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Abstract: Polarimetric synthetic aperture radar (PolSAR) image classification has played an impor-
tant role in PolSAR data application. Deep learning has achieved great success in PolSAR image
classification over the past years. However, when the labeled training dataset is insufficient, the
classification results are usually unsatisfactory. Furthermore, the deep learning approach is based
on hierarchical features, which is an approach that cannot take full advantage of the scattering
characteristics in PolSAR data. Hence, it is worthwhile to make full use of scattering characteristics
to obtain a high classification accuracy based on limited labeled samples. In this paper, we propose a
novel semi-supervised classification method for PolSAR images, which combines the deep learning
technique with the traditional scattering trait-based classifiers. Firstly, based on only a small num-
ber of training samples, the classification results of the Wishart classifier, support vector machine
(SVM) classifier, and a complex-valued convolutional neural network (CV-CNN) are used to conduct
majority voting, thus generating a strong dataset and a weak dataset. The strong training set are
then used as pseudo-labels to reclassify the weak dataset by CV-CNN. The final classification results
are obtained by combining the strong training set and the reclassification results. Experiments on
two real PolSAR images on agricultural and forest areas indicate that, in most cases, significant
improvements can be achieved with the proposed method, compared to the base classifiers, and the
improvement is approximately 3–5%. When the number of labeled samples was small, the superiority
of the proposed method is even more apparent. The improvement for built-up areas or infrastructure
objects is not as significant as forests.

Keywords: polarimetric synthetic aperture radar; deep learning; majority voting; CV-CNN

1. Introduction

Synthetic aperture radar (SAR) systems are active microwave imaging systems, which
can obtain high-resolution images in both daytime and nighttime, and under all weather
conditions [1]. As an advanced form of SAR, polarimetric SAR (PolSAR) systems can work
in different polarization modes to characterize the observed land-cover types, and thus
have a strong ability to obtain scattering information, resulting in their widespread use. As
a result, PolSAR image classification has played an important role in many fields [2–8].

In the last three decades, a large number of algorithms have been developed for
PolSAR image classification [9–19]. The traditional classifiers can be divided into three
major categories. The first type is based on the statistical characteristics of PolSAR data.
For example, Kong et al. [9] derived a maximum likelihood (ML) classifier for single-look
complex (SLC) PolSAR imagery, which is based on a complex Gaussian distribution; for
multilook PolSAR data, Lee et al. [10] applied the principle of ML and derived a Wishart
distance measure; Liu et al. [11] proposed a superpixel-based classification method with
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an adaptive number of classes, which can take the spatial relations between pixels into
consideration and make full use of the inherent statistical characteristics of PolSAR data;
and Xie et al. [12] proposed a clustering-Wishart-auto-encoder classification model, which
simultaneously considers the compactness and statistical distribution of the data by com-
bining the k-means clustering algorithm with the objective function of a prior model. The
second approach is focused on the inherent characteristics of the polarimetric scattering
mechanisms and can take full advantage of the prior information about class type recog-
nition. For example, Freeman et al. [13] proposed a hierarchical classification approach
based on the scattering characteristics; based on the maximum entropy method, Kousk-
oulas et al. [14] proposed the Bayesian hierarchical classifier to classify low vegetation;
Cheng et al. [15] proposed an unsupervised classifier to classify PolSAR pixels into eight
combinations using three metrics extracted from the observed coherency matrix; and based
on Freeman decomposition and H/Alpha decomposition, Zhao et al. [16] proposed a
framework for the iterative classification of PolSAR data, which classifies the data into
nine initial classes and obtains the final classification result through the use of a Wishart
classifier. The third strategy uses a combination of polarimetric scattering characteristics
and statistical properties. For example, Lee et al. [17] proposed an approach which uses
both H/α target decomposition [18] and the ML classifier based on a complex Wishart
distribution; and Chang et al. [19] proposed a PolSAR image classification method based on
the degree of polarization and co-polarized phase-difference statistics, which has the ability
to classify PolSAR data into four major classes. Hao et al. [20] proposed a classification
framework for PolSAR image, which combined XGBoost, superpixels generation, and
majority voting.

