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Alterations and personal variations of RNA interactions have been mechanistically

coupled with disease etiology and phenotypical variations. RNA biomarkers, RNA

mimics, and RNA antagonists have been developed for diagnostic, prognostic, and

therapeutic uses. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are

two major types of RNA molecules with regulatory roles, deregulation of which

has been implicated in the initiation and progression of many human malignancies.

Accumulating evidence indicated the clinical roles of regulatory RNAs in cancer control,

stimulating a surge in exploring the functionalities of regulatory RNAs for improved

understanding on disease pathogenesis and management. In this review, we highlight

the critical roles of lncRNAs and miRNAs played in tumorigenesis, scrutinize their

potential functionalities as diagnostic/prognostic biomarkers and/or therapeutic targets

in clinics, outline opportunities that ncRNAs may bring to complement current clinical

practice for improved cancer management and identify challenges faced by translating

frontier knowledge on non-coding RNAs (ncRNAs) to bedside clinics as well as

possible solutions.
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INTRODUCTION

Non-coding RNAs (ncRNAs) are RNA molecules with no protein translation potential. The
conception that ncRNAs are “junk RNAs” of the transcriptome has been subverted by the
fact that an essential part of the genome is transcribed into RNAs without protein products,
with the rapid development of high-throughput technologies (1, 2). NcRNAs can be classified
as housekeeping ncRNAs for the maintenance of normal cell functionalities, and regulatory
ncRNAs. House keeping ncRNAs include, e.g., snoRNAs (small nucleolar RNAs), snRNAs (small
nuclear RNAs), gRNA (guide RNAs), RNaseP RNAs that take part in processing transcriptional
products, and tRNAs (transfer RNAs), rRNAs (ribosome RNAs), and tmRNAs (transfer messenger
RNAs) that are involved in protein translation, as well as telomere related RNAs and SRP RNAs
(signal recognition particle RNAs). A diverse reservoir of ncRNAs with regulatory roles on gene
expression or cellular events has been revealed including, e.g., long ncRNAs (lncRNAs), microRNAs
(miRNAs), piwi interaction RNAs (piRNAs), and circular RNAs (circRNAs). This review focuses on
regulatory ncRNAs, whose indispensible roles on maintaining the special-temporal architecture of
transcriptional and translational programs under healthy and malignant states have been gaining
incremental attentions.
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NcRNAs modulate gene expression through various
mechanistic programs. NcRNA-mediated gene silencing
constitutes one important type of epigenetic alterations and
has been implicated in several human carcinogenesis (3). An
increasing number of studies have uncovered associations
between ncRNAs and cancer predisposition or status during
the past decade (4), opening a new paradigm for cancer
control taking advantages of regulatory RNAs. Among the
ever-increasing types of ncRNAs being deciphered, lncRNAs
and miRNAs are the most intensively studied (5). In particular,
lncRNAs, frequently found deregulated in various types of
cancers, represent a novel goldmine for biomarker discovery
as well as therapeutic applications (6–9); miRNAs have been
subsequently identified dysregulated in almost all types of
cancers and proposed for diagnosis and therapeutics ever since
the discovery of the loss-of-function phenotypes conveyed
by the miRNA let-7 (10). For instance, lncRNA LINC00261
was reported to suppress cell proliferation and invasion in
human choriocarcinoma (11), and miR-21 was implicated as an
oncogenic factor regulating cancer cell proliferation, migration
and apoptosis in many diseases including cancers (12, 13).

This review will critically assess the features and
functionalities of ncRNAs with a focus on lncRNAs and
miRNAs, identify their current applications and potential
in cancer management including diagnostics, prognosis and
therapeutics, proposes opportunities that ncRNAs may bring
to complement the current diagnostic/therapeutic modalities
for improved cancer control, and discuss challenges faced by
bringing ncRNAs from academic frontier to the bedside in clinics
as well as the potential solutions (Figure 1).

