting

itself as an ‘adaptive coding’ strategy (Duncan, 2001). We found that many units of the trained RNN ex-

hibited mixed selectivity for task-related variables (Figure 2A). A unit was said to be selective to a task-

related variable if it responded differently to the values of the parameters characterizing that variable.

We classified the units based on their responses to different task parameters, and found four distinct types

of mixed-selective units from the trained RNN. (1) Some units (about 11.6%) exhibited mixed selectivity to

task rules (both color context cue and motion context cue), such as unit 3. (2) Some units (about 11.3%) ex-

hibited mixed selectivity to both color sensory stimuli (red and green), such as unit 8. (3) Some units (about

21.8%) exhibited mixed selectivity to both directions of coherent motion, such as unit 12. (4) Some units

(about 21.6%) exhibited selectivity to both task rules and sensory stimuli. For example, unit 5 and unit 9 re-

sponded to both the color cue stimuli and color sensory stimuli. Unit 4 and unit 13 responded to both the

motion cue stimuli and motion sensory stimuli.

Although single-unit activity could be tuned tomixtures of multiple task-related variables, some other units

were modulated primarily by only one of the task variables (what we will call ‘pure-selectivity’ units). For
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example, unit 1 was primarily selective to the color context cue, and unit 2 was selective to the motor cue.

Some units only responded to sensory stimuli, such as unit 6, unit 7, unit 10, and unit 11 (Figure 2A). In the

trained RNN, only a small subset of units showed activations to task variables (Figure 2B). An RNN unit was

considered active if there was a time point where the instantaneous firing rate was greater than 5 Hz.

Among those activated units, the number of units encoding the choice was much more than that of units

encoding the context cue (Figure 2C). One possible explanation is that it was more difficult to integrate

noisy sensory information than to distinguish the context information, so more units were recruited to pro-

cess sensory information.

A

D

E F

C

B

Figure 1. Trained RNN to perform the delayed context-dependent integration task

(A) Behavioral task description. A monkey was trained to discriminate, depending on the contextual cue, either the

predominant color or predominant motion direction of randomly moving dots, and to further indicate its decision with a

saccadic eye movement to a choice target. The cue stimulus onset determined the current context, which was

characterized by different shapes and colors of the fixation point. The cue stimulus was followed by a fixed-delay epoch,

and then followed by randomly moving dots stimuli. The monkey was rewarded for a saccade to the target matching the

current context.

(B) Schematic of a fully connected, nonlinear RNN in context-dependent computation. The network received noisy inputs

of two types: time-varying sensory stimulus and cue input. The stimulus inputs consisted of four task-relevant sensory

information, each represented by an input unit that encoded the evidence for the direction of stimulus. The cue inputs

consisted of two cue signals, which were represented by two input units (that indicated the current context and instructed

the network to distinguish the type of stimulus). The two output channels encoded the response direction.

(C and D) RNN learning curve (C) and the performance curve (D). Training was completed once both quantities reached

the convergence criterion (blue horizontal dashed lines).

(E) Psychometric curves in a delayed context-dependent integration task. The probability of a correct direction judgment

is plotted as a function of color (Left) and motion (Right) coherence in color-context (blue) and motion-context (black)

trials.

(F) The activities of representative units indicated by different colors. The first gray shading area indicates cue

stimulus epoch and the second shading area indicates the presentation of random dots (i.e., integration of sensory

stimulus epoch)
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We have mainly introduced four types of mixed selectivity units, with varying degrees of selective

responses to different task-related variables. However, the diversity of mixed selectivity responses often

resulted in response properties that were not easily interpretable. For example, in the color context,

unit 9 simultaneously responded to the color cue stimulus and green signal, which also responded to

the red signal. Specifically, units with such mixed selectivity behaved the same way in the same context,

causing a difficulty of interpretation. This suggests that the activity of individual mixed selectivity units

could not fully disambiguate the information; only when pooling information from multiple units, the am-

biguity of information encoded by mixed selective units can be eliminated, supporting the necessity of

population coding by ensembles of neurons (Rafael, 2015).

Population Response

We further studied the neural representation at the population level. The dynamics of population activity

can be characterized through the high-dimensional state space xðtÞ˛RN. The time-varying population ac-

tivity can be visualized as a trajectory within the lower-dimensional subspace, and the distance between the

points in the subspace reflects the population response difference.

Cue processing

To examine cue processing, we reported the dynamics of population activity throughout the cue stimula-

tion and delay epochs. We performed principal component analysis (PCA) to identify a three-dimensional

neural subspace, which was spanned by the first three principal components (PCs) that accounted for about

92% of neural activity variance (Figure 3A). During the cue presentation epoch, the network started at the

same subspace and then evolved along different trajectories based on the contextual cues (Figure 3B).

A

C

B

Figure 2. Single unitresponses

(A) Single unit responses under different task conditions, as indicated by different colors. Two shaded areas represent the period of contextual cue stimulus

presentation and sensory stimulus presentation, respectively. Left panel: Responses of units showed pure selectivity to the task-related variable. Unit 1

preferred the color cue, unit 2 preferred the motion cue, unit 6 preferred green, unit 7 preferred red, unit 10 preferred the leftward direction, and unit 11

preferred the rightward direction. Right panel: Different task-related variables were mixed. Unit 3 showedmixed selectivity for the color cue and motion cue.

Units 4 and unit 5 showed mixed selectivity for both the context cue and sensory stimulus. Unit 8 showed mixed selectivity for two task variables (green and

red) for the color context. Unit 12 showed mixed selectivity for two task variables (left and right) for the motion context. Unit 9 showed mixed selectivity for

three task features, such as the color context cue, green, and red sensory stimulus. Similarly, unit 13 showed mixed selectivity for the motion context cue,

leftward direction, and rightward direction.

(B) The percentage of units in the trained RNN that were activated to perform a delay context-dependent decision-making task, averaging over all 16 trial

conditions and 20 trained RNN models.

(C) Among all the activated units, the percentage of units that was selective to the context cue, sensory input, and their combinations in color and motion

context, respectively. Error bar indicates SEM over 20 different training configurations.
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Further, the distance between two state trajectories increased (Figure 3C, blue curve), indicating that these

two trajectories were continuously divergent during the cue stimulus epoch. Moreover, we defined the

‘‘energy’’ of the population activation state using the average activity of the total number of activated units

(Figure 3C, gray curve).

We found that the distance curves between two cue-specific trajectories was temporally aligned with the

increase of energy level during the cue stimulus and delay epochs. During the delay epoch, the network

settled in a low-energy state. Moreover, the distance between two trajectories reached a peak value at

the end of the cue stimulus presentation, then decreased during the delay epoch until reaching a plateau.

However, the plateau value was greater than zero (a similar level as at time t = 200 ms), suggesting that the

difference in cue-specific trajectories still existed to distinguish the context conditions.

We computed the ‘‘velocity’’ of population activity, which is defined as the change in trajectory position as

the function of time (Stokes et al., 2013). In the figure illustration (Figure 3B), it can be calculated by equa-

tion distðPt;Pt+nÞ=n, in which distðPt;Pt+nÞ represents the distance between states at time t and t + n for a

given context. Before the cue stimulus appeared, the overall population activity had a rapid acceleration to

reach a peak (Figure 3D, top panel), and then the velocity of population activity gradually decayed to the

pre-stimulus baseline level, suggesting that cue-specific trajectories were separated at a stable velocity in

the late stage of cue-stimulus. During the delay epoch, the velocity of population activity jumped to a large

value again and then dropped rapidly. The phenomenon was primarily contributed by mixed-selective

units. Specifically, we plotted the respective velocities of population activity with pure-selectivity and

mixed selectivity for comparison (Figure 3D). We observed that the velocity of the population that was

only sensitive to the context cue decreased continuously throughout the cue stimulus and delay epochs.

In contrast, for the mixed selectivity population, there was a jump point in the velocity curve at the begin-

ning of the delay epoch. Therefore, the velocity is sensitive to change of epoch-wise population activity,

and provides an informative measure of the population dynamics.

