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Abstract: This work provides a structural analysis of small-scale 3D-printed wind turbine ribs sub-
jected to compression. The ribs were manufactured according to NACA 23015 and NACA 633618 ge-
ometries, with polylactic acid (PLA) and polylactic acid with carbon fiber additives (CF-PLA). In
addition, holes were manufactured into the sample bodies by either 3D printing or drilling for being
compared with solid samples. The compression testing was performed by following the ASTM 695D
standard, whereas the beginning and propagation of delamination were assessed with the ASTM
5528 standard. Experimental results revealed that 3D-printed built-in holes provided higher compres-
sion strength, hence higher structural efficiency, than the drilled samples. Significant improvement
by adding carbon fiber additives into the PLA resin system in comparison to raw PLA was detected
for at least one of the studied airfoil profiles. NACA geometries also represented a key parameter for
avoiding stress concentration areas, as the FEM modeling supported. However, in damaged areas,
fracture mechanisms were observed such as bead-bridging, which is a key parameter in reinforcing
and consolidating the specimen bodies. Working in better interphase bonding and different additives
between beads and layers is highly suggested for future studies.

Keywords: additive manufacturing; wind turbine ribs; delamination; short carbon fiber; PLA

1. Introduction

The use of renewable energy systems (RES) for the generation of electricity is increasing
worldwide, where natural resources such as wind energy have been classified as the most
relevant [1]. Just as a reference, Mexico has a wind installed capacity surpassing 10,000 GWh
with an estimation of 1700 h of useful wind per year [2,3], but this only represents around
5.0% of the contribution to the power output generation of the country [1]. It is believed
that wind power has the potential to provide 20% of global electricity production by 2030, if
appropriate investment is made and research and development activities are carried out [4].

The wind power industry has delved into Additive Manufacturing (AM) and multiple
rapid prototyping techniques to develop small models and real-scale prototypes of wind
turbine components [5–13]. AM, also called 3D printing, enables the fabrication of items
through successive layer-upon-layer deposition, allowing the creation of intricate geome-
tries that are overly complicated to build using traditional manufacturing processes [14,15].
The usage of AM technologies also facilitates the construction of features at several hierar-
chical scales, with customized material processing at different zones, and opens up a wide
range of design spaces to be explored [16]; in addition, AM has been applied in diverse
industries such as medical, pharmaceutical, power generation, construction, electronics,
automotive, aerospace, sports, art, and fashion, among others [17–20].

AM has allowed studying structures made of diverse materials [21], through the differ-
ent categories defined by the International Organization for Standardization (ISO) and the
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American Society for Testing and Materials (ASTM) [22]: material extrusion, material jetting,
sheet lamination, vat photopolymerization, powder bed fusion, and direct energy deposition.
Among these categories, fused deposition modeling (FMD), a type of material extrusion
technique, is the most common method for polymeric applications [19,23], and although
parts printed via FMD exhibit limited resolution, limited surface finishing, and anisotropy,
this method can be carried out in low-cost equipment, in which fully functional parts can be
manufactured, with multiple and customizable materials [20,24,25]. FMD, also known as
fused filament fabrication (FFF), uses a continuous filament of a thermoplastic polymer that
is heated to a semi-solid state and then extruded on a surface or over previously deposited
layers [26,27]. Frequently, said filament is made of acrylonitrile butadiene styrene (ABS)
or polylactic acid (PLA), but other thermoplastics are commonly used, such as acryloni-
trile styrene acrylate (ASA), polycarbonate (PC), polyetherimide, high-impact polystyrene
(HIPS), thermoplastic polyurethane (TPU), aliphatic polyamides (PA, nylon), polyethy-
lene terephthalate (PET), polyvinyl alcohol (PVA), and high-performance plastics such as
polyether ether ketone (PEEK) and polyetherimide (PEI), among others [18,25,28–30].

