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Abstract: With a longer-term goal of addressing the comparative behavior of the aqueous halides
F−, Cl−, Br−, and I− on the basis of quasi-chemical theory (QCT), here we study structures and
free energies of hydration clusters for those anions. We confirm that energetically optimal (H2O)nX
clusters, with X = Cl−, Br−, and I−, exhibit surface hydration structures. Computed free energies,
based on optimized surface hydration structures utilizing a harmonic approximation, typically (but
not always) disagree with experimental free energies. To remedy the harmonic approximation,
we utilize single-point electronic structure calculations on cluster geometries sampled from an
AIMD (ab initio molecular dynamics) simulation stream. This rough-landscape procedure is broadly
satisfactory and suggests unfavorable ligand crowding as the physical effect addressed. Nevertheless,
this procedure can break down when n & 4, with the characteristic discrepancy resulting from a
relaxed definition of clustering in the identification of (H2O)nX clusters, including ramified structures
natural in physical cluster theories. With ramified structures, the central equation for the present rough-
landscape approach can acquire some inconsistency. Extension of these physical cluster theories in
the direction of QCT should remedy that issue, and should be the next step in this research direction.

Keywords: ion hydration; physical cluster theory; halides; Hofmeister series; specific ion effects

1. Introduction

Ions exert specific effects on molecules. Hofmeister devised a ranked list of salts to
classify their influence on protein precipitation and swelling [1,2]. Later works identified
ion-specific effects on molecules more generally, in both aqueous and non-aqueous so-
lutions, at interfaces, and in confined settings such as biological transport proteins and
ionomers [3–6] with little or no solvent. Indeed, molecular-level mechanisms of ion-specific
effects is a topic of current research [7–9]. Important aspects of those mechanisms in
aqueous solution involve the local ion hydration properties, and exchange of hydrating
water molecules for molecular ligating groups [3,5,10–12]. As a step toward enhancing our
understanding of ion-specific effects, this paper studies the structures and free energies
of hydration clusters of the anions F−, Cl−, Br−, and I− in the dilute gas-phase, with the
longer term goal of addressing the comparative behavior of this series of ions in liquid
water on the basis of quasi-chemical theory (QCT) [12–15]. Accurate characterization of
gas-phase clusters can indeed helpfully inform QCT applications, and has been successful
for cations [12]. Because our analyses here will be limited to gas phase systems, we restrict
our work to physical cluster theories [16–22], progenitors of molecular QCT [23,24].

Common to all these theories is the study of associative equilibria

nW + X
WnX . (1)
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Here X ≡ F−, Cl−, Br−, or I−, and the dissolving medium provides ligand W ≡ H2O
molecules. Equation (1) then directs attention to

K(0)
n =

ρWnX

ρW
nρX

, (2)

where ρWnX is the number density of WnX species. Then K(0)
n is the traditional equilibrium

constant appropriate for the case that the dissolving medium is an ideal gas. That ideal
gas restriction is indicated by the superscript notation. In QCT, slightly more subtle
considerations arrive also at Equation (2), which here serves as our starting point [25]. These
theories all require logical definition of formed WnX clusters for counting. Such definitions
amount to defining proximity of a W ligand to an X ion. Although judgement might
be required to establish a physically effective proximity definition, here we will assume
that, under the standard temperatures considered below and the low density conditions of
interest, practical molecular simulations of WnX systems encounter clustered configurations
entirely. This definition will be reconsidered in subsequent QCT developments.

The computational study of clusters benefits from a good experimental basis [26].
Widely available chemical software enables straightforward numerical evaluation of
K(0)

n [26] under assumptions of harmonic motion on the potential energy surface near
an optimized cluster geometry (Figure 1). The assumption of harmonic motion is valid
for clusters with strong interactions that limit atomic displacements to small distances
away from an optimized geometry [27]. A challenge common to harmonic and anhar-
monic estimates of the free energy is that more than one low energy structure may be
relevant [28–30]. Similar to earlier results found for simple cations [28,31], harmonic ap-
proximations (Figure 1) are satisfactory for WnF− and n ≤ 4, but not for n = 5 in that case.
From the disagreement with experiment (Figure 1), we see that the harmonic treatment is
not satisfactory for WnCl−. For those challenging cases, previous work provided a simple
fix of that discrepancy [15], making use of cluster configurations sampled from dynamical
simulations. The goal of this paper is to test whether inaccuracies of the harmonic treat-
ment are satisfactorily resolved also for the rest of the halide series (Br−, I−) by analysis of
structures from dynamical simulations. A similar approach was applied earlier to correct
harmonic approximations applied to compute chemical equilibria and free energies of H2
hydration clusters [32].