In the last few years, deep learning-based classifiers have become more and more
widely used in the field of PolSAR image classification [21–29]. As a subset of machine
learning, deep learning can process complex data efficiently, and has a strong feature
extraction capability. For example, Hou et al. [21] applied a multilayer autoencoder and
super-pixels for PolSAR image classification, which can make good use of the scatter-
ing characteristics and spatial relationships between pixels; and Liu et al. [22] utilized
a task-oriented generative adversarial network (GAN) for PolSAR image classification
and clustering. Li et al. [23] used the Deeplabv3 to segment fruit and twigs from the
background based on the color and depth information in a RGB picture. Among the
deep discriminative networks, the real-valued convolutional neural network (RV-CNN)
model is one of the most popular models [25]. On account of the special multidimensional
convolution operations, the RV-CNN model has significant advantages in image data classi-
fication [26]. However, the RV-CNN model only uses the amplitude of the PolSAR imagery,
while neglecting the phase information. For PolSAR data represented by a covariance or
coherency matrix, the phase of off-diagonal elements plays an important role in classifying
different types of scatterers. Hirose et al. [27] first processed complex-valued data by a
complex-valued neural network, in which weight and neural activation functions are all
complex-valued. Soon afterwards, a novel complex-valued CNN (CV-CNN) classification
method was proposed by Zhang et al. [28], which not only takes the amplitude and phase
information of the PolSAR imagery as input, but also propagates the phase information
through all the processes of the network.

Deep learning has achieved enormous success in PolSAR data interpretation [30],
and generally obtains better performances than the traditional classifiers. However, the
classification result of a deep learning network is dependent, to a large extent, on a large
number of labeled samples [31,32]. Limited training samples can lead to an overfitting
phenomenon, which refers to the fact that the model only learns the characteristics of
the training samples in the training process, and the classification result on the test set
is poor because of the low generalization performance of the trained model. The lack
of labeled samples can lead to a poor classification result. Therefore, semi-supervised
classification has become prevalent in deep learning because it avoids the labor-intensive
task of acquiring a large number of labeled samples [33,34], and it can fully exploit the
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available labeled training samples. In the field of optical image classification, many semi-
supervised algorithms have been developed in the past few decades [35–37]. However, the
semi-supervised algorithms for PolSAR data classification are relatively deficient. In order
to solve the lack of labeled datasets and minimize the speckle noise, Li et al. [38] proposed a
semi-supervised algorithm based on self-training and superpixel, which used the segmen-
tation and stacked sparse auto-encoder to expand the training set. Sun et al. [39] proposed
an impartial semi-supervised learning strategy based on extreme gradient boosting to
classify very high-resolution images with imbalanced data. Liu et al. [40] proposed a novel
semi-supervised algorithm with neighborhood constraints to reduce the cost of labeled
samples, which uses a number of PolSAR features of every pixel, including its neighbors, to
construct a spatial group; and Hou et al. [41] proposed a robust semi-supervised probability
graphic-based classification framework to solve the problem of the weak quantity and
quality of the labeled training samples.

Another weakness of deep learning is that it may have difficulties in discriminating
objects with similar textures, but with different scattering patterns [42]. In contrast, the
traditional classifiers, such as the Wishart classifier, are based on a complex Wishart distri-
bution, and can employ the scattering traits of PolSAR data. Hence, every method has its
own advantages. Fusion strategies based on multiple classifiers have been developed, the
main purpose of which is to make full use of the respective advantages of each classifier [43].
Theoretically, the combination of multiple classifiers is generally able to obtain a better
classification result [44]. Classification methods can be integrated according to the way in
which they are built. Majority voting is one of the most widely used multiple-classifier
integration strategies, which involves selecting the predicted class with the most votes [45].

In the proposed method, motivated by the above viewpoints, we combine the deep
learning technique with the traditional classifiers, the aim of which is to take advantage
of each classifier and improve the overall accuracy (OA) of classification, even in the case
of limited training samples. Firstly, the classification results of the Wishart classifier, SVM
classifier, and CV-CNN model are used to conduct majority voting. By doing so, the labeled
training samples are expanded by dividing the classification result into a strong dataset
and a weak dataset. The strong dataset are used as pseudo-labels to reclassify the weak
dataset by CV-CNN. In order to make full use of the strong dataset, the weak dataset is
reclassified three times using the pseudo-labels derived by the strong dataset, and then
followed by a majority voting manner to integrate the three classification results.

The main contributions of this present paper are as follows: A novel sample selected
method is maintained by a voting strategy, which is used to expand labeled training samples
based on three classifiers classification results; a novel semi-supervised classification
method is presented, which can make full use of scattering characteristics and obtain
a high classification accuracy based on limited labeled samples.