Aggregates in polymeric filaments were introduced to improve the performance of
3D-printed parts in terms of mechanical strength, thermal conductivity, electrical conduc-
tivity, fire-retardant tendency, piezoelectric properties, or magnetic properties [31]. These
additively manufactured composites (AMCs) are classified by matrix and reinforcement
type; particularly, polymer matrix composites (PMCs) can be reinforced with particles,
fibers, and nanostructures [32–34]. The properties of any AMC can be customized by means
of the aggregate volume fraction to meet specific requirements of the material, which has
been addressed by several researchers [35]. On the other hand, research is required to
reduce porosity and other defects, as well as postprocessing 3D-printed components [36].

Several defects have been studied in laminate composites, where the most common
defects are resin cracking, fiber breaking, and delamination [37,38]. The latter has also been
identified as a common defect for 3D printed parts [39,40], which negatively influences
the performance of the component. Delamination in test samples manufactured by FDM
has been studied for diverse loading conditions, such as by Garg and Bhattacharya [41]
who printed and tested ABS tensile specimens, based on the ASTM D638 standard, con-
cluding that stress is concentrated at the narrow zone in and around the intra-layer bond
region which causes the failure of the specimen due to delamination of layers from the
bonded region. Mercado-Colmenero et al. [42] analyzed polyethylene terephthalate glycol
(PETG) under uniaxial compression loads according to the ISO-604 standards, where the
test specimens manufactured along the z-axis presented brittle fracture caused by a de-
lamination process. Barile et al. [43] studied the effect of the extrusion temperature on the
interlayer cohesion properties of ABS parts by employing a double cantilever beam (DCB)
test according to ASTM D5528 in combination with Acoustic Emission (AE) to determine
the delamination energy GI (Mode I). Results showed that increasing the extrusion temper-
ature causes reduced delamination with respect to a large deformation phase, inducing an
increase in the GI toughness. This was also concluded by Khan et al. [44], who included
Mode II and mixed-mode loadings reaching similar conclusions.

Similar tests have been used for analyzing AMCs. For instance, Heidari-Rarani et al. [45]
performed a comparative study of tensile and bending specimens printed with pure PLA
and continuous carbon fiber reinforced PLA (CCFR-PLA). The tensile test for pure PLA
and CCFR-PLA followed ASTM D638 and ASTM D3039 standards, respectively, while
the bending test followed the ASTM D790 standard. Bending results showed that the
first micro-cracks occurred between the layers and propagated along the specimen length,
which caused delamination between the two layers. The authors assumed that when the
interlaminar cracks reach each other, they create vertical cracks in the layer just below the
loading nose; in addition, they concluded that the dominant failure modes of CCFR-PLA
are delamination and delamination-induced matrix cracking. Ghebrentinsae et al. [46] built
tensile and flexural tests samples following ASTM D3039 and ASTM D7264-07 standards
where a carbon fiber (CF) filament and Markforged® Onyx were used. The experimental
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work showed delamination failure in both flexural and tensile test samples; it was observed
between the matrix and fiber layers and the matrix material was easy to peel off from the
fibers. The authors attributed the delamination to weak bonding between successive layers.
Somireddy et al. [47] investigated the mechanical behavior of 3D-printed ABS with short
carbon fiber (SCF) reinforcements by conducting tensile tests based on ASTM D3039 and
ASTM D5528 for interlaminar fracture toughness of the parts under the crack opening mode.
The authors of [47] concluded that the presence of voids in the extrudates and into the layer
interfaces causes delamination, which along with the fracture of SCFs, degraded the overall
material properties of the printed parts. Maqsood and Rimašauskas [48] combined short
carbon PLA with continuous carbon fiber (CCF) to form CCFR thermoplastic composite
(CCFRTC) material and built specimens for an ASTM D790 standard flexural test. During
bending, delamination occurred towards the sides of the applied load between the layers
instead of breakage or fracture in the composite part, starting from the upper layer lines
and shifting towards the bottom lines.