A D

C

B

Figure 3. Neural population dynamics

(A) Ratio of explained variance of the first five PCs of neural subspace during the cue stimulus and delay epochs.

(B) Two different neural trajectories in a three-dimensional subspace during the cue stimulus and delay epochs. Orange

and blue curves correspond to the motion and color contexts, respectively. The three-dimensional distance between two

context-specific states at time t characterized the similarity of their population responses: distðPcolor
t ;Pmotion

t Þ. In a context-

specific state trajectory, we calculated the velocity, which quantify the change in trajectory position as a function of time. It

is calculated by equation: distðPcolor
t ;Pcolor

t+ n Þ=n, in which distðPcolor
t ;Pcolor

t+ n Þ represents the distance between states at time t

and t + n.

(C) Distance between two context-specific trajectories in the cue stimulus and delay epochs as a function of time (blue

curve). For comparison, the overall mean network activity (or network energy) is shown in a red curve, which is defined as

the average firing rate of all activated units.

(D) The top panel plots the velocity of the temporal evolution of overall population state (j _xj) under color context (blue)
and motion context (orange). Shaded area denotes SEM over 20 training configurations. The middle and bottom panels

show the state velocity evolution of mixed-selectivity population and cue-selectivity population, respectively.
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Since there is no sensory input during the delay epoch, the cue information must be stably stored as WM to

guide the subsequent decision-making. A related question is how the model performance will be affected

subject to weight perturbation. Motivated by the local optogenetic manipulation in animal experiments

(Gray et al., 2017), we conducted weight perturbation by up- or down-scaling the recurrent connection

weights with different scale values. Figure S2 illustrates a global perturbation, in which the weights of

trained RNN are scaled by the same constant across all task epochs. In contrast, Figure S3 illustrates a local

perturbation, in which the weights were only scaled locally in time during the delay epoch. We found that a

small degree of perturbation did not affect the RNN’s ability to perform tasks. Additionally, the RNN per-

formance was more robust with local perturbation than with global perturbation.

Sequential activity

Neural sequences are emergent properties of RNNs in many cognitive tasks, which has been thought to be a

common feature of population activity during a wide range of behaviors (Fiete et al., 2010; Rajan et al., 2016;

Orhan and Ma, 2019; Rajakumar et al., 2021). We found that our trained RNN generated emergent sequential

activity during the delay epoch (Figure 4F). To quantify the sequentiality of neural activity, we calculated the

sequentiality index (SI). Briefly, the SI is defined as the sum of the entropy of the peak response time distribu-

tion of the recurrent neurons and the mean log ridge-to-background ratio of the neurons, where the ridge-to-

background ratio for a given neuron is defined as themean activity of the neuron inside a small window around

its peak response time divided by its mean activity outside this window (Orhan and Ma, 2019). By virtue of

random sampling and Monte Carlo statistics, we found that the trained network has a higher SI (p< 0:017,

two-sample Kolmogorov-Smirnov test) than the untrained network (Figures 4A and 4B), suggesting that stron-

ger sequential activity emerged from a trained network (Figure 4F).

Next, we investigated the computational mechanism that produces neural sequential activity. Similar to Ra-

jan et al. (2016), we ordered the peak firing time of recurrent units and computed the mean and standard

deviations of the recurrent weights Wrec
ij . This mean statistic was plotted as a function of the order differ-

ence (i� j) between the i-th and j-th units (Figures 4C and 4D). Interestingly, the connection weight of

trained RNN showed an asymmetric peak, that is, the connection in ‘forward’ direction (i.e., from earlier-

peaking to later-peaking units) was strengthened more than those in ‘backward’ direction (i.e., from

later-peaking to earlier-peaking units) (Figure 4D). Therefore, this asymmetrical peak weakened the con-

nections between temporally distant units, while strengthening the connections between temporally close

units. However, this asymmetric structure was absent in the untrained network (Figure 4C), resulting in the

loss of sequential activation structure (Figures 4E and S4). Put together, the asymmetric weight profile in the

trained RNN could prolong responses in later-peaking units, producing the emergent sequential activity.

Rotation dynamics

The oscillatory nature of dynamical system is sometimes characterized by the so-called rotation dynamics,

in which the sequential activity of neural populations can be approximated follow a rotating trajectory

through their state space. The rational dynamics was initially reported in the motor cortex (Churchland

et al., 2012). In recent year, researchers have uncovered rotational dynamics more broadly in other cortical

areas, such as the auditory cortex (Libby and Buschman, 2021), and PFC (Aoi et al., 2020). The jPCA is a

dimensionality reduction technique that finds an oscillatory structure in the data (Churchland et al.,

2012). We performed jPCA on population responses in different contexts and visualized the two-dimen-

sional projections of responses in the jPCA space (Figure 5). Interestingly, the trained RNN showed a strong

rotation dynamic similar to those observed (Sussillo et al., 2015). Moreover, our result supported the find-

ings of Lebedev et al., 2019, which showed that the rotation dynamics is essentially a ‘‘by-product’’ of

sequential activation of population activity.

Definition of task epoch-specific subspaces and axes

To probe how neural population activity dynamically encoded task-related variables, we analyzed the pop-

ulation responses during six different task periods, including four single task epochs (cue stimulus epoch,

delay epoch, integration of sensory stimulus epoch, and response epoch) and two cross-epoch periods

(Figure 6). As expected, the correlation between population firing during these six periods varied

(Figure S6).

We first performed epoch-wise PCA on the population response at single task epochs to generate the cor-

responding state subspaces (i.e., Cue-subspace, Delay-subspace, Integ-subspace, and Resp-subspace).

ll
OPEN ACCESS

6 iScience 24, 102919, August 20, 2021

iScience
Article



To characterize the evolution of trajectory, we further defined four task-related axes (Table 1): the axis

of color context cue (C-cue-axis), the axis of motion context cue (M-cue-axis), the axis of color choice

(C-choice-axis), the axis of motion choice (M-choice-axis). The definitions of these task epoch-specific sub-

spaces and axes provide a geometric framework for population response analyses. Next, we projected

these four task-related axes onto the corresponding state subspaces and examined the neural trajectory

in a subspace-specific manner.

First, we performed PCA on the population response during the cue stimulus epoch, and the first two prin-

cipal components (cue-PCs) explained 93:1% of data variance (Figure S6A). This indicates that trajectories

A

D

E F

C

B

Figure 4. Sequential neural representation

(A and B) The Monte Carlo distribution of sequentiality index (SI), which was computed by 10,000 samples from repeated

random sampling. SI was computed from the untrained (A) and trained (B) networks.

(C and D) Units were sorted according to their peak time in untrained (C) and trained (D) networks. The recurrent weights

ðWijÞ were plotted as a function of the peak order difference between pre- and post-synaptic units during the cue-delay

epoch. A positive ði�jÞ value represents a connection from a pre-synaptic to a post-synaptic unit. A negative ði�jÞ value
represents a connection from a post-to a pre-synaptic unit. Both mean (solid lines) and standard deviation (shaded

regions) statistics were computed from multiple trained networks.

(E and F) Heat maps of normalized unit activity normalized by the peak response (per row) and sorted by the peak time.

The activity did not appear ordered in an untrained network (E), whereas sequential activity emerged in the trained

network (F).
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in the two-dimensional subspace (denoted as Cue-subspace spanned by cue-PC1 and cue-PC2) captured

the majority of variance of population responses. We had a similar finding in the Cue-subspace as shown in

Figure 3B: The network state started from the same location and then produced different trajectories ac-

cording to different cue stimulus conditions (Figure 7A). For a given context, the neural state evolved along

a stereotypical trajectory across all sensory stimuli.