LONG NON-CODING RNAS

Features of lncRNAs
LncRNAs are, in general, >200 nts, and vary from 1,000 to
10,000 nts, some of which are upto 1,00,000 nts in length
(14, 15). LncRNAs were firstly recognized in mice when people
were attempting to sequence the full-length cDNAs (16). Ever
since 2007 when HOTAIR, a 2.2 kilobase functional lncRNA,
was identified to participate in several processes of epigenetic
regulations (17), the mystery on the existence and prevalence
of lncRNA that constitute genome redundancy was revealed,
and a new regime of exploring the regulatory roles of lncRNAs
was opened. With the development of transcriptomics, lots
of lncRNAs were identified in the past decade as important
functional products of the genome (15).

LncRNAs are highly diverse, with little shared feature
regarding the localization, structure, mechanistics or mode of
action across the entire mammalian lncRNA regime. However,
lncRNAs are featured by lowGC content, lack of introns and start
codons (18).While some lncRNAs perfectly matchWatson-Crick
base-pairing, some employ imperfect pairing, and Watson-Crick
and non-Watson-Crick base pairs are interspersed (14). These
sequence traits enable them with some biological features such
as nucleus positioning and low transcription activity (19). The
secondary and tertiary structures of lncRNA play vital roles for
them to take on any action modes such as protein recognition,

catalysis and metabolite sensing (14, 20), where UV crosslinking
and computational modeling have been used to characterize their
functionalities in the 3D space (21–23).

Diverse approaches have been established to classify lncRNAs
according to different features. LncRNAs can be categorized
into 5 classes, i.e., sense lncRNA, antisense lncRNA, intronic
lncRNA, intergenic lncRNA, and bidirectional lncRNA, based
on their genomic locations and relative positions to protein-
coding genes. Sense and antisense lncRNAs are, by their names,
transcribed from the sense and antisense strand, respectively;
while intronic lncRNAs are lncRNAs entirely transcribed from
the introns of protein-coding genes, intergenic lncRNAs are
transcribed within genomic intervals of neighboring protein-
coding genes; lncRNAs are considered bidirectional if they
were transcribed concomitantly with an adjacent protein-coding
gene on the same strand (24). Based on the functionalities of
lncRNAs exerted on DNA sequences, they can be categorized
into cis- and trans-lncRNAs. While cis-lncRNAs regulate the
expression of neighboring genes, trans-lncRNAs modulate those
of the remote genes (25). Headway will be made toward
more comprehensive understandings on the functionalities
and mechanisms of lncRNAs with the advancement of high-
throughput technologies that, ultimately, lead tomore reasonable
classifications of lncRNAs.

Functionalities of lncRNAs
Large number of lncRNAs have been recognized with the rapid
advancement of experimental and computational technologies,
with a small fraction of them being functionally annotated and
even fewer been proved with in vivo functionalities. Through
forming a RNA:DNA:DNA triplex, RNA:DNA hybrid (R-loop),
RNA:RNA hybrid with a nascent transcript, or binding to a
sequence-specific DNA binding protein, lncRNAs can function
as decoys, scaffolds, and guides to interfere with and participate
in various transcriptional and post-transcriptional programs (15,
26–28) (Figure 2). Functioning as decoys that block the access
of other regulatory RNAs or proteins to the targeted DNA is the
firstly identified mechanism of lncRNAs. For example, lncRNA
AK015322 functions as a decoy for miR-19b-3p to promote
the proliferation of spermatogonial stem cells C18-4 (29); and
lncRNA Gas releases the glucocorticoid receptor from DNA
as a decoy to prevent transcription of metabolic genes under
starvation conditions (30) (Table 1). LncRNAs can also serve
as scaffolds to bring regulatory elements including proteins and
RNAs together for collaborative functionalities including gene
expression enhancement. For instance, lncRNA GClnc1 rewires
the histone modification pattern that ultimately contributes to
gastric carcinogenesis through performing as a modular scaffold
of the WDR5/KAT2A complex (58); the lncRNA KHPS1 re-
activates a poised enhancer of the proto-oncogene SPHK1 via
RNA-DNA-DNA triplex-dependent recruitment of epigenomic
regulators E2F1 and p300 (59); and the lncRNA Evf2 spatially
organizes distant genes and functions as an enhancer in the
developing forebrain (60) (Table 1). Last but not least is the
“guide” role played by lncRNAs, with a classical example being
HOTAIR that guides PRC2 in regulating the expression of a
plethora of developmental and cancer-related genes (36), and
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FIGURE 1 | Conceptual scheme illustrating the features and functionalities of regulatory ncRNAs as well as opportunities and challenges they bring to clinics.

