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Simple Summary: Hepatocellular carcinoma (HCC) is a common malignancy worldwide. The
HCC generally develops in the liver of patients already suffering from chronic liver disease. There
have been significant advances in both the curative and palliative treatment of HCC. Although
liver resection is a curative treatment for HCC, its indication is often limited due to an impaired
liver function reservoir. There is still a need to understand how to control liver regeneration after
resection and find better cancer immunotherapy and anticancer drugs for advanced HCC. Suppressors
of cytokine signaling (SOCS) negatively regulate cytokine signaling related to cell proliferation,
differentiation, and immune response; therefore, SOCS are thought to play an important role in HCC
development and liver regeneration.

Abstract: Cytokines are secreted soluble glycoproteins that regulate cellular growth, proliferation,
and differentiation. Suppressors of cytokine signaling (SOCS) proteins negatively regulate cytokine
signaling and form a classical negative feedback loop in the signaling pathways. There are eight
members of the SOCS family. The SOCS proteins are all comprised of a loosely conserved N-terminal
domain, a central Src homology 2 (SH2) domain, and a highly conserved SOCS box at the C-terminus.
The role of SOCS proteins has been implicated in the regulation of cytokines and growth factors
in liver diseases. The SOCS1 and SOCS3 proteins are involved in immune response and inhibit
protective interferon signaling in viral hepatitis. A decreased expression of SOCS3 is associated
with advanced stage and poor prognosis of patients with hepatocellular carcinoma (HCC). DNA
methylations of SOCS1 and SOCS3 are found in HCC. Precise regulation of liver regeneration is
influenced by stimulatory and inhibitory factors after partial hepatectomy (PH), in particular, SOCS2
and SOCS3 are induced at an early time point after PH. Evidence supporting the important role of
SOCS signaling during liver regeneration also supports a role of SOCS signaling in HCC. Immuno-
oncology drugs are now the first-line therapy for advanced HCC. The SOCS can be potential targets
for HCC in terms of cell proliferation, cell differentiation, and immune response. In this literature
review, we summarize recent findings of the SOCS family proteins related to HCC and liver diseases.

Keywords: hepatocellular carcinoma; suppressor of cytokine signaling; liver regeneration

1. Introduction

Hepatocellular carcinoma (HCC) is a common malignancy worldwide, responsible for
5% of all newly diagnosed cancers [1]. Primary liver cancer was ranked sixth for cancer
incidence and third for deaths in 2020. Due to the advanced nature at presentation, most
cases are incurable and 810,000–830,000 people die every year in the world due to liver
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cancer [1,2]. Liver cancer was the leading cause of cancer mortality in Mongolia, Thailand,
Cambodia, Egypt, Guatemala, and an additional 18 countries, only among men, in 2020 [1].
Despite this grim prognosis, there have been significant advances in both the curative and
palliative treatment of HCC, including liver resection, local ablation therapy, radiotherapy,
chemotherapy, and liver transplantation [3–6].

One of the major hurdles to performing liver resection for HCC is the need to resect
large portions of the liver, leaving insufficient residual tissue to maintain homeostasis. This
leads to liver insufficiency and death. A liver transplant is an excellent option for HCC,
with an estimated cure rate of 75.8% [7], but this option is limited by low organ supply.

A promising approach for increasing the number of patients that could tolerate resec-
tion would be to develop techniques or technologies to increase liver mass either pre- or
post-operative, and therefore permit resections that were previously impossible. Makuuchi
et al. first reported portal vein embolization of the diseased side of a liver to be resected to
induce hypertrophy of the non-diseased remnant liver [8]. In other words, if liver volume
could be increased, surgeons could resect more liver, and curative resection would be more
widely indicated and achieved.

To address this important clinical problem, we have focused on the suppressors of the
cytokine signaling (SOCS) family because SOCS gene expression levels have been shown to
increase early after liver resection in experiments on mice [9,10]. Cytokines regulate major
cellular growth and differentiation, including embryonic development, wound healing,
immunity, and hematopoiesis.