Next, we calculated the angle between Cue-subspace and four predefined axes (i.e., C-cue-axis, M-cue-

axis, C-choice-axis, and M-choice-axis), respectively. Geometrically, if the angle between an axis and a

plane is greater than 70+, they are considered nearly orthogonal; if it is less than 20+, they are considered

nearly parallel or overlapping. We found that the angle between C-cue-axis and Cue-subspace, as well as

the angle between M-cue-axis and Cue-subspace, were both less than 20+ (Figure 7B). This indicates that

the space constructed by the C-cue-axis andM-cue-axis was overlapping with Cue-subspace. However, the

angle between the C-choice-axis and Cue-subspace was around 70+-90+, as well as the angle between the

M-choice-axis and Cue-subspace was both around 70+-90+. Therefore, both the C-choice-axis and

M-choice-axis were nearly orthogonal with Cue-subspace. Based on these observations, we only projected

C-cue-axis and M-cue-axis onto Cue-subspace (Figure 7A). We found that in the color context, all trajec-

tories moved along the C-cue-axis but were insensitive to the M-cue-axis. Similarly, in the motion context,

all trajectories moved along the M-cue-axis but were insensitive to the C-cue-axis. Furthermore, the angle

between M-cue-axis and C-cue-axis mostly centered around 75+-90+ (Figure S6B), suggesting that these

two contextual cues were represented in two almost orthogonal subspaces.

Cue information maintenance

We further explored the question: What is the relationship between neural trajectories across task epochs?

The answer to this question can help us understand how the cue information generated in the cue stimulus

epoch are preserved during the delay epoch. Specifically, we performed PCA during a 1000 ms time win-

dow starting at 100 ms after the cue stimulus presentation and ending at 200 ms before the end of delay

epoch. We examined the state trajectory in the two-dimensional space (denoted as Cue-Delay-subspace)

spanned by the first two principal components (cue-delay-PC1, cue-delay-PC2), which explained 75% vari-

ance (Figure S6D). Meanwhile, we projected four predefined axes onto Cue-Delay-subspace (Figure 7C),

and then calculated the angle between the axes and Cue-Delay-subspace (Figure 7D).

A

B

Figure 5. jPCA projectionsof the population response during the delay Epoch

(A) Three examples of two-dimensional population rotational dynamics in the color context, which corresponded to

different training configurations. Each trace represents one computer simulation trial (blue star: trial start point; red

circles: trial endpoint).

(B) Three examples of two-dimensional population rotational dynamics in the motion context.
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Figure 7C describes the evolution of the population dynamics in relation to cue stimulus and delay epochs.

To depict the transition of population dynamics more clearly, we further divided the 1000-ms time window

into two intervals. The first 300-ms interval was within the cue stimulus period, starting from the 100ms after

the cue stimulus onset until the end of cue stimulus. During this interval, the separation between two

context-specific trajectories (blue for the color context, gray for the motion context) diverged along their

corresponding context cue axes, and reached a maximum at the end of this interval. In the follow-up 700-

ms window within the delay epoch, the separation between two context-specific trajectories remained

converged along their corresponding context cue axes. Therefore, the separation of context information

generated in the cue stimulus epoch was preserved in the delay epoch, even if this separability weakened

during the delay epoch. Moreover, for the given context, the projection of trajectories in the C-cue-axis at

t = 100 ms was almost the same as that at t = 1000 ms. This correspondence was consistent with the corre-

spondence in the energy of population activity (Figure 3C, gray curve).

Cue-dependent processing of sensory stimulus

Furthermore, we studied how population activity responded appropriately to sensory stimulus according

to the current task context. Similarly, we applied PCA to the neural activity during the sensory stimulus

epoch. The first three principal components (integ-PCs) explained 81% cross-trial variance (Figure 8A),

which was caused by the strength and direction of the color evidence, the strength and direction of the mo-

tion evidence, and context information (color or motion). As shown by the evolution of the population dy-

namics in the three-dimensional subspace (Figure 8B), each neural trajectory corresponded to a specific

task condition (the blue and gray curve sets correspond to the neural trajectories in the color and motion

contexts, respectively), indicating that the activity trajectories in this subspace captured the relationship

between the task-related variables.

To identify the Integ-subspace, we projected the trajectories into three possible subspaces: integ-PC1 and

integ-PC2, integ-PC1 and integ-PC3, and integ-PC2, and integ-PC3. Among these projections of trajec-

tories and choice axes, we selected the subspace defined by integ-PC2 and integ-PC3 that was most

geometrically meaningful in a sense that the C-choice-axis and M-choice-axis is parallel to chosen

Integ-subspace. We further restricted our analysis to the two-dimensional Integ-subspace (spanned by

integ-PC2 and integ-PC3). We computed the angle between four task-related axes and Integ-subspace

(Figure 8C). The angle between the C-cue-axis and Integ-subspace, as well as the angle between the

M-cue-axis and Integ-subspace, both centered around 70+. This means that both the C-cue-axis and

M-cue-axis were orthogonal with Integ-subspace. Moreover, the C-choice-axis and M-choice-axis were

nearly orthogonal (Figure S8A). Further, the angle between the C-choice-axis and Integ-subspace, as

well as the angle between the M-choice-axis and Integ-subspace, were both less than 30+. This implies

that the subspace spanned by the C-choice-axis and M-choice-axis was overlapping with Integ-subspace;

and the projections of the C-choice-axis and M-choice-axis onto the Integ-subspace were still orthogonal

(Figure 8D). Next, we investigated the mechanism of selection and integration through examining the

Figure 6. Illustration of distinct subspaces generated in different task Epochs

Six subspaces are obtained by performing epoch-wise PCA on population response activities during six different periods,

including four single task epochs (Cue epoch, Delay epoch, Integration epoch, and Response epoch) and two cross-

epochs (Cue-Delay epoch and Integration-Response epoch).
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population responses in Integ-subspace in both two- (Figure 8D) and three-dimensional subspaces (Fig-

ure 8B). Several observations are in order.

First, the integration of sensory stimuli corresponded to an evolution of the neural trajectory during the pre-

sentation of stimulus signal. All trajectories started from the same starting point in three-dimensional sub-

space (Figure 8B), which corresponded to the initial pattern of population responses during the delay

epoch. When the stimulus started, the trajectories quickly moved away from their initial state. In Integ-sub-

space, there was a distinct gradual evolution of the neural trajectory along the C-choice-axis andM-choice-

axis (Figure 8D). Specifically, in the color (motion) context trials, the neural trajectory moved along two

opposite directions, which corresponded to the two different visual targets, namely, green (left) and red

(right).

Second, population responses varied according to different sensory inputs. Specifically, the neural trajec-

tories corresponding to the color context were very different from those corresponding to the motion

context, implying that sensory signals were separable at a context-dependent manner. In Figure 8D, the

blue and gray curves represented neural trajectories in the color and motion contexts, respectively. In

the color context, the patterns of population responses also varied with respect to different strengths

and directions of the color stimulus. Therefore, neural trajectories captured multi-dimensional task-related

variables, such as the context information, strength, and direction of sensory stimulus. Moreover, instead of

following a straight line along the C-choice-axis or M-choice-axis, the neural trajectory formed an arc within

the corresponding choice axis. The distance between the projection point of each arc onto the C-choice-

axis and the color-center point (dark blue circle) reflected the strength of the corresponding color evidence

while the position (two sides of the color-center point) of the projection point of each arc onto the color axis

reflected the direction of the target (toward green or red). Once the stimulus signal disappeared, the

network stopped to integrate the sensory evidence, yet the integrated evidence continued to be preserved

along the C-choice-axis (Figures 9A and 9B). Similar discussions were also held in the motion context.

Third, population responses in the color and motion contexts occupied two different parts of subspace,

which corresponded to two orthogonal-but-interesected subspaces. According to the above discussion,

the neural trajectory in the color context was guided by the C-cue-axis and C-choice-axis. Therefore, the

Table 1. The definition of geometry concepts in five neural subspaces. The matrix X varies according to different

subspace.