The rest of this paper is organized as follows. The characteristics of PolSAR data
and the traditional classifiers are described in Section 2. In Section 3, the CV-CNN model
and the proposed method are introduced. The experimental results obtained with the
benchmark PolSAR images are described in Section 4. Finally, our conclusions are drawn
in Section 5.

2. Related Works
2.1. PolSAR Data

Fully polarimetric SAR systems measure the complex scattering characteristics of an
observed target with quad-polarizations. Each pixel of a PolSAR image in the SLC format
can be expressed by a complex scattering matrix:

S =

[
Shh Shv
Svh Svv

]
(1)

where each element in the complex scattering matrix represents the amplitude and phase
information. Svh denotes the scattering coefficient of the horizontal transmitting and vertical
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receiving polarizations, which can be characterized by the phase φvh and the amplitude
|Svh| :Svh = |Svh|ejφvh = |Svh| cos φvh + j|Svh| sin φvh, where j is the imaginary unit. The
other elements are similarly defined. Under a monostatic case and the reciprocity theorem,
Shv and Svh are equivalent. Thus, under Pauli decomposition [46], the complex scattering
vector h can be obtained as:

h =
1√
2
[Shh + Svv, Shv + Svv, 2Shv]

T (2)

where the superscript T is the transpose operation. The coherency matrix of the PolSAR
imagery for the multilook case can be expressed as:

T =
1
n

n

∑
i=1

hihi
H =

 T11 T12 T13
T21 T22 T23
T31 T32 T33

 (3)

where n is the number of looks, and the superscript H represents the conjugate transpose.

2.2. Traditional Classifiers

For the traditional classifiers applied in PolSAR image classification, Wishart and SVM
are the classical methods. Wishart and SVM are both supervised classifiers which play an
important role in the field of PolSAR data interpretation.

2.2.1. Wishart Classification

For multilook PolSAR data represented in coherency matrix T, Lee et al. [10] applied
the principle of ML and derived a Wishart distance:

d(T, Vm) = Tr
(

V−1
m T

)
+ ln|Vm| (4)

where d(T, Vm) means a distance between the sample pixel covariance matrix T and cluster
center Vm. For each target pixel, the Wishart distance between it and each cluster center is
calculated, and the pixel is classified to the class with the smallest Wishart distance. The
Wishart distance is a measurement that is commonly used to measure the similarity of
PolSAR imagery. For example, Jiao et al. proposed a Wishart deep stacking network method
to improve the precision of PolSAR image classification, based on the rapid implementation
of the Wishart distance [47].

2.2.2. Support Vector Machine Classification

SVM is a classification algorithm which minimizes the structural risk to improve the
generalization ability of machine learning. SVM also minimizes the empirical risk and
confidence range to obtain good classification results, even in the case of limited labeled
samples [48]. Due to the superiority of SVM, a lot of algorithms have been developed based
on SVM. For example, Maghsoudi et al. [49] proposed a system consisting of a feature
selector based on a non-parametric evaluation function and SVM; SVM was combined
with a radial basis kernel function and stochastic distance to assess the robustness of in
region-based classification by Negri et al. [50].

2.2.3. Deep Learning Method for PolSAR

Deep Learning has demonstrated great advantages in the PolSAR image processing
task. The deep learning method is a series of algorithms based on a complex structure,
using nonlinear transformation to abstract the multiple high-level characteristics, whose
essence is acquiring high-level characteristics by a multi-layer network. This is based on a
large amount of data, so as to eventually improve the accuracy of classification and provide
a new idea for high-level characteristics. Auto encoders (AE), deep belief network (DBN),
and CNN are the main methods that have been widely used in PolSAR image application.
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PolSAR image classification based on the deep learning method generally consists of image
preprocessing, dataset production, parameter testing, and result analysis.