The essential feature of the computational approach here is the deployment of stan-
dard electronic structure computations for cluster geometries sampled from AIMD (ab
initio molecular dynamics) simulations of WnX clusters. A detailed accounting from the
single-point energy procedures defined with Equation (5) below indicates more than 103

calculations for n = 5 with standard modern electronic structure methods for single geome-
tries from the AIMD canonical simulation stream. Thus, we implement a high-throughput
algorithm, described below, to carry-out the calculations efficiently.

We emphasize the potential utility, in the longer term, of this work to QCT applications
to bulk solutions. QCT puts a high premium on understanding the structure and energetics
of small clusters that can serve to fill-out an inner shell, then treating WnX as a primitive
chemical constituent of the solution. Therefore, we limit n to values smaller than the
historical interest [33–43]. Specifically, we do not attempt to push n to values large enough
to suggest an incipient droplet of liquid. Instead, we seek a sharper understanding of WnX
structures, energetics, and particularly rough landscape effects for small values of n [15].
Nevertheless, the present results are broadly consistent with preceding simulation work
on such systems, including on larger values of n, studied with empirical intermolecular
force fields [33–43]. Though this work purposely avoids taking the large cluster limit, an
alternative QCT model which does seek that limit appeared recently [44].
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Figure 1. Cluster 1 ≤ n ≤ 5 free energies from harmonic approximation based upon energy
optimized structures (see Section 4.1), against experimental values for (H2O)nX, X = F− Cl−, Br−,
and I−. The indicated electron density functionals and basis sets are merely typical choices in current
practice; comparisons of these results suggest typical variability and should not suggest physical
discriminations. The inset molecular graphics illustrate that asymmetric, surface-hydrated structures
are optimal geometries for clusters involving Cl− and heavier halides. For n = 5 and Cl−, Br−,
and I−, optimizations pushed a water molecule into a distinct outer shell, and those structures are
denoted as 4 + 1 clusters. For all of these ions, the harmonic approximation for the n = 1 case
produces an accurate estimate for the experiment, which indicates that the dissimilarity for the other
cluster sizes n ≥ 2 arises from interactions between the ligands.

2. Results

We evaluated structures and formation free energies of WnX clusters in gas phase. We
compared: (i) the experimental values determined from mass spectrometry [45]: (ii) the
quantum-mechanical rigid rotor harmonic oscillator approximation (Figure 1), and (iii)
the rough-energy landscape procedure proposed in Ref. [15]. Figure 2 summarizes all
results graphically. The free energies decrease by about 5 kcal/mol for each water added.
Free energies follow the expected size trend—smaller anions bind water more strongly.
Associated with the energetic trend, and correlated with increasing anion polarizability [46],
the first solvation shell becomes more asymmetric with increasing anion radius.
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Figure 2. Harmonic (blue, Figure 1) and rough landscape (red) free energies, against experimental
results [45]. Results labeled Psi4 (violet) used the PBE functional [47] and an DZVP-MOLOPT-
SR-GTH basis for CP2K/AIMD and DEF2TZVP basis for Gaussian/single-point calculations. For
comparison, M06/CP2K and B3LYP/Gaussian for F−, Cl−, and Br− clusters and M06/Gaussian for
I− results are also shown in red.

Structures of the W5X clusters should sharpen our observations. Densities of H-atoms
radially from the central ion (nH|X(r), Figure 3) evaluated within simulations including
5 waters show a distinct step near nH|X(r) = 4 for the F− case. Even though more water
molecules are available, a sharply defined 4-coordinate structure with H-bond donation for
that inner-shell is observed. This is a natural rationale for the satisfactory performance of
primitive QCT theory for F−(aq) [48,49]. Structures observed for the other ions (Figure 3)
are individually more complicated.