Figure

Subspace

(in two dimensions)

Geometric

notion Definition and interpretation

Figure 7A Cue-subspace C-cue-axis

M-cue-axis

PCA on matrix Xcue,color, the first PC is defined as the

C-cue-axis. PCA on matrix Xcue,motion, the first PC is

defined as the M-cue-axis.

cue-PC1

cue-PC2

PCA on population responses during the cue stimulus

epoch. The first three PCs are: cue-PC1, cue-PC2, cue-PC3.

Figure 7C Cue-Delay-subspace cue-delay-PC1

cue-delay-PC2

PCA on population responses across two task epochs

(Figure 6). The first three PCs are: cue-delay-PC1,

cue-delay-PC2, cue-delay-PC3

Figure 8D Integ-subspace C-choice-axis

M-choice-axis

PCA on matrix Xinteg,color, the first PC is defined as the

C-choice-axis. PCA on matrix Xinteg,motion, the first PC is

defined as the M-choice-axis

integ-PC2

integ-PC3

PCA on population responses during the sensory

stimulus epoch. The first three PCs are: integ-PC1,

integ-PC2, integ-PC3.

Figure 9B Resp-subspace resp-PC2

resp-PC3

PCA on population responses during the response

epoch (Figure 6). The first three PCs are: resp-PC1,

resp-PC2, resp-PC3.

Figure 9D Integ-Resp-subspace integ-resp-PC2

integ-resp-PC3

PCA on population responses across two task epochs

(Figure 6). The first three PCs are: integ-resp-PC1,

integ-resp-PC2, integ-resp-PC3.
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population activity during the color context occupied a subspace (i.e., Color-subspace spanned by the

C-cue-axis and C-choice-axis). In a similar fashion, population activity in the motion context occupied

the Motion-subspace spanned by the M-cue-axis and M-choice-axis. We found that the projection of all

neural trajectories onto an irrelevant choice axis was almost the same at each moment (Figure 8D). This in-

dicates that the Color-subspace and Motion-subspace were mutually orthogonal: the sensory information

in the color context could not be captured by the M-choice-axis, and the sensory information in the motor

context could not be captured by the C-choice-axis. Moreover, we calculated the angle between the

C-cue-axis and the integ-PC1, as well as the angle between the M-cue-axis and the integ-PC1. Noting

that the range of this angle was 0+� 180+, which helped us detect whether the projection directions of

the two cue axes on integ-PC1 were opposite. We found at each trial, one angle was greater than 90+

and the other was less than 90+ (Figure 8E). That is, the projection directions of the C-cue-axis and

M-cue-axis on integ-PC1 were always opposite, suggesting that Color-subspace and Motion-subspace

were orthogonal but intersected.

Task response

We applied PCA to the population activity during the response epoch, and found that the first three

principal components (resp-PCs) explained 96% data variance (Figure S10A). The three-dimensional trajec-

tories under different trial conditions occupied different positions in the Resp-subspace (Figure 9A).

Similarly, we calculated the angle between the four task-related axes and the Resp-subspace (spanned

by resp-PC2, resp-PC3). The result showed that: (1) The angle between C-cue-axis and Resp-subspace,

as well as the angle between C-cue-axis and Resp-subspace, were both around 70+-90+. (2) The angle

between the C-choice-axis and Resp-subspace, as well as the angle between the M-choice-axis and

Resp-subspace, both centered around 30+ (Figure S10B). Therefore, the near orthogonality between

C-choice-axis and M-choice-axis could be maintained in Resp-subspace (Figure 9B). (3) The projection

A

DC

B

Figure 7. Visualization of neural trajectory in task subspaces

(A) Neural trajectory in the Cue-subspace during the cue stimulus epoch. Blue and gray curves correspond to the color and motion contexts, respectively.

Stars and circle indicate the start and endpoints of the cue stimulus epoch, respectively. Solid lines represent the projections of the C-cue-axis (blue) and

M-cue-axis (gray) in this subspace.

(B) Polar histograms of the angles between four task-related axes and Cue-subspace during the cue stimulus epoch over 20 training configurations.

(C) Neural trajectory in the combined Cue-Delay-subspace. Stars denote the neural state at 100 ms after cue stimulus onset, circles denote the beginning

points of the cue-delay epoch, and dark circles denote the state at 200 ms before the end of delay.

(D) Polar histograms of the angles between four task-related axes and Cue-Delay-subspace.

ll
OPEN ACCESS

iScience 24, 102919, August 20, 2021 11

iScience
Article



of the neural trajectory on the corresponding choice axis was almost the same at each moment, suggesting

that there was no sensory evidence integration during the response epoch (Figure 9B).

To examine how the neural trajectory evolved from the sensory stimulus epoch to the response epoch, we

reapplied PCA to the population activity during a combined-epoch 600-ms period: starting at 500 ms after

the presentation of the sensory stimulus and ending at the moment of decision. The first three PCs

(integ-resp-PCs) explain 92% cross-trial variance (Figure S11B). The neural trajectory in the two-dimensional

subspace (denoted as Integ-Resp-subspace, Figure 9D) had similar characteristics to that during the sensory

stimulus period: First, the angle between the C-choice-axis and Integ-Resp-subspace, as well as the angle be-

tween theM-choice-axis and Integ-Resp-subspace, both centered around 30+ (Figure S11A). Second, the pro-

jection directions of the C-cue-axis and M-cue-axis on integ-resp-PC1 were always opposite (Figure S11C),

thus the integ-resp-PC1 fully captured the context cue information. Third, the projection of all neural trajec-

tories on an irrelevant choice axis was the same at eachmoment (Figure 9D). Therefore, the population activity

during this extended period also occupied two orthogonal-but-intersected subspaces.

Finally, we investigated the impact of weight perturbation on low-dimensional neural trajectories. Specif-

ically, we perturbed the recurrent connection weights and examined the neural activity trajectory in the cor-

responding three-dimensional subspace. The range of local and global perturbation was restricted, and we

examined the neural trajectories during the delay epoch and sensory stimulus epoch, respectively. Under a

small weight perturbation, the relationship between task-related variables, such as the strength and direc-

tion of the stimulus, remained relatively robust (Figures S7 and S9). When the level of perturbation

increased, the task-related information became lost gradually.

A geometric interpretation of context-dependent integration

Based upon our geometric framework and subspace analyses, we propose a geometric interpretation for

context-dependent computation during WM and decision making. To further illustrate the geometric

A

E

D

C

B

Figure 8. Population dynamics during the sensory stimulus Epoch

(A) Ratio of explained variance of the first five PCs in Integ-subspace.

(B) Neural trajectories in the three-dimensional subspace spanned by integ-PC1, integ-PC2, and integ-PC3. The blue and gray curve sets correspond to the

neural trajectories in the color and motion contexts, respectively. Stars and circles indicate the start points and endpoints, respectively. The black dash

curves connecting the endpoints mark manifold Mcolor and Mmotion, respectively.

(C) Polar histograms of the angles between four task-related axes and Integ-subspace.

(D) Neural trajectories in the two-dimensional subspace spanned by integ-PC2 and integ-PC3. The blue dashed line represents the projection of the C-cue-

axis and the dark blue solid circle denotes the center point of the projection. The gray dashed line represents the projection of theM-cue-axis and the orange

solid circle denotes the center point of the projection.

(E) The angles between integ-PC1 and the C-cue-axis (blue) or M-cue-axis (gray) in 20 trials.
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notion, we defined dynamic attractors (such as fixed points) in the high-dimensional RNN dynamics

(Sussillo and Barak, 2013).

Specifically, we used numerical optimization to minimize qðxÞ= 1
2jj _xjj2 to identify the fixed points and slow

points. Each dot in Figure 10A represents a slow point with qðxÞ<0:01, and each cross represents a fixed

point with qðxÞ<0:0001. These fixed points were further arranged along a line for a specific context (blue

crosses: color context; black crosses: motion context), forming a line attractor (Figures 10A and 10B).