Deep learning has achieved great success in the field of image classification [51],
and the CV-CNN model can be considered as a representative method. As shown in
Figure 1, as in the traditional RV-CNN model, the CV-CNN model consists of an input
layer, an output layer, convolutional layers, pooling layers, and fully connected layers [28].
However, all elements of the CV-CNN model are complex-valued, including the input layer,
convolutional layer, activation function, pooling layer, and output layer. Compared with
the RV-CNN model, there are three main advantages of the CV-CNN model [28]: (1) the
CV-CNN model not only uses the amplitude of the PolSAR imagery, but it also propagates
the phase information through all the process; (2) all the mathematical operations of the
whole network are extended under complex analysis theory, and at the same time, both
the data and parameters are extended into the complex field; and (3) a complex back-
propagation algorithm based on stochastic gradient descent is used for the model training.
In the following, the details of the CV-CNN model are presented.
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The function of the convolutional layer is to convolve the filters to extract the different
features of the previous layer. For the input image, each filter bank will detect specific
regional features, which means that every feature map represents a specific feature at
different zones of the previous layer. The output of the (l + 1)th convolutional layer can be
represented as:

O(l+1)
m = f (ξ(V(l+1)

m )) + j f (ψ(V(l+1)
m )) (5)

p(l+1) =
K

∑
k

w(l+1)
pK ∗O(l)

k + b(l+1)
p (6)

where * represents the convolution operation. ξ and ψ are, respectively, the real and
imaginary parts of a complex-valued domain. V(l+1)

m is the mth output feature map of
the (l + 1)th layer. w(l+1)

pK denotes the filter banks. O(l)
k and b(l+1)

p represent the previous
layer’s input feature maps and the bias, respectively. f (·) is the nonlinear function, which
represents the sigmoid function.

The pooling layer usually follows the convolutional layer, which can not only simplify
the spatial structure, but can also merge similar features of the input feature maps. Among
the many pooling functions, the max pooling and average pooling layers are the two most
commonly used functions. Hence, pooling layers can be regarded as downsampling layers.

In general, one or more fully connected layers are employed in the CV-CNN model,
and can be regarded as special convolutional layers. In addition, each neuron of the fully
connected layer is connected to all the neurons in the front layer. The output can be
expressed as:

O(l+1)
n = f (ξ(V(l+1)

n ) + j f (ψ(V(l+1)
n )) (7)

V(l+1)
p =

M

∑
m=1

w(l+1)
pm ·O(l)

m + b(l+1)
p (8)

where M denotes the quantity of neurons at the lth fully connected layer.
The final output layer is a classifier represented in a 1 * C complex-valued vector,

which indicates the probability of the pixel belonging to the Cth class. After this, all of the
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parameters in the network are learned in a supervised way by minimizing a loss function
E, which can be written as:

E =
1
2

1
N

N

∑
n=1

K

∑
k=1

[(ξ(Tk[n])− ψ(Ok[n]))2 − (ψ(Tk[n])− ψ(Ok[n]))
2] (9)

where T[n] is the nth input data. The covariance matrix T is a Hermitian matrix. Hence, we
only take the upper triangular elements of the matrix as the input data.

3. The Proposed Approach
3.1. The Deep Learning Method

Deep Learning has shown great advantages in PolSAR image processing task. The
deep learning method is a series of algorithms based on a complex structure using nonlinear
transformation to abstract the multiple high-level characteristics, whose essence is acquiring
high-level characteristics by a multi-layer network. This is based on a large amount of
data, so as to eventually improve the accuracy of classification and provide a new idea for
high-level characteristics. Auto encoders (AE), deep belief network (DBN), and RV-CNN
are the main methods that have been widely used in PolSAR image application.

The CV-CNN model, as an advanced form of RV-CNN, has achieved great perfor-
mances in PolSAR image supervised classification. However, its classification performance
is heavily reliant on the number of labeled training samples, and limited training samples
can lead to an overfitting phenomenon, resulting in the low generalization performance
of the trained model. The CV-CNN model may have difficulties in discriminating objects
with similar textures, but with different scattering patterns. On the contrary, the Wishart
classifier can employ the scattering traits of PolSAR data, but the spatial information in the
image has not been fully utilized. Generally, the single classifier is unable to accurately ab-
stract high-level description of ground objects. Hence, discovering a method that can take
the scattering traits and the multiple high-level characteristics deserves extensive research.

In this paper, with the aim of solving the problem of insufficient labeled samples, a
novel supervised classification method is proposed. The main idea is to take advantage of
each classifier, and expand the number of high-reliability samples, so as to improve the
classification accuracy of the CV-CNN model.

