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Intratumor heterogeneity is a major obstacle to effective cancer treatment. Current
methods to study intratumor heterogeneity using single-cell RNA sequencing (scRNA-
seq) lack information on the spatial organization of cells. While state-of-the art spatial
transcriptomics methods capture the spatial distribution, they either lack single cell
resolution or have relatively low transcript counts. Here, we introduce spatially
annotated single cell sequencing, based on the previously developed functional single
cell sequencing (FUNseq) technique, to spatially profile tumor cells with deep scRNA-seq
and single cell resolution. Using our approach, we profiled cells located at different
distances from the center of a 2D epithelial cell mass. By profiling the cell patch in
concentric bands of varying width, we showed that cells at the outermost edge of the
patch responded strongest to their local microenvironment, behaved most invasively, and
activated the process of epithelial-to-mesenchymal transition (EMT) to migrate to low-
confluence areas. We inferred cell-cell communication networks and demonstrated that
cells in the outermost ~10 cell wide band, which we termed the invasive edge, induced
similar phenotypic plasticity in neighboring regions. Applying FUNseq to spatially annotate
and profile tumor cells enables deep characterization of tumor subpopulations, thereby
unraveling the mechanistic basis for intratumor heterogeneity.
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INTRODUCTION

Intratumor heterogeneity, both at the genetic and transcriptomic level, is commonly observed in
various cancer types and complicates diagnosis and treatment (Gerlinger et al., 2012; Patel et al.,
2014; Morrissy et al., 2017; Puram et al., 2017; Berglund et al., 2018). Rare populations of cells can
contribute to increased tumor progression (Burrell et al., 2013; Patel et al., 2014), metastatic potential
(Yachida et al., 2010; Navin et al., 2011) and therapy resistance (Sottoriva et al., 2013; Patel et al.,
2014; Tirosh et al., 2016). Single-cell sequencing is key to characterizing the complexity of intratumor
heterogeneity, but lacks information about functional properties and spatial organization of cells
(Lawson et al., 2018). We have recently developed a functionally annotated transcriptomic profiling
technique, called functional single cell sequencing (FUNseq), to study heterogeneous populations of
tumor cells based on functional features (You et al., 2021). This technology uses live-cell imaging to
identify cells with a phenotype of interest (e.g., cell migration or morphology), which can then be
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phototagged (via a photopatterned device) with a
photoactivatable dye, isolated and subjected to single-cell RNA
sequencing (scRNA-seq). Hence, FUNseq links phenotypic traits
to gene expression profiles of rare subpopulations of tumor cells,
thereby identifying the underlying mechanisms of intratumor
heterogeneity. However, cells are currently labeled using a single
dye, making it impossible to discern cells based on their spatial
organization.

Here, we applied FUNseq to characterize intratumor
heterogeneity in tumor subpopulations that are spatially
located differently in an untransformed, mammary epithelial
tumor model. We specifically focused on the epithelial-to-
mesenchymal transition (EMT), as this is an important source
for intratumor heterogeneity (Nieto et al., 2016). During EMT,
epithelial cells gradually acquire a mesenchymal phenotype,
thereby losing their cell-cell adhesion and cell polarity while
gaining the ability to migrate and invade (Nieto et al., 2016;
Pastushenko et al., 2018; Revenco et al., 2019). EMT can be
induced by multiple stimuli, including various growth factors and
a cell’s local microenvironment (Cook and Vanderhyden 2020).

To illustrate, cells at the migrating front of tumors express higher
levels of EMT marker genes than cells in the center (Puram et al.,
2017). Recently, McFaline-Figueroa et al. (2019) made a similar
observation using an in vitro tumor model, showing that
untransformed MCF10A cells in the outer layer of a high-
confluence patch of cells undergo EMT. However, the exact
transcriptomic changes that cause this EMT are currently
unknown. To identify the genes that drive the outward
migration, one needs to profile the cells in the outermost layer
of the cell patch (i.e., the invasive edge). This could be done by
spatially annotating bands of cells before subjecting them to
scRNA-seq, which enables specific characterization of the
invasive edge.