(A) Functionalities of ncRNAs enable them with clinical potential and bring novel opportunities to clinics. Regulatory ncRNAs can function in chromatin remodeling,

post-transcriptional regulation and transcriptional regulation. Based on these functionalities, experimental tools such as the CRISPR technique has been established

to avail both research and clinics; besides, ncRNAs can capture dynamic subtle cellular changes pathological stimuli that are difficult to be precisely monitored using

DNAs or proteins, and targeting miRNAs can effectively regulate many downstream target genes which is difficult to achieve using conventional strategies. (B) Several

features of ncRNAs make clinical translation of ncRNAs challenging. NcRNAs are featured by promoting disease in one tissue but being protective in another,

therefore, enabling tissue-specific drug delivery is of crucial importance when targeting ncRNAs in clinics. NcRNAs may be subjected to chronic loss-of-function

adaptation, leading to inconsistencies observed between short-term inhibition and genetic deletion in some cases, and how to prevent drug efficacy decline with time

imposes another big challenge. LncRNAs take advantages of both sequence matching and secondary and/or tertiary structures to take actions, and miRNAs can

regulate multiple targets simultaneously, rendering it more important and complicated to prevent off-target effect. Oligonucleotide sequence may be toxic, which

makes the safety issue more significant on drug delivery.

another example being lncRNA-21 that reroutes the nuclear
factor hnRNP-K to specific promoters (61) (Table 1).

Transcriptional Regulation

LncRNAs can regulate gene transcription via chromatin
remodeling (Figure 3) through confining chromatin remodeling
complexes to particular genomic regions via interactions
between lncRNAs and histone methyltransferase PRC2
(polycomb repressive complex 2) (15, 26, 70). For example,
the lncRNA HOTAIR induces H3K27me3 through direct
interactions with EZH2 (the catalytic subunit of PRC2) that,
ultimately, suppresses HOXD expression (71, 72). Another
example is how lncRNA Xist regulates X chromosome dosage
compensation in mammals, where Xist expressed from one X
chromosome localizes PRC2 and H3K27me3 to the inactive X
chromosome in female cells through physically interacting with
PRC2 via RepA; and this results in altered chromatin structure
of the entire inactive X chromosome and restored expression
of genes located on this chromosome that were previously
transcriptionally silenced (46). Besides, lncRNAs can utilize

DNA methyltransferases to modify chromatin conformation
(73–75). For instance, antisense lncRNAs such as PTENpg1 was
shown to interact with a 5′UTR-containing promoter-spanning
transcript followed by recruitment of DNA methylatransferase
3A (DNMT3a) to epigenetically control the transcription of the
PTEN pseudogene (42) (Table 1).

LncRNAs can regulate gene expression by interfering with
the transcription of regulatory elements such as enhancers and
promoters (76, 77) (Figure 3). Some lncRNAs are transcribed
within adjacent gene promoters, and thus capable of modifying
relevant gene expression through interfering the binding
of transcription factors. For instance, the lncRNA SRG1 is
transcribed across SER3 promoter, and SER3 expression is
considerably reduced on SRG1 transcription (44) (Table 1).
LncRNA can be transcribed within distal enhancers that can
modulate the expression of neighboring genes through recruiting
transcription factors to these loci (78, 79). Transcription factors
are sensitive regulators of gene expression, deregulation of which
at either transcriptional or translational levels may lead to life-
threatening diseases including cancers. LncRNAs are spatially
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FIGURE 2 | Models of lncRNA mechanisms of action. (A) Decoy. LncRNA can act as decoys that titrate away DNA-binding proteins such as transcription factors or

regulatory RNAs such as miRNAs. (B) Scaffold. LncRNAs may act as scaffolds to bring two or more proteins into a complex or spatial proximity which, if through

chromosome looping, can function as an enhancer. (C) Guide. LncRNAs may act as guides to recruit proteins such as chromatin modification enzymes to DNA.

associated with TFs in the genome, and can regulate gene
expression by interacting with TFs, with a recent example on
the identified regulatory loop between FOXA2 (a transcription
factor) and Falcor (a lncRNA) being reported. Specifically, the
lncRNA Falcor represses the expression of TF FOXA2 through
binding to its promoter that, in turn, regulates Falcor expression;
and disruption of this Falcor-FOXA2 regulatory loop may lead
to altered cell adhesion and migration that, ultimately, results in
goblet cell metaplasia (34) (Table 1).