The SOCS family is a group of intracellular proteins related to cytokine downstream
signaling, which generally block Janus kinase (JAK)/signal transducers and activators
of transcription (STAT) pathway [11–13]. To date, eight members of the SOCS family are
known. Yoshimura et al. first identified a novel early gene induced in response to several
cytokines in 1995 and described it as cytokine-inducible Src homology 2 (SH2) domain-
containing protein (CIS) [14]. Next, SOCS1 was reported by three groups in 1997 as a novel
JAK regulatory protein [12,15,16]. Proteins SOCS2, SOCS3, SOCS4, SOCS5, SOCS6, and
SOCS7 were found in searches of DNA and protein databases. The SOCS family members
all contain an Src homology 2 (SH2) domain and a segment called the SOCS box located
near the C terminal [17]. Both SOCS2 and CIS show 38% amino-acid sequence similarity,
and SOCS1 and SOCS3 have 25% amino-acid sequence similarity [12]. The SOCS1 and
SOCS3 have a kinase inhibitory region (KIR) domain [18]. The structure of SOCS protein is
shown in Figure 1.
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Figure 1. The structure of the SOCS protein. All SOCS family members contain an Src homology
2 (SH2) domain and a segment called the SOCS box located near the C terminal. The SOCS1 and
SOCS3 proteins have a unique 12-residue N-terminal kinase inhibitory region (KIR) domain. The
KIR domain plays an important role in the interaction with Janus kinase (JAK)/signal transducers
and activators of transcription (STAT) pathway. Abbreviation: CIS, cytokine-inducible Src homology
2 domain-containing protein; SOCS, suppressor of cytokine signaling; SH2, Src homology 2; KIR,
kinase inhibitory region.

The SOCS expression can be induced by cytokine binding to a cognate receptor. The
binding results in activation of the JAK/STAT pathway and induces SOCS gene transcrip-
tion [19]. The SOCS family proteins have three mechanisms to inhibit cytokine signaling.
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The representative mechanism of SOCS is shown in Figure 2. They act as a pseudo-substrate
or compete with JAK or STATs for binding sites of activated cytokine receptors. The SOCS
box interacts with the adaptor proteins elongin B/C, RING domain-containing protein
(RBX2), and the scaffold protein Cullin 5 to recruit E2 ubiquitin-transferase and facilitates
the ubiquitination and subsequent proteasomal degradation [20–22]. The SOCS1 mRNA
is regulated by microRNA-155 (miR-155) at the post-transcriptional level [23], whereas
post-translational regulation of SOCS1 includes phosphorylation by Pim serine/threonine
kinases [24,25]. Epigenetic inactivation of SOCS1 is known to be caused by Cp-G island
hypermethylation in many types of cancers [26–30].
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Figure 2. The representative mechanism of suppressor of cytokine signaling (SOCS) proteins. Cy-
tokine binds to specific cytokine receptors and causes receptor dimerization or oligomerization and
recruits Janus kinase (JAK)s. Activated JAKs phosphorylate the receptor cytoplasmic domain and
assemble signal transducers and activators of transcription (STAT) dimers. The SOCS proteins inhibit
cytokine signaling by binding to SOCS or phosphorylated JAKs. Cytokine-inducible Src homology 2
domain-containing protein (CIS) inhibits the recruitment of STAT. Abbreviation: JAK, Janus kinase;
SOCS, suppressor of cytokine signaling; STAT, signal transducers and activators of transcription; CIS,
cytokine-inducible Src homology 2 domain-containing protein.

Hepatitis C virus (HCV) and hepatitis B virus (HBV) infections are well-recognized
risk factors for HCC. Nonalcoholic steatohepatitis and other metabolic diseases have been
recently identified as risk factor for HCC [4–6,31]. The SOCS family proteins are associated
with insulin signaling and growth hormone (GH) signaling, which are associated with
metabolic syndromes [32]. Several studies have revealed a relationship between the SOCS
family proteins and cancer development and prognosis [33]. The SOCS family of proteins
are potential key molecules for controlling liver regeneration after liver resection, and
moreover, they can be a treatment target for HCC.