3.2. Configuration of the Proposed Method

As illustrated in Figure 2, the flowchart of the proposed method consists of two
main parts. Firstly, a small number of labeled samples are randomly selected to classify
the PolSAR images by three base classification methods, which are SVM, Wishart, and
CV-CNN. A majority voting strategy is then employed to fuse the base classifier results,
which is done by expanding the labeled training samples by dividing the classification
result into a strong dataset and a weak dataset. In this majority voting process, if the three
classifiers are unanimous in the class of a certain pixel, this pixel is categorized into the
strong dataset with the voted class label; otherwise, it is categorized into the weak dataset
with the uncertain class label.
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After acquiring the strong dataset and expanding the number of training samples,
more samples could, in theory, be employed to classify the PolSAR data. In general, it is
easier and faster to classify the weak dataset only once by the CV-CNN model. In order to
make full use of the strong dataset and suppress the interference of misclassified pixels in
the initial majority voting process, samples are selected three times from the strong dataset
as pseudo-labels to train the CV-CNN classifier three times, followed by normal majority
voting, which is based on the predicted class with the most votes. Finally, by combining
the strong dataset and the reclassification result of the weak dataset, the final classification
results are obtained.

3.3. Preprocessing of PolSAR Data for CV-CNN

In order to speed up the gradient descent and improve the classification accuracy, it is
necessary to preprocess the PolSAR data. For each element of the coherency matrix of the
input data, the average Tave and the standard deviation Tstd of the training samples are
calculated. For the off-diagonal terms, for example T12, the average and standard deviation
can be calculated as:

T12_ave =
1
K

K

∑
k=1

T12(k) (10)

T12_std =

√√√√√ K
∑

k=1
(T12(k)− T12_ave)

(
T12(k)− T12_ave

)
K

(11)

and the final normalized data are obtained as:

T′12 =
T12 − T12_ave

T12_std
(12)

The diagonal terms are similarly defined.

4. Experimental Section

In this section, we describe the experiments on two real PolSAR images to demonstrate
the performance of the proposed algorithm (Table 1). The OA and Kappa were adopted
to quantitatively evaluate the performance of the different methods. The refined Lee
filter [52] was applied to reduce the speckle noise before conducting the experiments. For
SVM classification on PolSAR data, selecting proper parameter settings and the kernel
parameter was an important step. In this study, we selected all the terms of the coherency
matrix as the input polarimetric indicators and chose the Gaussian radial basis function
(RBF) as the kernel function, which was implemented in PolSARpro V6.0 software. All of
the experiments were implemented in the MATLAB R2018a environment on a 3.2 GHz
machine with GTX 1060 GPU and 16-GB memory. The CV-CNN model consists of an input
layer, an output layer, two convolutional layers and one pooling layer. The size of the input
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layer was 12× 12× 6, which means that the channel number was 6, and the local patch
was 12× 12. Then, the input data was filtered by six convolution filters with the size of
3× 3× 6, producing six feature maps of size 10× 10. The size of average pooling layer was
2× 2 and stride was 1. The size of the second convolutional layer filter was 3× 3× 6× 12,
resulting in 12 feature maps and 3× 3 size. The fully connected layer consisted of 108
neurons. The output layer contained q neurons and q is the number of classification classes.

Table 1. Basic parameters of the dataset.

Data Set Platform Polarization Spatial Resolution Band Number of Looks Size

Flevoland AIRSAR Quad-polarization 10 m × 10 m L 4 1024 × 750
Oberpfaffenhofen ESAR Quad-polarization 3 m × 3 m L 1 1300 × 1200

4.1. Experiments with the Flevoland Dataset

The first dataset used for the verification of the proposed method was acquired by
the NASA/JPL AIRSAR platform in 1989, over an agricultural area in Flevoland in the
Netherlands. The size of the image is 750 × 1024 pixels. Figure 3a displays the Pauli RGB
image of the data, which was formed by the intensities of the Pauli de-composition. The
ground truth and the corresponding legend are shown in Figure 3b. In total, there are 13
classes, including stem beans, peas, forest, lucerne, beet, potatoes, grass, rapeseed, barley,
water, and three types of wheat.
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Figure 3. Original Flevoland dataset. (a) Pauli RGB image for the Flevoland dataset. (b) Ground
truth and legend of (a).

In this experiment, we randomly selected only 509 labeled samples. That is to say, only
39 pixels were taken as the training samples for each class. The training sample ratio was
only 0.34%, which is quite a low level when compared with other studies. The classification
results are shown in Figure 3 and the quantitative assessment results are listed in Table 2.
For the first CV-CNN experiment on Flevoland dataset, the hyperparameters were set
as follows. The learning rate was 0.6, and the batch size was 10 with 200 epochs. The
loss curves are shown in Figure 4. From the loss curves, we can easily find that with the
increasing of epoch, the loss decreased quickly. When the epoch is 100, the loss was stable
at 0.006.
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Table 2. Classification precision for the Flevoland dataset (%).