Using a similar tumor model as McFaline-Figueroa et al., we
applied FUNseq to profile MCF10A epithelial cells that were
spatially located in the outer layer (~1,000–1,500 μm bandwidth,
~50 cell wide band) or the outermost layer (250 μm bandwidth,
~10 cell wide band) of the cell mass. We demonstrated that cells
in the outermost layer were progressing through EMT and
induced similar phenotypic plasticity in neighboring regions.

FIGURE 1 | Spatially profiling an in vitro tumor model using the FUNseq technology. (A) Schematic depiction of the assay, cell labeling and scRNA-seq analysis. For
the cell labeling (middle panel), we either phototagged concentric rings of equal width (top; 1,000–1,500 μm bandwidth) or 250 μm wide bands at the invasive edge
(bottom). In both approaches, the outer population was labeled with JF646 phototagging dye (red) and the middle population was labeled with both JF549 and JF646
(yellow). (B) Patch of MCF10A cells expressing a GFP marker that was phototagged with the larger bandwidth. Green: GFP, yellow: JF549, red: JF646. (C)
Phototagging the invasive edge of a MCF10A cell patch yields well-demarcated bands of cells.
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Using cell-cell communication network analysis, we also showed
that the Ephrin, EGF and VEGF signaling pathways were
involved in driving this invasive behavior. Our data indicates
that FUNseq can spatially profile intratumor heterogeneity,
thereby unraveling the underlying mechanisms for the
observed phenotypic variations.

RESULTS

FUNseq Can Spatially Annotate and Profile
Cells With Desired Spatial Bandwidths
We applied FUNseq to profile spatial heterogeneity in an in vitro
tumor model: untransformed, mammary epithelial MCF10A cells
(Figure 1A). MCF10A cells expressing a GFPmarker were seeded
in a high-confluence, circular patch. After growing the cells for
6 days, cells at the leading edge of the patch acquired a spindle-
like morphology and migrated to unoccupied areas of the dish
(Supplementary Figure S1), indicating that they might have
undergone EMT (Vuoriluoto et al., 2011).

Next, we imaged the cells using our custom-built Ultrawide
Field-of-view Optical (UFO) microscope (You et al., 2021) and
identified the outer, middle and inner regions (with a bandwidth
of 1,000–1,500 μm) of the patch. Cells were first incubated with
photoactivatable Janelia Fluor 646 (JF646) dye, after which we
phototagged the outer one-third of the patch (Figure 1B; cells
emit red fluorescence (λex: ~650 nm, λem: ~665 nm) after
photoactivation). Subsequently, we incubated cells with
photoactivatable Janelia Fluor 549 dye (JF549) and
phototagged the middle one-third of the patch (cells emit
green fluorescence (λex: ~550 nm, λem: ~570 nm) after
photoactivation). Hence, cells in the middle ring were labeled
with both dyes, as the cytoplasmic JF646 dye is retained within
cells. Labeled populations were isolated by flow cytometry and
sequenced using SORTseq, a plate-based, modified CEL-seq2
scRNA-seq technology (Hashimshony et al., 2016; Muraro
et al., 2016).

A similar labeling strategy can be used to profile the invasive
edge at a higher resolution. For this, we phototagged cells in the
outermost layer (250 μm bandwidth, ~10 cell wide band) of the
patch with JF646 and we phototagged cells in the next 250 μm
with both JF549 and JF646. Live-cell imaging of the labeled
patches showed well-demarcated bands of cells (Figure 1C),
validating that FUNseq can be used to annotate and isolate
confined tumor regions with desired spatial bandwidth.

FUNseq Identified Subtle Variations in Gene
Expression Profiles Between Tumor
Regions
To couple the observed phenotypic plasticity in the outer layer to
underlying transcriptomic changes, tumor subpopulations were
subjected to scRNA-seq. We sequenced two biological replicates
of patches phototagged with the larger bandwidth, yielding a total of
743 analyzed single cell transcriptomes (Supplementary Figure
S2). Dimensionality reduction using Uniform Manifold
Approximation and Projection (UMAP) (McInnes et al., 2018)

indicated a modest separation of the populations but did not form
coherent clusters (Figure 2A), suggesting that there is substantial
similarity of the gene expression profiles between the tumor regions.