We have showed the end of neural trajectories during the sensory integration epoch were aligned with

manifold M (Figure 8B); and the projection of manifold M in the Integ-subspace was parallel to the cor-

responding choice axis (Figure 8D), suggesting that the color and motion information could be captured

by manifold Mcolor and manifold Mmotion, respectively. Interestingly, the line attractors were aligned near

the manifold, suggesting that the integration of sensory evidence could be explained by the arrangement

of fixed points: During the sensory integration epoch, the population dynamics drove context-specific

trajectories to back to their attractors associated with the correct choice. That is, the population activity

was attracted toward the corresponding manifold M of slow dynamics at the end of the sensory stimuli

(Figure 8B). By projecting these slow points and fixed points onto Resp-subspace, the population trajec-

tories evolved around the corresponding fixed points (Figure 10C). Additionally, the sensory information

integrated during the sensory stimuli epoch was maintained during the response epoch.

Moreover, our analysis within the proposed geometric framework has shown that Color-subspace and

Motion-subspace were orthogonal-but-intersected. Therefore, the color contextual cue triggered a

dynamical process so that the relevant color evidence was integrated while ignoring the irrelevant motion

evidence from the same trials because of their mutual orthogonality in the subspace. The opposite pattern

was also evident in the motion context.

A

DC

B

Figure 9. Visualization of neural trajectory in the response subspace

(A) Neural trajectories in the three-dimensional subspace spanned by resp-PC1, resp-PC2, and resp-PC3 during the

response epoch.

(B) Same as panel A, except in two-dimensional subspace.

(C) Neural trajectories in the three-dimensional subspace spanned by integ-resp-PC2, integ-resp-PC2, and integ-resp-

PC3. Each trajectory started from 500 ms after the beginning of sensory stimulus until the action response.

(D) Same as panel C, except in two-dimensional subspace.
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Overall, we found clear geometrical structures in the task epoch-specific subspaces, which can provide (1) a

new perspective to reexamine experimental data; (2) a quantitative framework to test computational hy-

potheses or mechanisms of context-dependent computation (3) an abstraction of theory (e.g., dynamic

line attractor); for WM or decision making that supports experimental findings.

DISCUSSION

Context-dependent computation is a key hallmark for achieving cognitive flexibility. However, the compu-

tational principles underlying context-dependent WM or decision-making remains incompletely under-

stood. We trained an RNN to perform a delayed context-dependent decision-making task, and proposed

a geometric framework that helps uncover population dynamics of the trained RNN. Importantly, the

trained RNN produced some emergent neurophysiological features at both single unit and population

levels. The PCA and weight perturbation analysis further revealed neural representations of context-

specific dynamic population coding and information integration. In low-dimensional neural subspaces,

the RNN encoded the context information through the separation of neural trajectories and maintained

the context information during the delay epoch. Finally, sensory integration during the decision-making

A

DC

B

Figure 10. Visualization of dynamic attractors in neural subspace

(A) Neural trajectories in three-dimensional Integ-subspace for different sensory stimuli eventually converged to different

attractors. Blue and black crosses correspond to the color andmotion contexts, respectively. Dots denote slow points and

different colors correspond to different trial stimuli (red dots as red stimuli, green dots as green stimuli, olive dots as

leftward direction stimuli, and brown dots as rightward direction stimuli).

(B) The projection of slow points and fixed points onto Integ-subspace.

(C) The projection of slow points and fixed points onto the Resp-subspace.

(D) A schematic of neural trajectory through a three-dimensional subspace during the transition from evidence of sensory

integration to choice making. Three axes include two choice axes and one context cue axis. Dotted lines represent neural

trajectories during the sensory stimulus epoch, and solid lines reflect neural trajectories during a 75-ms window following

the saccade onset.
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period can be viewed by an evolving neural trajectory that occupies in two orthogonal-but-intersected

subspaces.

Artificial RNNs are generally considered as black-box models and the underlying dynamical mechanisms

are poorly understood. To unravel the black box, Sussillo and Barak (2013) proposed a dynamical systems

framework to uncover the computational mechanisms of RNNs. In a similar manner, we used reverse-engi-

neering and subspace analyses to uncover themechanisms of population coding in the trained RNN. At the

single unit level, many units exhibited mixed selectivity to different task-related variables. At the popula-

tion level, sequential activation (‘neural sequences’) and rotational dynamics emerged from the trained

RNN during the delay period.

In experimental data, neural sequential activity often emerged in temporally structured behaviors, which

has been observed in the many brain regions, such as the mouse prefrontal or parietal cortices (Harvey

et al., 2012; Schmitt et al., 2017). Moreover, several lines of RNN modeling work have been reported

and our results of neural sequences and SI were also consistent with previous modeling (Orhan and Ma,

2019; Bi and Zhou, 2020). Notably, the experimental results reported by Mante et al. (2013) did not show

sequential activity. One possible reason may be due to the fact that there was no temporal relationship be-

tween the contextual cue and the subsequent signal stimulus. Dimensionality reduction-based subspace

analyses have proven useful to uncover temporal dynamics of RNNs (Kobak et al., 2016; Kao, 2019), and

intuitive geometric notions can further reveal the orthgonality of task variables in the neural subspace

(Bi and Zhou, 2020).

Our analyses demonstrated that the context cue triggered the separation of neural trajectories in a

low-dimensional subspace, and the dynamic system was in a high-activity state. During the delay

epoch, the population activity decayed to a stable low-activity state while maintaining the context

separation. During the stimulus signal presentation, we found two main features of population re-

sponses: (1) The population responses exhibited different patterns to varying sensory inputs. (2) The pop-

ulation response in the color and motion contexts occupied two orthogonal-but-intersected subspaces.

These features of population responses can be summarized schematically in Figure 10D, which provide

fundamental constraints on the mechanisms of context-dependent computation in flexible cognitive

tasks.

RNNs for understanding computational mechanisms of brain functions

Due to its powerful computational capabilities, RNNs exhibit complex dynamics similar to experimental

findings despite their oversimplification and abstraction of biological brain operation (nonlinear, feedback,

and distributed computation) (Wolfgang et al., 2002; Sussillo and Abbott, 2009; Buonomano and Maass,

2009; Mante et al., 2013). In an analogue to animal behavioral training, RNNs can perform a wide range

of cognitive tasks with supervised learning and labeled examples, including WM (Barak et al, 2010, 2013;

Rajan et al., 2016), motor control (Laje and Buonomano, 2013; Hennequin et al., 2014), and decision-making

(Song et al., 2016; Sussillo et al., 2015; Thomas, 2017; Yang et al., 2019; Aoi et al., 2020). The activity and

network connectivity of the trained RNN can be accessed with specific perturbation strategies to help

reveal underlying computational mechanisms. For example, the trained RNN can discover features of struc-

tural and functional connectivity that support robust transient activities bin a match-to-category task (Chai-

sangmongkon et al., 2017). Orhan and Ma (2019) identified the circuit-related and task-related factor that

generates the sequential or persistent activity by training the RNN to perform various WM tasks. Goudar

and Buonomano (2018) demonstrated that time-varying sensory and motor patterns can be stored as neu-

ral trajectories within the RNN, helping us understand the time-warping codes in the brain. RNNs have also

been incorporated with more biological features, such as Dale’s principle, which serve as a valuable plat-

form for generating or testing new hypotheses (Song et al., 2016; Xue et al., 2021; Rajakumar et al., 2021).

In many brain regions, information is encoded by the activity patterns of the neuronal population. A dynam-

ical system view of population activity has become increasingly prevalent in neuroscience (Churchland

et al., 2012; Sauerbrei et al., 2020; Shreya et al., 2020). With the help of dimensionality reduction, the pop-

ulation activity over time corresponds to neural trajectories in a low-dimensional subspace (Churchland

et al., 2012; Kobak et al., 2016). Although we have focused our RNNmodeling on a cognitive task, our geo-

metric framework and subspace analysis can be applied to investigate other brain areas or brain functions,
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such as the premotor cortex or primary motor cortex in various motor tasks (Elsayed et al., 2016; Kao, 2019;

Sussillo et al., 2015) and the striatum (Zhou et al., 2020).