Class Number of
Samples Wishart SVM CV-CNN Strong

Dataset
Number of Samples

in Strong Dataset
Proposed
Method

Stem beans 41 99.87 97.28 81.91 99.98 10,934 97.72
Peas 61 89.31 83.23 97.07 99.22 12,288 97.93

Forest 45 89.94 86.17 91.96 99.01 20,614 96.83
Lucerne 38 97.70 94.54 90.72 99.98 15,469 96.82
Wheat 48 92.84 81.81 94.95 99.89 18,442 96.63
Beet 32 95.35 97.19 84.53 99.66 62,295 95.64

Potatoes 17 83.27 53.57 58.14 85.24 25,780 80.93
Grass 25 86.12 80.32 78.99 94.10 27,155 84.59

Rapeseed 33 65.82 50.39 49.24 78.45 12,927 84.41
Barley 17 78.73 88.90 89.99 99.84 19,934 91.29

Wheat 2 47 67.02 76.97 84.72 92.42 8520 82.64
Wheat 3 57 93.39 92.63 91.52 99.66 24,822 97.41

Water 48 90.78 88.95 87.12 99.58 19,653 96.19
OA – 87.04 80.78 81.77 97.34 – 90.75

Kappa – 85.96 79.18 80.25 97.11 – 89.96
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From Table 2 we can see that the OAs of the Wishart, SVM, and CV-CNN base
classifiers, the strong dataset, and the proposed method, were 87.04%, 80.78%, 81.77%,
97.34%, and 90.75%, respectively. The highest OA was achieved by the proposed method,
and the classification accuracies for all categories with the proposed method are higher
than those with CV-CNN. It can also be seen that the accuracy for every class with the
strong dataset was higher than for the base classifiers. The OA for the strong dataset was
higher than for the base classifiers, which validates the high reliability of the strong dataset.
On one hand, majority voting can, on the whole, improve the accuracy. On the other hand,
the OA for the strong dataset was very high, so this dataset can be taken as pseudo-labels
to reclassify the weak dataset. As shown in Table 2, the number of training samples of stem
beans was only 41, however, the number of samples of stem beans in the strong dataset was
10,934 with a high accuracy of 99.98%, which indicates that the labeled training samples
were expanded by the proposed method. The low classification accuracy of CV-CNN can
be predominantly attributed to the low accuracy obtained for the rapeseed class, while
the low accuracy of SVM can be attributed to the low accuracy obtained for the potatoes
class and rapeseed class. This directly degrades the performance of the majority voting
approach, thus leading to the poor performance of the proposed method in classifying the
rapeseed and potato classes. There are also many fragments in the classification results
of Wishart, SVM, and the proposed method, as shown in Figure 5e–g, respectively. From
Figure 5c, it is clear that the misclassification is severe in the right side and top of the
Flevoland image classified by CV-CNN. In addition, the results of the proposed method in
Figure 5h appear much smoother than the results of the other methods. This indicates that
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the proposed method can maintain a good classification result, even with a small number
of labeled samples.
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To further analyze the improvement of the proposed method, a series of experiments
were conducted. For the Flevoland dataset, the trends of accuracy with the increase of the
training samples are shown in Figure 6. It can be seen that, with the increase in the number
of training samples, the OA of each method generally increased. The superiority of the
proposed method was more significant when the number of samples was small, especially
when compared with CV-CNN. The accuracy of SVM was relatively poor, and its accuracy
fluctuates with the increase of the samples. With 90 training samples in particular, the
classification accuracy was only 74.3%. In general, the Wishart classifier was stable with
different numbers of samples, and the OA is around 88.0%.
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4.2. Experiments with the Oberpfaffenhofen Dataset

The second experiment was carried out with the dataset obtained over the German
Aerospace Center at Oberpfaffenhofen in Germany. This image was acquired by the ESAR
system. The Oberpfaffenhofen image, as a benchmark dataset, is widely used for PolSAR
data classification research. According to the ground truth shown in Figure 7, there are
three identified classes in the image, i.e., built-up areas, wood land, and open areas. The
size of the image is 1300 × 1200.
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Figure 7. Original Oberpfaffenhofen dataset. (a) Pauli RGB image. (b) Ground truth and legend of (a).