In this literature review, we summarize the relationships between each of the specific
SOCS proteins and liver cancer, disease progression, and regeneration. Each SOCS protein
and the liver-related signaling pathways are summarized in Table 1.
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Table 1. A summary of the SOCS family in liver diseases.

SOCS Related Pathway Significance References

SOCS1
HGF Decrease hepatocyte proliferation [34]
IFN-gamma Inhibit antiviral activity [35]

SOCS2
GH/JAK2/STAT5/IGF-1 Modulate liver regeneration [9]

Knock-out mice have gigantism

SOCS3
STAT3 Decrease hepatocyte proliferation [10]
insulin Induce insulin resistance [36,37]
G-CSF

SOCS4
EGFR The patients with upregulated SOCS4 have

better clinical outcomes [38]

Reduce EGFR protein level

SOCS5 EGFR Reduce EGFR protein level [38]

SOCS6 IGF-1 mRNA and protein levels are downregulated in
HCC tissue [39]

SOCS7 IGF-1 Knock-out mice are smaller than wild type mice. [40]

CIS
STAT5 Inhibit GH

Associated with persistent hepatitis B infection [41]

Abbreviations: SOCS, suppressor of cytokine signaling; HGF, hepatocyte growth factor; IFN, interferon; GH,
growth hormone; JAK, Janus kinase; STAT, signal transducer and activator of transcription; IGF, insulin like
growth factor; G-CSF, granulocyte-colony stimulating factor; EGFR, epidermal growth factor receptor; HCC,
hepatocellular carcinoma.

2. SOCS1 and Liver Diseases

The HCC disease usually develops in the liver of patients already suffering from
chronic hepatitis with persistent inflammation caused by viruses, alcohol, and/or obe-
sity [3]. The repeating cycle of hepatocyte injury and regeneration results in the accumula-
tion of genetic and epigenetic alterations leading to the activation of oncogenic signaling
pathways (such as catenin beta-1 [CTNNB1], nuclear factor-erythroid 2-related factor 2
[NFE2L2], and telomerase reverse transcriptase [TERT]) and inactivation of tumor suppres-
sor pathways (such as TP53, PTEN, SOCS1, and SOCS3) [42–45].

The SOCS1 protein, the dominant member of the family, functions as a negative
regulator in insulin signaling and in the immune response [15,46]. SOCS1-deficient mice
are born healthy but die within three weeks after birth with fulminant hepatitis, growth
retardation, and thymic atrophy [47]. The role of SOCS1 in liver regeneration was studied
using Socs1−/−Ifng−/− mice and the SOCS1-deficient mice displayed significantly faster
gain in liver mass as compared with Ifng−/− and wild type mice after partial hepatectomy
(PH) [34]. Despite the accelerated rate of proliferation, the final restored liver masses of
SOCS1-deficient mice were not increased in the study. This indicates liver mass restoration
is maintained by SOCS1 and by the other factors. Similar findings were also recognized in
our SOCS2 study [9].

The SOCS1 protein is often repressed in HCC and the incidence of aberrant methylation
in the CpG island of SOCS1 has been reported to be 65% in 26 human primary HCC tumor
samples [26]. Moreover, SOCS1 seems to be silenced by methylation and cannot block JAK
activation. Okochi et al. reported that 30 of 50 (60%) HCCs had aberrant methylation and
that HCC developed in cirrhosis had a significant relationship with SOCS1 methylation [48].
Yoshida et al. investigated the methylation status in the CpG island of the SOCS1 gene in
209 samples of DNA obtained from needle liver biopsy and found that the frequency of
methylation correlated with the severity of liver fibrosis [49]. Ko et al. reported SOCS1
gene methylation was more prevalent in HCV-related HCC than HBV-related HCC (84%
vs. 55%) [50].