It might be guessed that these structural characteristics would be simpler for n = 3
clusters, i.e., for W3X clusters (Figure 4) for which splitting of the inner-shell should not
be important. Note here the distinct step near nH|X(r) = 3 for the F− case, reinforcing the
picture of classic H-bond donation to that ion. For the Cl−, Br−, and I− ions, consider W3X
(Figure 4), in contrast to W5X (Figure 3). The H-atom radial layering might be slightly
simpler for n = 3 than for n = 5, but the distinction between the 3rd and 4th nearest H-
atoms is qualitatively less striking for the heavier three halides than for F−. This suggusts
that those heavier three halides rely less on simple H-bond donation structures than does
F −; an explicit examination of the role of dipole-donation structures for WCl− from the
cluster dynamics was given recently [15].
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Figure 3. Radial distributions of H atoms from the indicated ions observed from 5 ps of AIMD
trajectory of the clusters W5X, after 5 ps of equilibration as discussed in Section 4. The integer
labeled curves are distributions of neighborship-ordered H atoms, e.g., the curve labeled ‘1’ is the
distribution of the nearest H atom. The distributions and the vertical axes have units of 1/nm3,
and those distributions are normalized as 4π

∫ ∞
0 ρ(j)(r)r2dr = 1 The average included number of

H-atoms, nH|X(r) is the red-dashed curves and right-side axes.

The energies (Figure 5) required for the rough energy landscape method of Equa-
tions (4)–(6) provide an energy-based view of water’s interaction with the anion cluster.
These energies are mostly unfavorable with magnitudes extending to roughly 5 kBT or
about a typical H-bond energy. The observed distributions of these energies are interesting,
but not troublesome for the theoretical procedure Equation (6).



Molecules 2021, 26, 3087 6 of 13

0

2

4

6
gH|F(r)
nH|F

0.1 0.2 0.3 0.4

0

50

100

150

r(nm)

1/
n
m

3

1-3

1

2

3
4
5
6

F−

0

2

4

6
gH|Cl(r)
nH|Cl

0.2 0.3 0.4 0.5

0

12

24

36

48

r(nm)

1/
n
m

3 1-3

1

2

3
4

5

6
Cl−

0

2

4

6
gH|Br(r)
nH|Br

0.2 0.3 0.4 0.5 0.6

0

6

12

18

24

r(nm)

1/
n
m

3 1-3

1

2

3 4
5

6

Br−

0

2

4

6
gH|I(r)
nH|I

0.2 0.3 0.4 0.5 0.6 0.7

0

4

8

12

16

r(nm)

1/
n
m

3

1-3
1

2
3

4

5
6

I−

Figure 4. Radial distributions of H atoms from the indicated ions observed from 5 ps of AIMD
trajectory of the clusters W3X after 5 ps of aging, as discussed in Section 4. The distributions and
the vertical axes have units of 1/nm3. The integer labeled curves are distributions of neighborship-
ordered H atoms, as discussed in Figure 3, and normalized as 4π

∫ ∞
0 ρ(j)(r)r2dr = 1. The average

included number of H-atoms (nH|X(r), red-dashed curve), which are gauged by the right-side axes.
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Figure 5. Distributions of β∆U3 of Equation (5) for halide-water clusters, observed during 10 ps of
CP2K trajectory after 5 ps aging. Split-shell geometries are not expected to be important for these
n = 3 cases (Figure 1). Nevertheless, W3F− shows a multimodal distribution, the maxima located
by dashed lines. The lower energy mode can be associated with the optimized structure (Figure 1)
while the higher energy mode describes configurations that can flip a water molecule to offer a
different H atom for coordination with the ion. The solid lines are the Gaussian model distribution
with the sample mean and variance. These β∆U3 reflect contributions from crowding of ligands,
mostly unfavorable here. The estimated mean for W3I− is near zero, consistent with the realized
performance of the harmonic approximation of that case (Figure 1).

3. Discussion

We confirm (Figure 1) that energetically optimal (H2O)nX clusters with X = Cl−, Br−,
and I− exhibit surface hydration structures. As discussed in the Introduction, Section 1, for
those cases, free energies based on harmonic approximation of the potential energy surface
and optimal structures typically (but not always) disagree with experimental free energies.
As noted above, goal of this paper is to test whether inaccuracies of the harmonic treatment
are satisfactorily resolved consistently for the whole of the halide series by our analysis of
structures from dynamical simulations.