Post-transcriptional Regulation

LncRNAs can modulate multiple processes in the post-
transcriptional modification of messenger RNAs (mRNAs),
including pre-mRNA splicing, mRNA turnover and mRNA
translation, through recognizing the complementary sequences
(Figure 3). For instance, lncRNA MALAT1 competes for the
binding with splicing regulatory proteins SR to assist in pre-
mRNA splicing (40); lncRNA Bace1-AS forms a hybrid with
Bace1 mRNA to prevent its decay (32), and lncRNAs such as
BC058830, AF075069, BC009800 promote the decay of Alu-
containing mRNAs (31); lincRNA-p21 interacts with partially
complementary mRNAs of Junb and Ctnnb and suppresses
their translation via recruiting translation repressors Rck and
Fmrp (39), and Uchl1-AS recruits ribosomes and activates
Uchl1 mRNA translation through short interspersed nuclear
element B2 (SINEB2)-mediated interactions with Uchl1 mRNA
(45) (Table 1).

Some lncRNAs act as competing endogenous RNAs (ceRNAs)
capable of sponging miRNAs to reduce their suppressive effects
on targeted genes (80), which is common in tumorigenesis
(Figure 3). For instance, the lncRNA CCAT1 could elevate the
expression of target genes Hmga2 and c-Myc in hepatocellular
carcinoma via sponging their negative regulator let-7 (33); the
lncRNA NEAT1 represses glioma progression and reduces its

malignancy through sponging miR-107 and inhibiting CDK14
(41); the lncRNA SPRY4-IT1 promotes EMT of cervical cancer
by sponging miR-101-3p (43); and the lncRNA FER1L4 functions
as a sponge of miR-372 that targets E2F1 to regulate cell cycle
progression in glioma cells (35) (Table 1). Also, lncRNAs can
act as the reservoir of miRNAs that ultimately leads to gene
repression via giving rise to miRNAs (Figure 3). For example,
increased lncRNAH19 is associated with decreased Igf1RmRNA
expression, as miR-675 that targets Igf1R is embedded in the first
exon of H19 (37) (Table 1).

MICRO RNAS

Features of miRNAs
MiRNAs are a group of petite ncRNA molecules ranging from
16 to 27 nt in length that are efficient to adjust gene expression
transcriptionally and/or translationally. MiRNAs straightly
interact with partial complementary target spots positioned in
the 3′ untranslated region (UTR) of the targeted gene to repress
its expression. Above 60% mRNAs have miRNA binding sites
in their 3′UTR regions according to computational predictions,
suggesting the critical roles of miRNAs in maintaining cellular
homeostasis at both healthy and diseased states. Many miRNAs
regulate up to hundreds of mRNAs, implicating complicated
regulatory roles of miRNA on the topology of mRNAmodulation
network. The expression of miRNAs is tissue-specific (81), and
tightly regulated temporally and spatially (82).

Generally, mammalian miRNAs are encoded in the genome
and transcribed as initial miRNA transcripts (pri-miRNAs)
through RNA Polymerase II, get processed to the precursor
miRNAs (pre-miRNA) that harbor a stem-loop structure through
the DROSHA-DGCR8 complex, and located to the cytosol
through exportin5 (XPO-5); there, pre-miRNAs are processed
further into dsRNAs that are nearly 21 nt in length by
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TABLE 1 | Functionalities and mechanisms of example lncRNAs and miRNAs as biomarkers or therapeutic cancer targets.