In this experiment, we selected only 446 labeled samples; in other words, only 149 pix-
els were taken as the training samples for each class. The training sample ratio was only
0.18%, which is quite a low ratio. For the first CV-CNN experiment, on Oberpfaffenhofen
dataset, the hyperparameters were set as follows. The learning rate was 0.8, and the batch
size was 10 with 200 epochs. The loss curves are shown in Figure 8. With the increasing of
epoch, the loss fluctuated, but the tendency decreased.
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The classification results are shown in Figure 9 and listed in Table 3. From Table 3,
we can see that the OAs for the Wishart, SVM, and CV-CNN base classifiers, the strong
dataset and the proposed method are 75.70%, 77.01%, 78.89%, 87.47%, and 82.76%, respec-
tively. The highest OA was again achieved by the proposed method, and the classification
accuracies obtained by the proposed method for most categories were higher than those ob-
tained by CV-CNN, except for the open areas class. The classification accuracies obtained
by the Wishart, SVM, and CV-CNN base classifiers for the built-up area class were all
below 50%, thus leading to the poor performances of the strong dataset and the proposed
method in classifying the built-up area class. The black rectangle in Figure 9 indicates
the distinctly different results of the above classifiers. From Figure 9g, it can be seen that
the misclassification in the built-up area class for CV-CNN is serious, especially in the
right of the image, which is consistent with the data in Table 3. There are also too many
fragments in the Wishart and SVM classification maps (Figure 9e,f). For the built-up area
class, the accuracy of the proposed method shows a significant improvement over CV-CNN,
thanks to the good classification result of the strong dataset. It is clearly demonstrated that,
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compared with base classifiers, the accuracy of the proposed method on every land-cover
type shows a distinct improvement. In addition, the visual effect of the proposed method
in the classification map is much smoother than the effect of the other methods.
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Table 3. Classification precision for the Oberpfaffenhofen dataset (%).

Class Wishart SVM CV-CNN Strong Dataset Proposed Method

Built-up area 43.66 46.24 36.86 61.28 55.46
Wood land 90.05 81.29 77.39 93.19 78.67
Open areas 85.16 89.28 98.06 99.89 96.29

OA 75.70 77.01 78.89 87.47 82.76
Kappa 61.48 62.46 63.41 75.21 71.47

A series of experiments were carried out to further demonstrate the advantages of
the proposed method. As shown in Figure 10, we can observe that, generally speaking,
with the increase of the training samples, the OAs of each method show a gradual increase.
The lowest OA was realized by the Wishart classifier. The Wishart classifier’s performance
fluctuates with the increase of the training samples. The OA of SVM was about 82%, which
is a similar performance to CV-CNN. The OA of the proposed method is always higher than
that of the base classifiers, especially when the training samples are limited. At the right
side of the Oberpfaffenhofen image, the buildings are sparsely distributed, and there are
some forests, which makes the scattering characteristics similar to wood land. As shown
in Table 3, the majority of accuracy in every land cover class was lower than open areas,
which leads to a low accuracy of build-up area and wood land, and this leads to a small
improvement in the Oberpfaffenhofen dataset experiment, compared to the Flevoland
dataset experiment.
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5. Conclusions

Deep learning methods have become more and more widely used in the field of
PolSAR image classification. However, when the labeled training dataset is insufficient,
the classification results are usually unsatisfactory. A novel semi-supervised classification
method, which combines the deep learning technique with the traditional classifiers, has
been proposed in this paper. The proposed method can take advantage of each classifier
to generate a strong dataset and a weak dataset. The strong training set are used as
pseudo-labels to reclassify the weak dataset by CV-CNN, which can make full use of the
high-accuracy strong dataset. The final classification results are obtained by combining the
strong training set and the reclassification results. The innovation of this method is that a
majority voting approach is used to increase the training samples of the CV-CNN model,
to further improve the classification performance. The experimental results obtained on
two real PolSAR images confirmed the superiority of the proposed method with regard
to the traditional supervised classifiers, especially when the number of original training
samples was small. One of the limitations is that the settings of hyperparameters is slightly
sophisticated in the proposed method and this makes it slightly time consuming. On one
hand, our future work will focus on developing an automatic parameter optimization for
the proposed method, and further investigation of the interactive connection between deep
learning and the traditional scattering trait-based classifiers; on the other hand, our future
work will carry out experiments on mountain areas to further verify the validity of the
proposed method, and finally, space-borne PolSAR data also deserve to be researched.
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