MicroRNA has been shown to play important roles in SOCS1 function. The miR-155
is encoded by a non-coding gene named as MIR155HG (formerly known as BIC) and is
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highly inducible in macrophages in response to toll-like receptor (TLR) ligands [51]. The
TLR plays a critical role in innate immune responses against microbial pathogens [52].
Bala et al. found increased miR-155 levels and decreased expression of SOCS1 in Kupffer
cells of alcohol-fed mice [53]. Wahid et al. reported that the SOCS1 gene expression level
was positively correlated with liver function tests in chronic hepatitis C patients [54].

Numerous studies have investigated the relationship between interferon (IFN) and
viral hepatitis [55–58]. There are type I, II, and III IFNs. Type I IFNs are a large subgroup
of IFNs that helps regulate the activity of the immune system [59]. The IFN-alpha and
-beta signaling pathways have been widely studied in HBV and HCV and the drugs have
also been used for therapy of patients with chronic hepatitis C and B. Type II IFN is
interferon-gamma and binds to different receptors [60]. Type III IFN consists of four IFN
lambda, known as IFN-lambda1 (IL-29), IFN-lambda2 (IL-28A), IFN-lambda3 (IL-28B), and
IFN-lambda4. IL-28B SNP is significantly associated with a sustained virologic response
(SVR) to IFN/ribavirin combination therapy against HCV [61]. The SOCS proteins are
thought to inhibit these interferon signaling pathways [62,63]. Song et al. reported that
SOCS1 and SOCS3, but not SOCS2, inhibited IFN-alpha- and -gamma-induced antiviral
activity [64]. Both SOCS1 and SOCS3 inhibit IFN-alpha-induced expression of antiviral
protein oligoadenylate synthetase (2′, 5′-OAS) and myxovirus resistance A (MxA) [35].
Direct acting antivirals (DAAs) are now recognized as the standard of care for chronic
hepatitis C patients [65]. Naz et al. compared the expressions of SOCS1 and SOCS3 in DAA-
and IFN-treated patients and found SOCS1 and SOCS3 levels of DAA-treated patients were
close to healthy patients as compared with IFN-treated patients [66].

3. SOCS2 and Liver Diseases

The SOCS2 protein acts as a negative regulator in GH signaling through JAK2-STAT5
pathway, and itsdeficiency leads to gigantism [67]. We previously reported the role of
SOCS2 in liver regeneration using SOCS2-deficient mice [9]. The Socs2 mRNA increased
6 h after PH and returned to baseline by 24 h. Loss of SOCS2 led to a significant increase in
hepatocyte proliferation at an early time point after PH, but later resulted in a significant
decrease in the liver-to-body weight ratio in 7 days. These findings indicate that SOCS2 pre-
serves liver function by limiting the rate of proliferation at an early time point, preventing
GH signals via ubiquitination. At later time points, SOCS enhances hepatocyte proliferation
by GH release from the pituitary gland. Growth hormone signaling is controlled by other
proteins other than SOCS2, such as ghrelin, growth hormone releasing hormone, and
somatostatin. (Figure 3).

Cui et al. found that SOCS2 expression was reduced in HCC tissues as compared
with control tissues and the decreased expression was associated with the presence of
intrahepatic metastasis and with histologically poorer differentiation [68]. Ren et al. identi-
fied SOCS2 as a functional target of miR-196a and miR-196b, and miR-196a and miR-196b
expressions were enhanced in HCC tissue and cells [69]. Li et al. developed a prognos-
tic signature based on the Cancer Genome Atlas Project (TCGA) and found that SOCS2,
reticulon 3 (RTN3) and beta-ureidopropionase (UPB1) expression levels were independent
predictors for the prognosis of HCC [70]. A low level of SOCS2 with a high level of RTN3
had a worse survival outcome as compared with other combinations. They also evaluated
the protein level in HCC tissue and found the expression of SOCS2 was decreased in HCC.