To quantity the level of EMT in each subpopulation, we
calculated EMT scores using Gene Set Variation Analysis
(GSVA) (Hänzelmann et al., 2013). For each cell, an epithelial
(E) and mesenchymal (M) score was calculated using two gene
sets containing 65 epithelial and 115 mesenchymal genes (Cesano
2015). Following the approach of Sacchetti et al. (2021), we
subtracted the E score from the M score to define a single
EMT score for each cell (EMT = M – E). Cells in the outer
layer had significantly higher EMT scores than cells in the center
(Kruskal-Wallis test, p = .0017; Figure 2B). However, no
significant changes between adjacent populations were
observed, presumably because the relatively large number of
cells per region led to substantial heterogeneity within each
population (Supplementary Figure S3). This solidified our
notion that one needs to specifically profile the invasive edge
to reliably identify the transcriptomic drivers for migration and
invasion. Hence, we next sought to profile the migrating front at a
higher resolution.

Cells at the Invasive Edge Strongly
Activated the Epithelial-to-Mesenchymal
Transition
We phototagged the migrating front (~10 cell wide bands) and
separated the outermost cells from the inner tumor mass
(Figure 1C). Using this high-resolution phototagging
approach, we analyzed 696 single cell transcriptomes from two
biological replicates. Dimensionality reduction now revealed
coherent clusters of cells that segregate based on the spatial
populations (Figure 2C). The middle and outermost layer
clustered together in the UMAP embedding, presumably since
cells in both layers are progressing through EMT. Classically,
EMT has been viewed as a discrete process in which cells pass
through distinct transition stages before acquiring a fully
mesenchymal morphology (Pastushenko and Blanpain 2019).
Our UMAP embedding (Figure 2D) indicated that EMT
scores vary continuously across the embedded cells, further
solidifying recent findings that EMT is a continuous process
(McFaline-Figueroa et al., 2019; Cook and Vanderhyden 2020).
Expression of the classic epithelial markers E-cadherin (CDH1)
and EPCAM gradually decreased from the center to the edge of
the patch, while the mesenchymal markers VIM and FN1 showed
a reciprocal pattern, suggesting that cells are exhibiting epithelial-
mesenchymal plasticity (Zhao et al., 2015; Yang et al., 2020)
(Figure 2E; Supplementary Figure S4). These changes in CDH1
expression were not detected by McFaline-Figueroa et al. (2019),
underscoring the value of deep sequencing using FUNseq to
resolve subtle transcriptomic changes. Moreover, we found that
adjacent populations have significantly varying EMT scores (p <
.0001; Figure 2F), further increasing our confidence that profiling
the invasive edge of the tumor model could identify drivers of
migration and invasion.

Next, we identified differentially expressed genes (DEGs)
between the subpopulations and found that classic
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mesenchymal markers such as VIM and the EMT transcription
factor SNAI2 were upregulated in the outermost population,
while the epithelial markers CDH1 and EPCAM were
upregulated in the center of the patch (Figure 2G;
Supplementary Figure S4). Genes upregulated in the

outermost (n = 165 DEGs) or center (n = 142 DEGs)
population were used for overrepresentation analysis using the
MSigDB Hallmarks gene set collection (Liberzon et al., 2015) and
theWikipathways database (Martens et al., 2021) (Figure 2H). As
expected, genes involved in EMT and extracellular matrix

FIGURE 2 | scRNA-seq indicated that cells at the invasive edge were progressing through EMT. (A) UMAP embedding of cells labeled with the larger bandwidth
showed a modest separation of tumor regions, but no coherent clusters were formed. (B) EMT scores between inner and outer populations vary significantly (p = .0017;
Kruskal-Wallis test). (C) Inner and outermost tumor regions labeled with the smaller bandwidth separate clearly in UMAP space. (D) EMT scores gradually increase
across the UMAP embedding. (E) Expression of classic epithelial markers decreases radially outwards while expression of classic mesenchymal markers
increases. (F) EMT scores are significantly varying between adjacent populations (p < .0001; Kruskal-Wallis test). (G) Volcano plot indicating genes overexpressed in the
outermost population (log2(FC) > .5) and in the inner population (log2(FC) < −.5). (H) Overrepresentation analysis using the MSigDB Hallmarks (red) and Wikipathways
(black) databases.
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interactions were overrepresented in the outermost population.
Additionally, cells at the invasive edge were enriched for the
vascular endothelial growth factor (VEGF) signaling pathway,
which can induce cell migration and EMT (Anthony D. Yang
et al., 2006; Gonzalez-Moreno et al., 2010; Bhattacharya et al.,
2017). VEGF can activate the neuropilin-1 receptor (NRP1),
which is upregulated in the outermost population (Figure 2G;
Supplementary Figure S5) and promotes proliferation,
migration and invasion of tumor cells (Goel and Mercurio
2013; Luo et al., 2016).