Name Type Functionality Mechanism References

AF075069 lncRNA Post-transcriptional regulation mRNA turnover (31)

Bace1-AS lncRNA Post-transcriptional regulation mRNA turnover (32)

BC009800 lncRNA Post-transcriptional regulation mRNA turnover (31)

BC058830 lncRNA Post-transcriptional regulation mRNA turnover (31)

CCAT1 lncRNA Post-transcriptional regulation miRNA sponge (33)

Falcor lncRNA Transcriptional regulation Transcribed within distal enhancer (34)

FER1L4 lncRNA Post-transcriptional regulation miRNA sponge (35)

HOTAIR lncRNA Transcriptional regulation Interaction with histone methyltransferase (36)

H19 lncRNA Post-transcriptional regulation miRNA reservoir (37)

H19 lncRNA Post-transcriptional regulation miRNA sponge (38)

LincRNA-p21 lncRNA Post-transcriptional regulation mRNA translation (39)

MALAT1 lncRNA Post-transcriptional regulation mRNA splicing (40)

NEAT1 lncRNA Post-transcriptional regulation miRNA sponge (41)

PTENpg1 lncRNA Transcriptional regulation Interaction with DNA methyltransferase (42)

SPRY4-IT1 lncRNA Post-transcriptional regulation miRNA sponge (43)

SRG1 lncRNA Transcriptional regulation Transcribed within adjacent gene promoter (44)

Uchl1-AS lncRNA Post-transcriptional regulation mRNA translation (45)

XIST lncRNA Transcriptional regulation Interaction with histone methyltransferase (46)

XIST lncRNA Post-transcriptional regulation miRNA sponge (47)

miR-193b miRNA Post-transcriptional regulation Targeting gene (48)

miR-200c-3p miRNA Post-transcriptional regulation Targeting gene (49)

miR-21 miRNA Post-transcriptional regulation Halt protein translation (50)

miR-221/222 miRNA Transcriptional regulation Targeting lncRNA (51)

miR-31 miRNA Post-transcriptional regulation Targeting gene (52)

miR-372 miRNA Post-transcriptional regulation Targeting gene (35)

miR-4286 miRNA Post-transcriptional regulation Targeting gene (53)

miR-513b miRNA Post-transcriptional regulation Targeting gene (54)

miR-603 miRNA Post-transcriptional regulation Halt protein translation (55)

miR-663a miRNA Transcriptional regulation Targeting lncRNA (56)

miR-92b miRNA Post-transcriptional regulation Halt protein translation (57)

RNase III enzyme DICER1 coupled with PACT or TRBP in
cytoplasm; short dsRNAs aremerged into RNA-induced silencing
complex (RISC) through binding with an Argonaute family
member; while one strand of the dsRNA is preserved in
RISC, the other stand undergoes fast degradation (83). The
miRNA functions through binding to the 3′ UTR of the target
messenger RNA (mRNA) via sequence complementarity (84).
While perfect base pair match leads to mRNA degradation,
imperfect pairing results in mRNA sequestration and translation
inhibition (85).

MiRNAs undergo complicated post-transcriptional
alterations such as miRNA accumulation, editing, processing and
re-cycling inside P-bodies during maturation (86). This complex
yet well-orchestrated miRNA maturation process renders it
difficult to evaluate, in real time, the spatio-temporal pattern of
miRNA expression and results in a gap between the expression
and function of miRNAs. Therefore, understanding the
functionalities of miRNAs under physiological and pathological
conditions imposes a great challenge in the field of miRNA
biology. Traditional miRNA profiling approaches such as

microarray, real-time PCR, Northern blot, deep sequencing
and in situ hybridization, though adding to our knowledge on
miRNA biology, can rarely throw light on the spatiotemporal
configurations and roles played by miRNAs in situ. Increasing
attention has been paid to non-invasive molecular imaging
methods which may potentially resolve these aforementioned
issues (87).

Functionalities of miRNAs
MiRNAs can regulate gene regulation at the post-transcriptional
level via degrading targeted mRNAs or repressing protein
translation, and at the transcriptional level via targeting
regulatory RNAs such as lncRNAs.

Transcriptional Regulation

MiRNAs can target regulatory molecules such as lncRNAs
that may affect gene expression via functioning as decoys,
scaffolds, or guides; and quite often a regulatory axis
involving miRNA, lncRNA and mRNA is implicated in the
regulatory mechanism that drives the observed pathological
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FIGURE 3 | Conceptual scheme illustrating the primary functionalities of lncRNAs. (A) LncRNA-mediated transcriptional regulation can function through chromatin

remodeling (via interaction with histone methyltransferase or DNA methyltransferase) and transcription interfering (via being transcribed within adjacent gene

promoters or distal enhancers). Examples are given as below. During interactions with histone methyltransferases, lncRNA H19 binds to the methyl-CpG-binding

protein MBD1 to control gene expression by recruiting a histone lysine methyltransferase (KMT) (62); lncRNA HOTAIR interacts with the histone methyltransferase