Controlling delamination in 3D-printed parts via FDM has been explored by means
of special material formulations, such as Chen et al. [49] who were able to eliminate layer
delamination by formulating a bisphenol A-based epoxy and benzoxazine with carbon
nanotubes (CNT) to a low-temperature thermoplastic, which requires a high-temperature
curing process. This resulted in a covalently cross-linked material, where the cross-layer
reaction fuses individual layers, producing flexural and tensile test samples with similar
behavior, regardless of the infill orientation. Other researchers have opted for built-in
features, such as Sanei et al. [50] who studied the effects of printed discontinuities on
ASTM D-3039 tensile test samples using SFC nylon and continuous carbon fiber (CCF)
reinforcements around the periphery of an open hole. Test results showed damage on the
periphery of the hole as fiber–matrix debonding, but failure propagated around and not
into the hole. The authors of [50] concluded that with 3D printing there is no delamination
or damage induced in the creation of the hole, and that it can be used to strengthen the
parts at the discontinuity region to mitigate the effect of stress concentrations.

Although specific defects have been studied in 3D-printed standardized test samples man-
ufactured through FDM, and the literature also reports how some special features improved
the performance of said samples, information is limited on this topic regarding additively
manufactured functional models, their performance under different loading conditions, as well
as the effects of geometric modifications on them, either built-in or post-processed through
machining [51]. In addition, in spite of the evidence that AM is a suitable means to build small
wind turbine blades and components with diverse materials [5,6,10–12], including standard-
ized blade profiles such as NACA 0015 [13] and SG6043 [9], there is a reduced amount of
data of the structural performance of such 3D-printed elements. Therefore, the aim and
novelty of this work is to present an experimental structural analysis of components for
small wind turbines, particularly the ribs that shape the turbine blades, built through FDM
with two commercially available polymers, including SCF additive reinforcements. Ribs
were designed and manufactured with airfoil geometries, specifically NACA 23015 and
NACA 633618, and their performance under compressive load was assessed. Initially, a
simple solid specimen, to characterize the elastic behavior and ultimate strength of the
material, was used and defined as a control case. These kinds of components are used
in lightweight structures, and for this reason often they might have a specific perforation
pattern used as free spaces where wires, pipes, or hydraulic systems can pass throughout; in
addition, near the center of gravity, they count with circular or square holes at which central
beams are assembled, and simultaneously the holes are used as weight-saving features.
Therefore, the effects of geometrical features, built-in holes and drilled holes, are analyzed
herein and compared with the control case. The testing procedure involved compression
loading of the 3D-printed components until failure, and micrographs of the damage were
performed in order to determine if delamination may be greater and could propagate faster
by holes originally 3D printed or by conventionally drilled holes. Finally, finite element
analysis (FEA) of the ribs is included to complement the proposed comparative study. The
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following section details the materials and equipment used to build and test the specimen
sets, along with the experimental procedures and a description of the analyses carried out.
Results and discussion of the experiments and analyses are presented in Section 4, followed
by the Conclusions section.

2. Materials and Methods

In this work, the raw materials used were PLA (polylactic acid) filaments (Ø = 3 mm)
supplied by Makermex® (León, Mexico), and PLA filaments (Ø = 3 mm) with carbon fiber
additives (20% w/w), Proto-Pasta CFD12805, provided by Shenzhen Hanwei Technology
Co. Ltd. (Shenzhen, China). According to the literature, the mechanical properties for these
similar filaments are listed in Table 1.

Table 1. Mechanical properties of PLA filaments [52,53].