Cell-Cell Communication Network Analysis
Identified Multiple
Epithelial-to-Mesenchymal Transition
Inducers
Since a wide range of transcription factors and extracellular
stimuli are involved in stimulating EMT (Nieto et al., 2016),
we next set out to map the cell-cell communication networks that
regulate the EMT in our in vitro tumor model. We re-analyzed
scRNA-seq data from the high-resolution labeling experiment to
identify interactions between the different populations using
CellPhoneDB, a repository of ligand-receptor complexes that
can predict enriched cellular interactions based on the
expression of ligands and receptors in cell populations

(Efremova et al., 2020). The outermost population was highly
enriched for fibronectin (FN1), laminin (LAMA3 and LAMC1)
and collagen (COL8A1 and COL4A1) expression, extracellular
matrix (ECM) proteins that can interact with the integrins
expressed in the middle and inner populations (Figure 3).
Specifically, interactions of fibronectin and laminin with the
α3β1 integrin modulate cell adhesion to the ECM and cell
motility (Meng et al., 2009; Hamill et al., 2010; Jia et al., 2010;
Zhang et al., 2017). Interestingly, this analysis predicted multiple
interactions in the Ephrin-signaling pathway, in which ligands
and receptors activate bidirectional signals that can lead to
somewhat paradoxical downstream effects (Pasquale 2008). To
illustrate, cells in the outermost and middle populations
expressed the EphB4 receptor and its ligand EphrinB2
(EFNB2) (Supplementary Figure S6). Activation of EphB4
induces cell migration and invasion in cancer cells (Steinle
et al., 2002; Kumar et al., 2006; Nai-Ying Yang et al., 2006),
although the exact opposite effect has also been reported (Noren
et al., 2006). Additionally, reverse signaling through EphrinB2
can stimulate cell migration through the PI3K pathway (Steinle
et al., 2002; Kumar et al., 2006).

Finally, CellPhoneDB inferred enrichment of multiple EMT
inducers and their receptors in the outermost population, such as
tumor necrosis factor (TNFA) and genes involved in the EGF
pathway (CD44, EGFR, EPGN, HBEGF) (Cheng et al., 2012;
Revenco et al., 2019; Cook and Vanderhyden 2020). Conversely,

FIGURE 3 | Cell-cell interactions between cells in various patch regions labeled with the smaller bandwidth. Interactions were inferred based on the expression of
ligands and receptors in the different cell populations. The first molecule in each interaction pair (rows) corresponds to the first region in each population pair (columns).
Circles scaled by the significance of the interaction and colored by the average expression level of ligand and receptor.
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cells in the center of the patch were enriched for DSC2 and DSG2,
genes that encode components of desmosome cell-cell junctions
(Garrod and Chidgey 2008; Nekrasova and Green 2013),
hallmarks of an epithelial phenotype. Taken together, the
identified cell-cell interactions indicated that cells at the
migrating front responded to their local microenvironment
and stimulated similar invasive behavior in neighboring regions.