For the Cl− and Br− ions (Figure 2), the rough-landscape procedure (Equation (6))
makes the distinctive correction anticipated except for the n & 4 cases. That exceptional
n & 4 behavior is exhibited also by I−, though the I− case is unusual in that the harmonic
approximation is accurate. We attribute the exceptional n & 4 behavior to the influence of
split-shell structures, including 4+1 structures for n = 5, in the data stream for these physi-
cal clusters. Figure 1 shows 4+1 structures, where 4 waters form direct hydrogen bonds to
the anion and one additional water lies outside the inner-shell. Split-shell clusters have
been documented for simple cations [50–55], and used to rationalize discrepancies between
computed and experimental gas phase cluster data [56]. The F− case is simpler overall,
though n ≥ 4 begins to incur the characteristic error of the harmonic approximation in this
application. Still the rough-landscape procedure (Equation (6)) improves the comparison
with experiment for the F− case, too.

4. Materials and Methods
4.1. Software and Procedures

Molecular dynamics trajectories of the isolated (H2O)nX for 2 ≤ n ≤ 5 and X = F−

Cl−, Br−, and I− were obtained using CP2K [57,58]. The M06 [59] functional was utilized
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as our standard case with pseudopotentials proposed by Goedecker, Teter and Hutter
(GTH [60]) in the Gaussian and plane wave schemes [61]. Molecularly optimized DZVP-
MOLOPT-SR-GTH [62] basis sets were obtained from the CP2K website. Temperatures
were set at 300 K with the Nosé-Hoover thermostat, a time step of 1 fs for 15 ps total of
trajectory with the last 10 ps used for analysis.

Our initial assessment of cluster free energies (Figure 1) applied the harmonic ap-
proximation to geometry-optimized structures. As initial conditions for the geometry
optimization, Ns = 20 uniformly spaced configurations were extracted from the last 10 ps of
CP2K trajectories and those sampled configurations were optimized using Gaussian09 [63]
with the B3LYP [64,65] functional for all ions, in addition to PBE [47] for F− and Cl−

utilizing the aug-cc-pvdz basis set [66,67], and M06 for Br− and I− utilizing QZVP [68] and
DEF2TZVP [68] basis sets, respectively. Finally, −RT ln K(0)

n (Figure 1) was evaluated in the
harmonic approximation for the lowest energy structure. The symmetry number—the n!
of Equation (3)—was assigned as discussed by Muralidharan, et al., [49]. For (H2O)5Br−,
(H2O)5Cl− and (H2O)5I− (Figure 1), optimizations push a water molecule into an outer
solvation shell, and those structures thus can be identified as 4 + 1 clusters.

For the rough landscape treatment, structures from 2 ≤ n ≤ 5 clusters are sampled
every 0.1 ps of the last 10 ps of the AIMD trajectory. Each sampled configuration is
decoupled, according to the right-hand side of Equation (5), and the structures subjected
to single-point calculations using Gaussian09 with the B3LYP functional and aug-cc-pvdz
basis set for F−, Cl−, Br− and M06 functional and DEF2TZV basis set for I− configurations.
Using the resulting thermal averaging in Equation (6), and K(0)

1 from experiment, the

resulting K(0)
n produce the results in Figure 1 in a step-wise fashion.

To confirm our results, and to investigate the functional dependence of the cluster free
energy, additional AIMD trajectories for 2 ≤ n ≤ 5 clusters of all halides were carried out
independently. These were also done with CP2K, this time using the PBE [47] functional
with GTH psuedopotentials and molecularly optimized DZVP-MOLOPT-SR-GTH basis set,
using the Nosé-Hoover thermostat at 300 K. Structures from AIMD were again sampled
every 0.1 ps from the last 10 ps of 15 ps of the CP2K trajectory. Single-point energy
computations of the energy differences indicated by Equation (5) for 2 ≤ n ≤ 5 clusters,
used the PBE functional and all-electron DEF2TZVPD [69] basis set, as implemented by
Psi4 [70].

4.2. Theory

Classic statistical thermodynamics [13,15,71] anchors our analysis of

K(0)
n =

Q(WnX)/n!
Q(X)[Q(W)/V]n

. (3)

Here V is the system volume and Q(WnX) are single molecule (cluster) canonical
partition functions, configurational integrals in the traditional classical-limit analysis [71]. In
this ratio, symmetry numbers associated with W molecules can be cancelled on top-and-
bottom, and the n! reflects the permutation symmetry of the n W ligands. Each Q(WnX) is
proportional to V, so the ratio Equation (3) is independent of V.