Mechanical Properties PLA CF-PLA Units

Young’s modulus 3420 4791 MPa
Poisson 0.33 0.40 –

Tensile strength 35.6 47.9 MPa
Elongation at break 4.2 2.0 %

Flexural strength 85.2 114 MPa
Flexural modulus 2378 6320 MPa

Density 1.24 1.29 g cm−3

With the purpose of assessing the compression strength and consequent delamination
of 3D-printed rib specimens, a set of different samples was designed for comparing different
features that may be involved in the propagation of delamination when a certain 3D-printed
rib specimen is subjected to compression. The first approach is to assess the compression
strength of a simple solid specimen to characterize the elastic behavior and ultimate strength
that will be used as a control case. As mentioned above, ribs with airfoil profiles usually
have various features used as free spaces for wiring or hydraulic systems, in addition to the
holes near the gravity center. The airfoil profiles considered for the set of rib samples were
NACA 23015 and NACA 633618, which are airfoil geometries often used in aerodynamical
structures for wind turbine blades. These airfoils were 3D printed with PLA and PLA with
short carbon fiber additives (CF-PLA), and eventually each of the sets was sorted as solid
(control), originally 3D-printed built-in hole (P_Hole), and machined with a drilled hole
(D_Hole), as Figure 1 shows.
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All the samples shown in Figure 1 are composed of 10 specimens per sample and they
were manufactured in a Prusa® 3D printer (Prague, Czech Republic) (see Figure 2). The
samples were all designed with 100 mm length, 15 mm width, and a thickness of 5 mm; in
addition, specifically for the P_Hole samples, a central hole (Ø = 10 mm) was also included.
Once the CAD models of the samples were defined, they were processed with Cura® Slicer
(Utrecht, The Netherlands), in which other parameters were also determined as Table 2 lists.
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Table 2. The 3D printing parameters.

Parameter PLA CF-PLA Units

Printing density 50 50 %
Printing temperatures 195 210 ◦C

Initial printing temperature 185 200 ◦C
Final printing temperature 180 195 ◦C

Filament diameter 2.85 2.85 mm
Printing velocity 50 50 mm s−1

For the D_samples (without any printed hole), central holes were machined by drilling
with a 10 mm drill bit and feed speeds of 100 rpm for PLA samples and 200 rpm for CF-PLA
samples. Cooling water was used to stop any significant increase in temperature during
the drilling process. The samples were classified and finished by deburring rough edges,
as Figure 3 shows. Finally, each sample was weighed with a Vibra® Laboratory Balance
(DeSoto, TX, USA).
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2.1. Testing and Data Processing

With the purpose of simulating typical behaviors and damages that the ribs show
in a certain lightweight structure, it was determined that compression loads along the
ordinate axis are the most predominant [54,55]. Thus, a typical compression test for rigid
plastics was carried out by following the ASTM 695D standard and using a universal
testing machine INSTRON 8872, with a loading cell of 100 kN. A simple steel fixture was
manufactured to fix the specimens in a horizontal position to be loaded along the ordinate
axis, as Figure 4 shows; a compression load was applied at 0.1 mm min-1 up to a maximum
peak before a decay that suggests catastrophic internal damage.
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Figure 4. Specimen subjected to compression by the universal testing machine INSTRON 8872.

The raw data were recorded by the machine control software Bluehill 3® (Norwood,
MA, USA) and graphs of load against extension per specimen were plotted. When the
experimentation stage was completed, the reduction in raw data had taken place.

One of the innovations that this work offers is that the propagation of fractures was
partially calculated by following the ASTM 5528 standard [56], which measures the Mode
I interlaminar fracture toughness for laminated composite materials, as Figure 5 shows.
This consisted of drawing an approximately right line throughout the elastic zone from the
non-linear point (NL) or the point where the linearity is no longer evident to the origin or
the interception with the ordinate axis; this line is represented by regression with a general
equation, as Equation (1) shows:

y1 = ax + b (1)

where y1 is the lineal regression curve, a is the slope or rate between P/δ (N mm−1), and
b is the interception with the ordinate axis when x = 0 (N). Subsequently, an offset line is
drawn by taking 95% of the slope from the first elastic line and is projected beyond the
interception of the raw data curve, as Equation (2) describes:

y2 = a ∗ 0.95 ∗ x + b (2)
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The interception of the second line and the raw data curve is named the 5%/max point.
The threshold between these two points represents the raising of an initial crack up to its prop-
agation to become delamination [57]. When a maximum peak is found within this threshold
then it is considered that the propagation runs catastrophically, as the ASTM 5528 standard sug-
gests. In this fashion, an interlaminar initial crack and its subsequent propagation is estimated
through experimental data even when visual detection is not yet possible.