DISCUSSION

Intratumor heterogeneity is a major challenge for effective cancer
treatment. Single-cell genomics and transcriptomics proved
themselves valuable methods to study this heterogeneity, but
lack information about the spatial organization of cells. Recently,
various spatial transcriptomics methods have been developed to
add positional information from tissue sections to the single-cell
transcriptomes (Ståhl et al., 2016; Vickovic et al., 2019; Stickels
et al., 2021), providing numerous insights in cancer biology and
other fields (Longo et al., 2021). However, these methods either
lack single cell resolution or have substantially lower transcript
counts per cell than conventional scRNA-seq. Here, we applied
our recently developed FUNseq technology to spatially profile
confined tumor regions. The strength of this method lies in the
combination of labeling tumor regions guided by live-cell
imaging and deep sequencing of single cells. This allowed us
to profile gene expression in isolated tumor regions using 34,000
transcripts per cell (Supplementary Figure S2), compared to the
494 and 11.5 transcripts per 10 μm bead for Slide-seq V2 and
HDST, respectively (Stickels et al., 2021). The increased
sensitivity of FUNseq allows us to study low abundance
transcripts, enabling deep characterization of tumor cells.

We profiled tumor heterogeneity in an in vitro tumor model
(McFaline-Figueroa et al., 2019) by annotating cells located at
different distances from the center of a 2D epithelial cell mass.
Cells in the outermost layer or invasive edge (~10 cell wide band)
of this patch were progressing through EMT, suggesting that
these cells sense their local microenvironment and acquire a
mesenchymal phenotype to migrate to unoccupied areas of the
dish. Taking advantage of the FUNseq’s deep sequencing, we
characterized cell-cell interaction networks between the different
tumor regions. We identified various interactions between
outermost cells and ECM components that can stimulate cell
migration and we showed that outermost cells are enriched for
ligands and receptors that can stimulate EMT, such as
components of the Ephrin, EGF and VEGF signaling pathways.

By combining phototagging of confined tumor regions and
deep sequencing of single cells, we characterized the
transcriptomic heterogeneity in a population of untransformed
epithelial cells. To fully explore the potential of FUNseq, the next
step would be to profile tumor sections, which have much higher
complexity than relatively homogeneous cell lines. We envision
that FUNseq might address important questions about
intratumor heterogeneity, such as how tumor cells interact
with the tumor microenvironment and how tumor
composition affects treatment outcome.

In summary, we demonstrated that FUNseq can spatially
annotate and profile subpopulations of an in vitro tumor
model. We showed that cells at the invasive edge (~10 cells
wide band) of a high-confluence patch of cells underwent EMT,
migrated to low-confluence areas and induced similar phenotypic
plasticity in neighboring cells. Spatially profiling tumor cells using
FUNseq enables deep characterization of intratumor
heterogeneity, thereby laying the foundation for a more
complete understanding of tumor biology.

MATERIALS AND METHODS

Cell Culture
MCF10A_H2B_GFP human breast epithelial cells were a kind
gift of Reuven Agami (Netherlands Cancer Institute). Cells
were cultured at 37°C and 5% CO2 in DMEM/F12 medium
without phenol red (Gibco), supplemented with 5% Donor
Equine Serum, 1% penicillin/streptomycin, 20 ng/ml EGF,
500 ng/ml hydrocortisone, 100 ng/ml cholera toxin and
10 μg/ml insulin.

Before conducting experiments, cells were seeded on 20 mm
glass bottom dishes (Cellvis), coated with 0.1 mg/ml fibronectin
(EMD Millipore). 10,000 cells were seeded in a droplet in the
center of the dish, such that a circular patch of cells was formed in
the center of the dish. After 4.5 h, dishes were washed with
Dulbecco’s PBS (Sigma) to remove non-adherent cells. The
patch of cells was then cultured in MCF10A medium at 37°C
and 5% CO2 for 6 days.

Imaging and Cell Labeling
Cell labeling was performed on the Ultrawide Field-of-view
Optical (UFO) microscope developed previously (You et al.,
2021). Cells were incubated with 40 µM photoactivatable
Janelia Fluor 646 (JF646) dye (Tocris) for 20 min and
washed with MCF10A culture medium. Bright-field images
were used to localize the patch of cells, after which we
identified the cells to be labeled using a low-resolution or
high-resolution approach. In the low-resolution tagging
approach, we fit three concentric rings with equal
bandwidth (1,000–1,500 µm bandwidth) in the area of the
patch. In the high-resolution approach, we divide the patch
of cells in three layers: the outermost 250 µm of cells (~10 cell
wide band), the next 250 μm, and the inside of the patch.