Zadjali et al. investigated the role of SOCS2 in hepatic steatosis using high-fat diet
(HFD)-mice [71]. The HFD-fed Socs2−/− mice exhibited less extensive steatosis and
enhanced expression of inflammatory cytokines in the liver. The HFD-fed Socs2−/−
mice also had severe insulin resistance as compared with the wild type mice. On the
other hand, HFD-fed SOCS1-deficient mice displayed hepatic steatosis with increased
expression of lipogenic genes and had hyperglycemia with insulin resistance [72]. The
HFD-fed liver-specific SOCS3-deficient mice also had increased liver fat and insurance
resistance [73]. There seem to be distinct differences in the regulation of hepatic metabolism
among members of the SOCS family.
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4. SOCS3 and Liver Diseases

The SOCS3 protein acts as a negative regulator of IL-6 signaling. SOCS3-deficient mice
die during embryogenesis due to placental insufficiency [74]. Riehle et al. reported that
SOCS3 hepatocyte-specific knock-out mice demonstrated increased proliferation and liver
mass restoration after PH as compared with littermate controls [10]. They also reported
that, in the absence of SOCS3, STAT3 phosphorylation was prolonged and activation of
the mitogenic extracellular signal-regulated kinase 1/2 (ERK1/2) was upregulated after
PH. Aoyama et al. investigated SOCS3 mRNA in pioglitazone-treated obese diabetic KK-
Ay mice and found that pioglitazone prevented increases in STAT3 phosphorylation and
SOCS3 mRNA after PH [75].

Yang et al. reported that high SOCS3 expression was associated with the presence of
vascular invasion of HCC and poor overall survival in 87 HCC patients [76]. Zhang et al.
reported that SOCS3 hypermethylation was significantly associated with poor clinical
outcomes in HBV-infected HCC patients [77]. Niwa et al. found that the SOCS3 gene
was aberrantly methylated in three of 10 human HCC cell lines and reported that SOCS3
negatively regulated cell growth and cell motility by inhibiting the JAK/STAT pathway
in HCC cells [78]. The loss of SOCS3 by associated DNA methylation is favorable to cell
growth and migration.

Chronic IL-6 injection has been shown to selectively impair hepatic insulin signaling
in mice [79]. Kim et al. demonstrated that IL-6 treatment reduced insulin ability to suppress
hepatic glucose production [80]. Deletion of IL-6 improved hepatic insulin action in obese
mice [81]. Overexpression of SOCS3 in the liver induced insulin resistance in mice and
SOCS3 deletion improved insulin sensitivity [26,37]. Th SOCS3 seems to have a dual role
in insulin activity in the liver. A short-term decrease of SOCS3 in the liver improves insulin
sensitivity; however, long-term suppression of SOCS3 induces metabolic syndromes such
as hyperglycemia and obesity [82].

Recently, an IL-6 receptor antagonist (tocilizumab) has been proposed as a treatment
for coronavirus disease 2019 (COVID-19). Somers et al. reported that tocilizumab was
associated with a 45% reduction in hazard of death (HR 0.55, 95% CI 0.33–0.94) by inverse
probability of treatment weighting adjustment model [83]. Although tocilizumab was
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associated with an increased rate of superinfection, the superinfection was not signifi-
cantly associated with 28-day fatality rate. In a phase III randomized controlled trial with
452 patients, mortality at Day 28 was 19.7% in the tocilizumab group and 19.4% in the
placebo group, and the use of tocilizumab did not result in better clinical outcomes [84]. In
a global phase III clinical trial with 389 patients, Salama et al. reported that tocilizumab
reduced the risk of progression to mechanical ventilation or death, but it did not improve
survival [85]. The timing of administration or a combination should be investigated further.

5. Other SOCS and Liver Diseases

Yoshimura et al. searched for cytokine-responsive genes and identified a novel gene,
cytokine-inducible SH2-containing protein (CIS), induced in hematopoietic cells by IL-2,
IL-3, GM-CSF, and erythropoietin [14]. The CIS-1 transgenic overexpression mice showed
defects in growth, mammary gland development, and T-cell response, indicating CIS was
involved in GH signaling, prolactin signaling, and IL-2 signaling [86]. Hu et al. reported
that two SNPs in the CIS-1 gene (rs414171 and rs2239751) were associated with persistent
HBV infection [41].