2.2. Structural Efficiency

Structural efficiency is defined here as a ratio of the load-carrying ability of a structure
to its mass. This parameter is a simplification of a structure strength as a result of its
materials, geometry, joint assembly, and loading direction, either static or dynamic loading.
For instance, Jegley et al. [58] applied this parameter to carbon-epoxy tapered struts to
space- and aircraft under compression and tension loads, which is defined as follows [59]:

Structural e f f ieciency =
Compression Load

Weight o f structure
, (3)

2.3. Finite Element Analysis

The distribution of stress along the specimens was modeled by FEA via ANSYS®

APDL (Canonsburg, PA, USA). The NACA geometries were drawn by CAD and exported
into ANSYS®, to be meshed with SOLID187 elements. The samples were modeled with
an elastic and isotropic material with PLA and CF_PLA properties (see Table 1). Finally,
the compressive loading was applied at the upper surface and the lower surface was
constrained in all the degrees of freedom (DoF). Once the FEA models were solved, the
von Misses stresses were deployed for structural analysis.

2.4. Fractography

A Sinowon® (Dongguan, China) metallographic microscope with 100×/400× magni-
fication was used to obtain images of the hole cross-section after testing in order to detail
the inner delamination in damaged samples.

3. Results and Discussion

Once the raw data were recorded, curves per specimen were plotted and the NL point
and the 5%/max point were determined. For instance, Figure 6 shows typical plots for each
airfoil NACA 23015 sample. As it is observed, the slopes of each sample are consistent,
however, the maximum linear peak (NL) is different, and in some cases, the non-linear
peak is slightly diffuse, as the plot describes a long curve. In general terms, the solid
sample shows a significantly higher NL point in comparison to the D_Hole and P_Hole, as
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expected, given that this sample has no deleterious holes that decrease the compression
strength, though this sample shows similar elastic behavior properties to the others. As
observed in the case of the PLA sample, the D_Hole sample appears to be higher than the
P_Hole sample in contrast with the CF_PLA, where the P_Hole sample is clearly higher
than the D_Hole sample. This change in behavior between samples might be attributable
to the effect of drilling, hence abrasion and heat on the resin additives that apparently are
more susceptible to interlayer damages.
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Figure 6. Typical experimental curves for NACA 23015: (a) PLA; (b) CF-PLA.

Figure 7 shows the comparison of NL and 5%/max values for all the studied samples,
where each bar represents a certain average value, and its respective error bar represents
a 95% confidence interval. As expected, the solid samples for both types of airfoils show
higher maximum loading values with a clear preponderancy by the NACA 23015, and this
trend is also valid for all the remaining samples. Thus, the type of geometry might have an
effect on the distribution of stresses along the specimen, with areas with higher accumula-
tion of stresses by the NACA 633618. In general terms, the carbon fiber additives induced
an increase in NL and 5%/max values in all the NACA 23015 samples, whereas this trend
is not too clear for the NACA 633618. However, it is obvious that a drilling manufacturing
process induces higher delamination damages than a hole manufactured by 3D printing,
according to the data shown by all the samples, as mentioned above. The differences
between NL and 5%/max are higher for NACA 23015 (≈350 N) than for NACA 633618
(≈220 N), which suggests that in the first airfoil the propagation of delaminations needed
more compression energy to be carried out; this is consistent with a greater distribution of
stresses along the specimens, as previously described. This propagation of delamination
appears to be more unstable for CF_PLA samples, as they show higher variabilities; thus,
it can be implied that while the carbon fiber additives induce higher reinforcement for
fracture propagation, these additives also induce instabilities in such propagations, and
this is noticeable in the solid samples of both airfoils.