In both approaches, the outer population of cells was then
selectively illuminated for 2 min with 405 nm light using a digital
micromirror device (DMD), thereby phototagging these cells
with JF646. Next, cells were incubated with 40 µM
photoactivatable Janelia Fluor 549 (JF549) dye (Grimm et al.,
2016) (Tocris) for 20 min and washed with MCF10A culture
medium. The imaging and labeling process was repeated, but now
illuminating the middle population of cells. These cells are thus
phototagged with JF549 and JF646, as both dyes are present in the
cytoplasm and become activated upon illumination. For
visualization purposes, image background was subtracted and
image contrast was adjusted using ImageJ.
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Cell Isolation and Single-Cell RNA
Sequencing
Cells were harvested using trypsin-EDTA without phenol red
(Sigma), centrifuged and resuspended in HBSS buffer (Gibco).
Live single cells (validated by Draq7 viability staining) were
sorted into 384-well plates using the BD FACSMelody Cell
Sorter (BD Biosciences), spun-down and stored at −80°C.
Library preparation and single-cell RNA sequencing was
performed by Single Cell Discoveries (Utrecht, Netherlands)
using their custom SORT-seq protocol (Muraro et al., 2016).
cDNA libraries were sequenced at 150 k reads/cell on the
Illumina NextSeq 500 platform.

scRNA-Seq Analysis
scRNA-seq data was aligned and preprocessed by Single Cell
Discoveries as described by Muraro et al. (2016). Gene expression
matrices were processed using Seurat v4 (Hao et al., 2021). Cells
containing 2,000–9,000 features and less than 40% mitochondrial
genes were selected. Gene expression was either normalized using
the SCTransform (Hafemeister and Satija 2019) function for
dimensionality reduction, or log-normalized for all other
downstream analysis. Cell cycle scoring and regression was
performed using a set of G2/M and S phase markers (Tirosh
et al., 2016). We performed a Principal Component Analysis
(PCA) on the normalized gene expression data and used the first
40 principal components for dimensionality reduction
using UMAP.

Differentially expressed genes between the inner and outer
populations were identified with Seurat’s findMarkers function
using a Wilcoxon rank-sum test and filtering for genes with a
Bonferroni corrected p-value < 1 × 10−5. Genes with log2 fold
change >0.5 were marked as upregulated and genes with log2
fold change <−0.5 were marked as downregulated. Next,
overrepresentation analysis (ORA) was performed with the
ClusterProfiler v4 package (Wu et al., 2021). The enricher
function was used with default settings (one-sided Fisher’s
exact test with Benjamini-Hochberg adjusted p-values) and the
most significantly enriched processes were visualized.

To calculate the level of EMT in each cell, we followed the
approach of Sacchetti et al. (2021) Gene Set Variation analysis
was performed using the GSVA package (Hänzelmann et al.,
2013), where we used a set of EMT markers that is publicly
available from the Nanostring nCounter PanCancer
Progression Panel (Cesano 2015). This gene set contained
65 epithelial (E) and 115 mesenchymal (M) genes
(Supplementary Table S1). For each cell we calculated its
GSVA enrichment scores for the epithelial and mesenchymal
genes, after which we subtracted the E score from the M score
to define the cell’s EMT score.

Enriched ligand-receptor interactions between the different
populations of cells were inferred using the CellphoneDB
package (Efremova et al., 2020). This analysis uses empirical
shuffling to identify enriched ligand-receptor interactions based

on the expression levels in the different populations, while
requiring that all subunits from heteromeric ligand-receptor
complexes are expressed. Log-normalized gene expression
matrices were used as input files and the statistical analysis
(without subsampling) was performed using a p-value threshold
of .01 and requiring that at least 20% of the cells in a population
expresses a specific ligand-receptor interaction. To identify
highly specific interactions between populations, we filtered
for interactions with rank ≤.444. In this way, we filtered for
ligand-receptor interactions that were significantly enriched in
≤4 population pairs (out of 9 population pairs in our setup).
After this initial prioritization of the predicted interactions, we
manually selected biologically relevant interactions for
visualization.
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