Our scheme for evaluating Kn
(0) proceeds by step-wise addition of waters (n− 1→ n)

according to

Kn
(0)

Kn−1
(0)K1

(0)
=

Q(WnX)/Q(X)
n[Q(Wn−1X)/Q(X)][Q(WX)/Q(X)] . (4)

The numerator on the right of Equation (4), involves integration carried over configu-
rations of a WnX cluster, i.e., integrated over clustered configurations, canonically weighted
as exp[−βU(WnX)]. Here β = 1/kT, and U(WnX) is the electronic energy of the WnX
cluster in a given geometry. Because of the divisor in the combinationQ(WnX)/Q(X), that
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combination is independent of the system volume. The combined denominator treats con-
figurations of Wn−1X and WX, but independently of each other. Of course, exactly the same
integrations are expressed in numerator and denominator of Equation (4). Introducing

∆Un = U(WnX)−U(Wn−1X)−U(WX) + U(X) , (5)

then the denominator of Equation (4), expressing the same integrations as the numerator,
is merely missing the factor exp[β∆Un]. Therefore

nKn
(0) =

K1
(0)Kn−1

(0)〈
eβ∆Un

〉
n

. (6)

The brackets, 〈. . .〉n, indicate the thermal average utilizing configurations from the
canonical simulation stream for the WnX cluster [15]. Here clustering is assessed in the
same way on top and bottom: a clustered WnX configuration is analyzed as clustered
configurations of Wn−1X and WX. This amounts to an approximation if the WnX clusters
are frequently ramified, i.e., branched. To see that point, suppose that the singlet W
identified for Equation (5) is a node of the connectivity graph. Then the Wn−1X remainder
would not be connected. This concern is relieved for the more compact clusters of QCT
applications, in contrast to the “Stillinger clusters” [19] for the physical cluster theory
followed here.

In the energy combination of Equation (5), the rightmost term depends on the geome-
try of the WnX cluster sampled. The energies following that rightmost term are evaluated
for a given conformation of WnX from the simulation stream for that cluster. One ligand (or
each in turn) is distinguished to compose the energy difference suggested by the exchange

WX + Wn−1X
 X + WnX . (7)

Geometries of both species on the left of Equation (7) conform to the sampled WnX
structure on the right. One understanding of ∆Un (Equation (5)) is based on the following
accounting. Consider first the combination [U(WX)−U(X)] on the right side of Equa-
tion (5). This is the energy change for introducing one W ligand to a bare X ion. Next
consider the remaining contribution U(WnX)−U(Wn−1X). This is the energy change for
introducing an additional W ligand to a Wn−1X complex. The difference ∆Un thus reflects
the crowding of the nth W ligand, including any effect of suboptimal binding of the nth W
ligand to the X ion.

The free energies we arrive at correspond to water addition reactions (Equation (1)).
They are experimentally measured by creating an ensemble with varying number of waters
(n) in gas-phase mass spectrometry [45]. Because the cluster’s net charge remains constant
as n varies, the energy combination of Equation (5) is not affected by the electrostatic
potential of the phase [12].

For n = 1, Equation (6) correctly reduces to the trivial case of K0
(0) = 1. In the

evaluation of Kn
(0) for n ≥ 2, the value of K1

(0) can be supplied from experiment [45] or
theory. This term incorporates the interaction strength between X and one W molecule.
Carrying out subsequent steps in this scheme then addresses the issues that make anion
hydration more challenging, i.e., competing H-bonding interactions of neighboring W
molecules in those clusters.

The analysis above is based on the classical limit formula for the partition function
Q(WnX). Thus, this approach does not directly address issues of quantum mechanical
zero-point motion, except to the extent that a pragmatic external evaluation of K(0)

1 incor-
porates zero-point motion empirically. This treatment of zero-point motion differs from the
preceding harmonic approximation.
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5. Conclusions

The rough-landscape analysis (Equation (6)) is surprisingly accurate compared to the
available experiment data (Figure 2), even for the cases of ions that exhibit qualitative,
though characteristic, anharmonic behaviors (Figure 1).

The tested rough-landscape remedy (Figure 5) to the harmonic approximation ac-
counts for unfavorable effects due to crowding of the ligands. Though this rough-landscape
procedure provides a distinctive correction, it is expected to break-down when split-shell
structures predominate. From the technical perspective of QCT, n & 4 discrepancies are
likely to be a consequence of a relaxed definition of clustering in the identification of
(H2O)nX clusters—including split-shell or ramified structures—that accompany physical
cluster theories. With ramified structures, the central equation (Equation (6)) for the present
rough-landscape approach can acquire some inconsistency. Further development of these
physical cluster theories in the direction of QCT should remedy this issue, and should be
the next step in this research direction.
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