Relation to existing working memory theories

In context-dependent computational tasks, in order to decide which type of subsequent sensory inputs to

be integrated, the information about the context rule needs to be preserved as WM across different task

epochs. In the literature, various theories and computational models for WM have been developed. The

classic models suggest that the PFC support WM via the stable, persistent activity of stimulus-specific neu-

rons (Wang, 2001; Miller and Cohen, 2001; Miller, 2000), which bridges the gap between the memory rep-

resentation of the context cue and sensory stimulus epochs. However, some experimental observations

show that neural population coding during WM is dynamic (Barak et al., 2010; Spaak et al., 2017). Classical

and new theoretical models in WM have been reviewed and tested in light of recent experimental findings

(Lundqvist et al., 2016; Miller et al., 2018). Similar to other modeling efforts (Orhan andMa, 2019; Xue et al.,

2021), the single-unit response in our computer simulations showed strong temporal dynamics rather than

persistent activity during the delay epoch. Therefore, our model supports the finding of experimental

studies that information is often stored in dynamic population codes duringWM. However, theWM is prob-

ably more complex than a simple theory that can explain everything, and neural representations (e.g.,

persistent vs. oscillatory dynamics) may highly depend on the specific task and recording area/technique.

Moreover, unlike previous studies that suggested a dissociation between the stimulus-driven response and

subsequent delay activity in the PFC (Barak et al., 2010; Meyers et al., 2008), our results showed the oppo-

site phenomenon. In fact, the context information encoded by population activity during the cue stimulus

epoch was maintained by low energy activity (Figure 3C) and sequential representation (Figure 4F) during

the delay epoch.

In the trained RNN, population response is highly dynamic during both the cue stimulus and the

delay epoch (Figure 3C). One possible explanation for the dynamic activity during the early part of

the delay epoch is that it reflects the transformation from a transient context cue input into a stable

WM representation, and this transformation is first contained in a high-energy dynamic trajectory in

the state space, and then the system returns to a low-energy state. In the synaptic theory of WM (Mon-

gillo et al., 2008), memories can be maintained as a pattern of synaptic weights, and neural activity

changes synaptic efficacy, leaving a synaptic memory trace via short-term synaptic plasticity. This WM

model suggests that the previous cue stimuli may be recovered from the network architecture, allowing

for an energy-saving mode of short-term memory, rather than relying on the maintenance of high-energy

persistent activity. Based on this synaptic theory of WM, Stokes (2015) have predicted that WM represen-

tations should be stationary and have low energy. Our RNN results are also consistent with this

prediction.

Limitations of the study

There are several limitations of our work. First, neurons in the mammalian cerebral cortex have diverse

cell types and follow Dale’s principle—that is, they have excitatory and inhibitory effects on their post-

synaptic neurons. However, such biological constraints were not considered in our current rate-based

RNN model. Second, we trained the RNN using a standard gradient-based back-propagation algorithm,

whereas synaptic plasticity in the brain is known to use Hebbian plasticity or spike-timing dependent

plasticity (STDP). A combination of unsupervised and reinforcement learning algorithms to train RNNs

would be more biologically plausible in modeling neuronal population dynamics. Third, finding line at-

tractors in high-dimensional RNN dynamics relies on numerical methods and remains challenging. Devel-

opment of efficient subspace methods for identifying dynamical attractors would be the subject of our

future research direction.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

ll
OPEN ACCESS

16 iScience 24, 102919, August 20, 2021

iScience
Article



d METHOD DETAILS

B Network structure

B Task description

B RNN training

B Definition of task-related axes

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Computation of sequentiality index (SI)

B Finding rotation dynamics via jPCA

B Finding fixed points and line attractor

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.102919.

ACKNOWLEDGMENTS

This work was supported by a grant (No. 11172103) from the National Natural Science Foundation of China,

China (S.L.).

AUTHOR CONTRIBUTIONS

X.Z., S.L. and Z.S.C. designed the experiment. X.Z. performed all experiments and analyses. X.Z. and Z.S.C.

wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 15, 2021

Revised: May 25, 2021

Accepted: July 27, 2021

Published: August 20, 2021

REFERENCES
Abbott, L.F., and Chance, F.S. (2005). Drivers and
modulators from push-pull and balanced
synaptic input. Prog. Brain Res. 149, 147–155.

Aoi, M.C., Mante, V., and Pillow, J.W. (2020).
Prefrontal cortex exhibits multidimensional
dynamic encoding during decision-making. Nat.
Neurosci. 23, 1410–1420.

Baddeley, A. (2003). Working memory: looking
back and looking forward. Nat. Rev. Neurosci. 4,
829–838.

Barak, O., Tsodyks, M., and Romo, R. (2010).
Neuronal population coding of parametric
working memory. J. Neurosci. 30, 9424–9430.

Barak, O., Sussillo, D., Romo, R., Tsodyks, M., and
Abbott, L.F. (2013). From fixed points to chaos:
three models of delayed discrimination. Prog.
Neurobiol. 103, 214–222.

Bi, Z., and Zhou, C. (2020). Understanding the
computation of time using neural network
models. Proc. Natl. Acad. Sci. U S A 117, 10530–
10540.

Buonomano, D.V., and Maass, W. (2009). State-
dependent computations: spatiotemporal
processing in cortical networks. Nat. Rev.
Neurosci. 10, 113–125.

Chaisangmongkon, W., Swaminathan, S.K.,
Freedman, D.J., and Wang, X.-J. (2017).

Computing by robust transience: how the fronto-
parietal network performs sequential, category-
based decisions. Neuron 93, 1504–1517.

Chamberlain, S.R., Fineberg, N.A., Menzies, L.A.,
Blackwell, A.D., Bullmore, E.T., Robbins, T.W.,
and Sahakian, B.J. (2007). Impaired cognitive
flexibility and motor inhibition in unaffected first-
degree relatives of patients with obsessive-
compulsive disorder. Am. J. Psychiatry 164,
335–338.

Churchland, M.M., Cunningham, J.P., Kaufman,
M.T., Foster, J.D., Nuyujukian, P., Ryu, S.I., and
Shenoy, K.V. (2012). Neural population dynamics
during reaching. Nature 487, 51–56.

Cichy, R.M., Pantazis, D., and Oliva, A. (2014).
Resolving human object recognition in space and
time. Nat. Neurosci. 17, 455–462.

Dajani, D.R., and Uddin, L.Q. (2015). Demystifying
cognitive flexibility: implications for clinical and
developmental neuroscience. Trends Neurosci.
38, 571–578.

Diamond, A. (2013). Executive functions. Annu.
Rev. Psychol. 64, 135–168.

Duncan, J. (2001). An adaptive coding model of
neural function in prefrontal cortex. Nat Rev
Neurosci 2, 820–829.

Eiselt, A.-K., and Nieder, A. (2016). Single-cell
coding of sensory, spatial and numerical
magnitudes in primate prefrontal, premotor and
cingulate motor cortices. Exp. Brain Res. 234,
241–254.

Elsayed, G.F., Lara, A.H., Kaufman, M.T.,
Churchland, M.M., and Cunningham, J.P. (2016).
Reorganization between preparatory and
movement population responses inmotor cortex.
Nat. Commun. 7, 13239.

Fiete, I.R., Senn, W., Wang, C.Z.H., and
Hahnloser, R.H.R. (2010). Spike-time-dependent
plasticity and heterosynaptic competition
organize networks to produce long scale-free
sequences of neural activity. Neuron 65, 563–576.

Goudar, V., and Buonomano, D.V. (2018).
Encoding sensory and motor patterns as time-
invariant trajectories in recurrent neural networks.
Elife 7, e31134.

Gray, D.T., Smith, A.C., Burke, S.N., Gazzaley, A.,
and Barnes, C.A. (2017). Attentional updating and
monitoring and affective shifting are impacted
independently by aging in macaque monkeys.
Behav. Brain Res. 322, 329–338.