Both SOCS4 and SOCS5 act as inhibitors of epidermal growth factor receptor (EGFR)
signaling [38]. Calvisi et al. proposed two distinct subclasses of HCC associated with sur-
vival length and found SOCS4 and SOCS5 were upregulated in HCC with better outcome
subclasses [87,88]. Sanchez-Mejias et al. reported a suppressive role of SOCS5 in HCC and
found SOCS5 to be a target of miR-18 and miR-25 [89].

The function of SOCS6 is still largely unknown. Yoon et al. reported that mRNA and
protein levels of SOCS6 were downregulated in HCC tissues [39]. Qiu et al. analyzed
mRNA and protein levels of SOCS2 and SOCS6 in 106 HCC patients and found that both
SOCS2 and SOCS6 downregulation were independent prognostic factors for poor overall
survival (p = 0.008 and 0.01, respectively) [90].

Krebs et al. generated Socs7−/−mice, and they were 7–10% smaller than their wild
type littermates, and half of them died within 15 weeks as a result of hydrocephalus [40].
Banks et al. reported that SOCS7 null mice exhibited increased growth of pancreatic islets
with mildly increased fasting insulin levels and hypoglycemia [91]. It is of interest that
SOCS2 null and SOCS7 null had an opposite phenotype in body growth. Fu et al. found
that SOCS7 interacted with protein tyrosine phosphatase non-receptor type 14 (PTPN14)
and blocked the NF-κB signaling pathway by preventing the activity of the inhibitor of
NFκB kinase (IKK) complex in the acute liver failure mouse model [92].

6. Therapeutic Implications

The SOCS family has a crucial role in cell proliferation, metabolism, and the immune
system. The family has a potential therapeutic role in cancer therapy. Waiboci et al.
developed a small tyrosine kinase inhibitor peptide (Tkip) and it blocked phosphorylation
of STAT1 and functioned as an antagonist of SOCS1 [93]. Flowers et al. reported that Tkip
had an inhibitory effects on several prostate cancer cell lines [94]. There are several reports
target the JAK/STAT pathway in HCC. Wilson et al. evaluated the antitumor effects of
JAK inhibitor, ruxolitinib, and found that ruxolitinib inhibited JAK/STAT signaling and
reduced the cell proliferation and colony formation of HCC cell lines HuH7, SNU182, and
SNU423 [95].

Immuno-oncology is an emerging novel and pivotal cancer therapy through the stim-
ulation of the immune system [96,97]. The combination of atezolizumab, an immune
checkpoint inhibitor and bevacizumab, an anti-vascular endothelial growth factor neutral-
izing antibody, is now the first-line therapy for advanced HCC [98]. Overall survival rate
at 12-month with atezolizumab-bevacizumab was 67.2% (95% CI, 61.3–73.1) and was 54.6%
(95% CI, 45.2–64.0) with sorafenib. The hazard ratio for death was 0.58 (95% CI, 0.42–0.79;
p < 0.001) [98]. There are almost 30 ongoing phase III trials testing immunotherapies for
HCC [99]. Because SOCS1 is a regulator of interferon signaling, further studies are required
to elucidate its role in cancer immunotherapy.
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7. Conclusions

In the past two decades, since the discovery of SOCS1, there has been significant
improvement in the understanding of the SOCS family of proteins. This has led to an
understanding of the critical roles that SOCS proteins play in signaling pathways in liver
disease, HCC development, and liver regeneration. Further study of these pathways may
help elucidate mechanisms of carcinogenesis as well as enhance strategies for improving
therapeutic options for patients with HCC. Further research should be employed to clarify
the systemic feedback system and downstream regulation of cytokine signaling.
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