Among those samples with a hole, the NACA 23015-CF_PLA-P_Hole sample showed
the best reinforcement either on an initial crack or propagation of delaminations, in contrast
with the NACA 633618-PLA-D_Hole sample, which showed lower values. When the
efficiency is determined as is shown in Figure 8, it is clear that the P_samples had the
higher efficiency after the solid samples, and then it can be implied that the 3D-printed
holes definitely provided better reinforcement than the drilled holes. However, the effect of
the carbon fiber additives is not quite clear across all sets studied.
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Once the experimental data provided maximum loading values per sample, as shown
in Figure 7, these loading values were used to obtain the distribution of stress from the FEA
models. As observed in Figure 9, the main distribution of stresses is located around the
circular central hole, with special concentration into the inner surface with values around
140 and 150 MPa, respectively, wherein it is expected the main damages and delaminations
might appear. Most of the stresses are absorbed by the material between the central circular
hole and the squared holes, which suggests that this is a key parameter to reinforce the
compression strength by adding more material to the original design.
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Figure 9. Von Mises stress distribution on PLA samples: (a) NACA 23015; (b) NACA 633618.

Fractographic images exposed some typical compression fracture mechanisms in the dam-
aged samples. Figure 10 shows the central hole cross-section of an NACA 633618-CF_PLA-D
sample where marks of drilling are observed, and such damages induce micro delamination
in the material that tend to propagate, causing longer delamination when samples are
compressed. Though most of the material looks consolidated, these longer delaminations
are easily observed, in which a type of bead-bridging mechanism that somehow provides
interlayer reinforcement is also evident. In an NACA 23015-PLA-D sample, voids and de-
fects from the 3D manufacturing in addition to damages due to drilling are rather evident,
as seen in Figure 11. These defects and damages, given their high amount, significantly
degrade the material consolidation so much that it looks like a spongy material, causing
high variability in compression strength values and elastic behavior, as exposed by the data
above. The bead-bridging mechanism is barely observable (Figure 11a) and apparently is
substituted by voids, and this might be attributable also to poor bonding between layers
which, as it is obvious, is deleterious for structural applications.
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4. Conclusions

This work presented a description of the relevance of AM in the wind power industry,
as well as a summary of standard tests for the mechanical characterization of 3D-printed
standardized tests samples. Along with the described tests, similarities in the behavior
and analysis of composite laminates and 3D-printed parts were discussed, which led to
identifying an area of opportunity for research on the characterization and defect analysis of
3D-printed functional models. Therefore, an experimental assessment of rib samples with
NACA 23015 and 633618 airfoil geometries subjected to compression was presented herein.
The samples were 3D printed with PLA and CF-PLA, and an experimental plan was designed
for samples with a central hole made by 3D printing or machining. Subsequently, these
samples were compared with samples without any hole, determined as the control case.

Once the data were analyzed, it was observed that samples with a hole showed lower
strength compression values than the control sample, as expected. Among the holed
samples, those with holes made by drilling showed lower mean compression strength
values and higher variability than the 3D-printed built-in hole samples, which is attributable
to damages and micro delamination induced by the machining process. Regarding the
presence of carbon fiber additives, these did not represent a significant improvement in
terms of compression strength values for all the sample sets (corroborated by Student’s
t-test, t < 2.093. Ho: x1 = x2 cannot be rejected); however, the bead-bridging mechanism,
observed in most of the delaminated samples, was even more evident in FC_PLA samples,
as supported by fractography. This might be the cause of why these samples showed
shorter delamination and better layer consolidation than the PLA samples.

In addition, it was observed that the NACA 23015 model displayed fewer stress
concentration areas, with a better strain energy distribution around the airfoil body, as FEA
modeling images support.

Based on this work, it is suggested to explore other types of additives in PLA airfoil
profiles that might keep improving the layer consolidation with better distribution of strain
energy along the body structure.
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