Harvey, C.D., Coen, P., and Tank, D.W. (2012).
Choice-specific sequences in parietal cortex
during a virtual-navigation decision task. Nature
484, 62–68.

ll
OPEN ACCESS

iScience 24, 102919, August 20, 2021 17

iScience
Article

https://doi.org/10.1016/j.isci.2021.102919
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref1
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref1
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref1
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref2
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref2
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref2
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref2
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref4
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref4
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref4
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref5
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref5
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref5
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref7
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref7
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref7
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref7
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref8
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref8
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref8
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref8
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref9
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref9
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref9
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref9
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref10
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref10
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref10
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref10
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref10
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref11
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref11
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref11
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref11
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref11
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref11
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref11
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref12
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref12
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref12
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref12
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref13
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref13
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref13
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref14
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref14
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref14
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref14
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref15
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref15
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref78
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref78
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref78
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref16
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref16
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref16
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref16
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref16
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref17
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref17
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref17
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref17
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref17
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref18
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref18
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref18
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref18
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref18
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref19
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref19
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref19
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref19
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref20
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref20
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref20
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref20
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref20
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref21
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref21
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref21
http://refhub.elsevier.com/S2589-0042(21)00887-7/sref21


Hennequin, G., Vogels, T.P., and Gerstner, W.
(2014). Optimal control of transient dynamics in
balanced networks supports generation of
complex movements. Neuron 82, 1394–1406.

Higham, N.J. (1986). Computing the polar
decomposition with applications. SIAM J. Sci.
Stat. Comput. 7, 1160–1174.

Hyman, J.M., Whitman, J., Emberly, E.,
Woodward, T.S., and Seamans, J.K. (2013). Action
and outcome activity state patterns in the anterior
cingulate cortex. Cereb. Cortex 23, 1257–1268.

Kao, J.C. (2019). Considerations in using recurrent
neural networks to probe neural dynamics.
J. Neurophysiol. 122, 2504–2521.

King, J.R., and Dehaene, S. (2014). Characterizing
the dynamics of mental representations: the
temporal generalization method. Trends Cogn.
Sci. 18, 203–210.

Kingma, D.P., and Ba, J.L. (2015). Adam: a
method for stochastic optimization. Proc. Int.
Conf. Learn. Representations (Iclr).

Kobak, D., Brendel, W., Constantinidis, C.,
Feierstein, C.E., Kepecs, A., Mainen, Z.F., Qi,
X.-L., Romo, R., and Machens, C.K. (2016).
Demixed principal component analysis of neural
population data. Elife 5, e10989.

Laje, R., and Buonomano, D.V. (2013). Robust
timing and motor patterns by taming chaos in
recurrent neural networks. Nat. Neurosci. 16,
925–933.

Le, X., Caroline, B., Laetitia, H.-B., and Peter, S.
(2018). Regulation of striatal cells and goal-
directed behavior by cerebellar outputs. Nat.
Commun. 9, 1–14.

Lebedev, M.A., Ossadtchi, A., Mill, N.A., UrpiÌ,
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Further information and requests for data should be directed to and will be fulfilled by the Lead Contact,

Zhe S. Chen (zhe.chen@nyulangone.org).

Materials availability

The study did not generate new reagents.

Data and code availability

All code has been deposited and is publicly available on GitHub (https://github.com/Xhan-Zhang/

contextInteg)

METHOD DETAILS

Network structure

We constructed an RNN network of N= 256 fully interconnected neurons described by a standard firing-

rate model. The continuous-time dynamics of the RNN are governed by the following equations

t _x = � x+Wrecr+Winu+b+
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ts2

rec

q
x;

r = f ðxÞ
(Equation 1)

where x, r, and u represent the synaptic current, firing rate, and network input, respectively; t = 20 ms is

time constant, which mimics the synaptic dynamic on the basis of NMDA receptors; b is the background

input; x are independent zero-mean Gaussian white noise scaled by srec = 0:05, which represent the

intrinsic noise. The firing rate r is related to the corresponding current x by a Softplus transfer function

f ðxÞ = logð1 +expðxÞÞ, which maps every input currents to a positive firing rate. The output of the network

is a linear mapping between the firing rate and a readout synaptic weight:

z = Woutr+bout (Equation 2)

whereWin,Wrec , andWout are the input weight, recurrent weight, and output weight, respectively. We used

Euler’s method to discretize the continuous-time equation and derive the discrete-time version

t _xt = ð1� aÞxt�1 +a

�
Wrecrt�1 +Winut +b+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a�1s2

rec

q
x

�
rt = f ðxtÞ

(Equation 3)

where x � Nð0; 1Þ was drawn from a standard normal distribution; a = Dt=t, and Dt is time step. In our

study, we set Dt = 20 ms. Similar to the previous computational models (Wang et al., 2018; Orhan and

Ma, 2019), we used a = 1. Furthermore, we assumed that the RNN received two types of noisy input:

rule-specific input urule and stimulus-specific input ustim:

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python Open source www.python.org

Sequentiality index Orhan and Ma (2019) https://github.com/eminorhan/recurrent-memory

Fixed point analysis Sussillo and Barak (2013) https://github.com/elipollock/EMPJ

Network structure Yang et al. (2019) https://github.com/gyyang/multitask

Dimensionality reduction and sequence visualization Bi and Zhou (2020) https://github.com/zedongbi/IntervalTiming

Deposited code This study https://github.com/Xhan-Zhang/contextInteg
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u= ðurule; ustimÞ+ unoise

unoise �
ffiffiffiffiffiffiffiffiffi
2s2

in

q
Nð0; 1Þ

(Equation 4)

where sin denotes the standard deviation of input noise. We set srec = 0:05, sin = 0:01 in our computer

simulations.

Task description

The task is schematized in Figure 1A, which is inspired and modified from a context-dependent task per-

formed by macaque monkeys (Mante et al., 2013). The network received pulses from three input channels.

The first channel consisted of the context cue stimulus, which contained two units encoding different

context information. The other two channels consisted of two different sensory stimuli modalities. One

channel represented the color sensory stimulus, which contained two units encoding the color stimulus

strength gcolor;1, gcolor;2. The other channel represented the motion sensory stimulus, which encoded the

motion stimulus strength gmotion;1, gmotion;2. The stimulus strengths were determined by the coherence

for the color modality and motion modality (ccolor , cmotion), and set as follows:

gcolor ;1 = g+ c; gcolor;2 =g� c (Equation 5)

A similar equation held for the motion modality. g denotes the average strength of the two color stimuli,

which was drawn from a uniform distribution g � Uð0:8; 1:2Þ (where Uða;bÞ represents a uniform distribution

between a and b). Coherence cmeasured the strength difference of these two stimuli, which was uniformly

distributed as

c � Uð � 0:08; � 0:04; � 0:02; � 0:01;0:01;0:02; 0:04;0:08Þ (Equation 6)

The task consisted of distinct epochs. For each trial, a fixation epoch was present before the stimulus pre-

sentation. It was followed by the context cue stimulus epoch that lasted Tstim1 = 400ms. After a delay epoch

(with duration of Tdelay = 800 ms), the stimulus signal was presented in the second stimulus epoch with a

duration of Tstim2 = 800 ms. Finally, the network responded in the Go epoch with an interval of Tresp.

RNN training

If the relevant evidence points towards choice 1, the output channel 1 (composed of two output units) was

activated, otherwise the output channel 2 (composed of two output units) was activated. The cost function L

is the mean squared error (MSE) between the network output (z) and target outputs (bz):
L =

1

Nout

XNout

i = 1

�
zi � bz i

�2

(Equation 7)

We optimized the weights fWin;Wrec ;Woutg using the well-established Adam algorithm (Kingma and Ba,

2015), with default configuration of hyperparameters. The learning rate is 0.0005, and the exponential

decay rate for the first and second moment estimates are 0.9 and 0.999, respectively. The off-diagonal con-

nections of recurrent weight matrix Wrec were initialized as independent Gaussian variables with mean

0 and standard deviations 0:3=
ffiffiffiffi
N

p
, and diagonal connections were initialized to 1. The initial input connec-

tion weights were uniformly drawn from �0:5 to 0.5. The output connection weights Wout were initialized

from an independent Gaussian random distribution with mean 0 and standard deviation 0:4=
ffiffiffiffi
N

p
.

Definition of task-related axes

We first grouped neural population activity into the matrix X˛RN3CT , whereN= 256 denotes the number of

RNN units, C = 138 denotes the number of the conditions (8 different sensory stimulus conditions in the

given context), and T denotes the time step. Spike activity was binned by a 20-ms window. Different task

epochs correspond to different X-matrices.

C-cue-axis and M-cue-axis. During the cue stimulus epoch, for the given color context, we obtained the

matrix Xcue;color˛RN3CT , where N = 256; T = 400=20. We further performed PCA on the matrix Xcue;color .

The first PC explained 91% of data variance (Figure S6C, green bar), so we defined it as the C-cue-axis.

Similarly, for the given motion context, we performed PCA on the matrix Xcue;motion˛RN3CT and the ratio

of explained variance of the first five PCs is also shown in Figure S6C (grey bar). The first PC explained

92% of data variance. Therefore, we defined the first PC dimension as the M-cue-axis(Table 1).
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C-choice-axis and M-choice-axis. The population activity matrices in the given context were

Xinteg;color˛RN3CT and Xinteg;motion˛RN3CT , where T = 800=20. We performed PCA on

Xinteg;color˛RN3CT and Xinteg;motion˛RN3CT , respectively. The ratio of explained variance of the first

five PCs in the specific context is shown in Figure S8B. In a similar fashion, we defined C-choice-

axis and M-choice-axis for the color and motion contexts, respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

Computation of sequentiality index (SI)

We computed the SI to quantify the sequential activation of the population response of excitatory neurons

during the delay epoch. The SI is defined as the sum of the entropy of the peak response time distribution

of the recurrent neurons and the mean log ridge-to-background ratio of the neurons, where the ridge-to-

background ratio for a given neuron is defined as the mean activity of the neuron inside a small window

around its peak response time divided by its mean activity outside this window (Orhan and Ma, 2019).

To compare the SI statistics of trained RNN with untrained RNN, we performed additional Monte Carlo

control analyses. Briefly, given each randomly initialized weights, we simulate the activity of 256 neurons

from the RNN using the same number of trials. We then averaged, sorted the population activity, and

computed the SI statistic. We repeated the procedure 10,000 times and used that to compute the Monte

Carlo p-value.

Finding rotation dynamics via jPCA

The jPCA method has been used to reveal rotational dynamics of neuronal population responses (Church-

land et al., 2012). We assumed that the data were modeled as a linear time-invariant continuous dynamical

system of the form: _x = Mx, where the linear transformation matrixM was constrained to be skew-symmet-

ric (i.e., Mu = �M). The jPCA algorithm projects high-dimensional data xðtÞ onto the eigenvectors of the

Mmatrix, and these eigenvectors arise in complex conjugate pairs. Given a pair of eigenvectors fvk ;vkg, the
k-th jPCA projection plane axes are defined as uk;1 = vk + vk and uk;2 = jðvk �vkÞ (where j =

ffiffiffiffiffiffiffi�1
p

). The solution

to the above continuous-time differential equation is given by xðtÞ = eMtxð0Þ, where the family feMtg is

often referred to as the semi-group generated by the linear operator M. Since M is skew-symmetric, eM

is orthogonal; therefore, it can describe the rotation of the initial condition xð0Þ over time. It is emphasized

that the jPCAmethod is based on a linear approximation of the nonlinear dynamics described by the RNN,

so that the potential rotation or oscillatory dynamics can be captured.

Applying eigenvalue decomposition to the real skew-symmetric matrixM, so thatM = ULU�1, whereL is a

diagonal matrix whose entries fligNi = 1 are a set of (zero or purely imaginary) eigenvalues. Upon time discre-

tization (assuming dt = 1), we obtained the discrete analog of dynamic equation xðt + 1Þ = ðI +MÞxðtÞ.
Alternatively, we directly solved a discrete dynamical system of the vector autoregressive (VAR) process

form xðt + 1Þ = QxðtÞover the space of orthogonal Q matrices. Mathematically, we have previously shown

that this is equivalent to solving the following constrained optimization problem (Nemati et al., 2014):

Q� = argmin
Q

kjA�Qjk2F ; subject to QQu = I; (Equation 8)

where k ,kF denotes the matrix Frobenius norm, and A= ðXt + 1X
u
t ÞðXtX

u
t Þ�1

represents the least square so-

lution to the unconstrained problem xðt + 1Þ = AxðtÞ. The solution to the above constrained optimization is

given by the orthogonal matrix factor of Polar Decomposition of matrix A, namely A=QP (Higham, 1986).

Finding fixed points and line attractor

We focused on finding the fixed points and slow points of dynamical system to explore the mechanism by

which the RNN performed the context-dependent task. The computational task was to find some points

that satisfy _xðtÞ= 0 for all t, that is, we needed to solve a first-order differential equation

�x+Wrecr+Winu+b+
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ts2

rec

q
x= 0 (Equation 9)

for a constant input u and with a transfer function r = f ðxÞ. However, the nonlinear function f ðxÞ makes it

difficult to find an analytical solution to the differential equation. Therefore, we identified the fixed points

and slow points through numerical optimization. According to the algorithm described in Sussillo and

Barak (2013), we solved the optimization problem as follows:
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min
x

qðxÞ (Equation 10)

where qðxÞ = 1
2k _xk2. To identify the local minimum, we defined the RNN state x as a slow point if qðxÞ< 0:01

and x is a fixed point if qðxÞ<0:0001. These fixed points and slow points were calculated during the sensory

stimulus epoch. The initial conditions for optimization were points in the neighborhood of xðtÞ, which was

the start state of RNN system trajectories. For each fixed point, we repeated the optimization procedure

300 times, and the initial conditions at each time were sampled from the neighborhood of xðtÞ. Based
on these 300 candidate fixed points, we chose stable fixed points as attractors, characterized by slow

dynamics. We determined a fixed point being stable if neural states empirically converged to attractors.

Here, we only considered stable fixed points (represented by cross symbols in Figure 10). For a given

context, there were 8 different trial conditions, and the population activity on each trial condition was char-

acterized by a state trajectory (Figure 8C). In total, we identified 16 attractors and each state trajectory

eventually converged to its fixed-point attractor (Figure 10A). The initial conditions for slow point optimi-

zation were sampled from a normalized randomGaussian matrix. We repeated the optimization procedure

56 times for each trial condition and obtained 56316= 896 slow points.

ll
OPEN ACCESS

iScience 24, 102919, August 20, 2021 23

iScience
Article


	ISCI102919_proof_v24i8.pdf
	A geometric framework for understanding dynamic information integration in context-dependent computation
	Introduction
	Results
	Trained RNN for performing a delayed context-dependent integration task
	Single Unit Responses
	Mixed selectivity

	Population Response
	Cue processing
	Sequential activity
	Rotation dynamics

	Definition of task epoch-specific subspaces and axes
	Cue information maintenance
	Cue-dependent processing of sensory stimulus
	Task response
	A geometric interpretation of context-dependent integration

	Discussion
	RNNs for understanding computational mechanisms of brain functions
	Relation to existing working memory theories
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Network structure
	Task description
	RNN training
	Definition of task-related axes

	Quantification and statistical analysis
	Computation of sequentiality index (SI)
	Finding rotation dynamics via jPCA
	Finding fixed points and line attractor