Ezh2, a key component of the PRC2 complex, to mediate chromatin-dependent gene regulation, and also interacts with Jarid2, a PRC2-associated factor, to promote

the targeting of PRC2 to chromatin (63). During interactions with DNA methyltransferase, lncRNA ecCEBPA interacts with the DNA methyltransferase DNMT1 to block

DNA methylation and control gene expression (64). When being transcribed within adjacent gene promoters, lncRNAs affect the expression of neighboring genes

directly via local effect or indirectly via downstream effect (65). When being transcribed within distal enhancers, lncRNA SRA interacts with transcription factor CTCF

and its associated DEAD-box RNA helicase p68 to form a complex that is essential for insulator function (66); lncRNA THRIL binds to hnRNPL, a component of

hnRNP complexes, and the THRIL-hnRNPL complex regulates transcription by binding to target gene promoters (67). (B) LncRNAs can regulate post-transcription via

regulating miRNAs or mRNAs. LncRNAs can modulate mRNA splicing, mRNA turnover and mRNA translation at the post-transcriptional level. LncRNA MALAT1

competes for binding for splicing regulatory proteins SR to assist in pre-mRNA splicing (40); lncRNA Bace1-AS forms a hybrid with Bace1 mRNA to prevent its decay

(68), and lncRNAs such as BC058830, AF075069, BC009800 promotes the decay of Alu-containing mRNAs (31); lincRNA-p21 interacts with partially complementary

mRNAs of Junb and Ctnnb and suppress their translation via recruiting translation repressors Rck and Fmrp (39), and Uchl1-AS interacts with Uchl1 mRNA via a

SINEB2 sequence and a segment fully complementary with the 5′ end of the mRNA to recruit ribosomes and activate Uchl1 mRNA translation (45). LncRNAs can

function as a sponge or reservoir of mRNAs during post-transcriptional modulation. LncRNA CCAT1 could function as a molecular sponge of let-7 and to reduce its

suppression on the endogenous targets Hmga2 and c-Myc in hepatocellular carcinoma (69); increased lncRNA H19 is associated with decreased Igf1R mRNA

expression, as miR-675 that targets Igf1R is embedded in the first exon of H19 (37).

consequence. For instance, miR-221/222 can inhibit tumor
apoptosis in breast cancers via targeting the lncRNA GAS5 (51)
(Table 1). The miR-663a targets ZBTB7A that transcriptionally

suppresses lncRNA GAS5 under ER stress (56), and lncRNA

GAS5 suppresses tumor cell proliferation and EMT in oral
squamous cell carcinoma via regulating the miR-21/Pten
axis (88) (Table 1).

Post-transcriptional Regulation

Degrading target mRNAs at the post-transcriptional level is the
common mechanism adopted by miRNA in gene regulation.
The functional roles of miRNA in both physiological and
pathological processes by adjusting their target gene expression
have been demonstrated through vast number of evidences

(89–91), with recent attentions attracted to the roles played
by miRNAs in cancer initiation, progression, angiogenesis,
metastasis and chemoresistance (92). For example, conditional
knockout of miR-31 was shown to promote the development
of colitis-associated cancers (52); miR-193b exhibited a tumor
suppressive role in human esophageal squamous cell cancers via
targeting KRAS (48); miR-200c-3p suppressed the proliferative
and invasive abilities of nephroblastoma cells via targeting FRS2
(49); miR-4286 and miR-513b each promoted cell proliferation
and migration via targeting Pten and HMGB3, respectively, in
non-small cell lung cancer (53, 54) (Table 1).

MiRNA can also inhibit protein translation. For instance,
miR-603 promoted tumor proliferation by inhibiting the
translation of BRCC2 protein in osteosarcoma (55); miR-21
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repressed the translation of the tumor suppressor PDCD4 (50);
and miR-92b restored the sensitivity of hepatocellular carcinoma
to ionizing radiation-based radiotherapy through inhibiting the
protein expression of p57kip2 (57) (Table 1).

CLINICAL IMPLICATIONS OF
NON-CODING RNAS

Variations in non-coding genomic regions have been associated
with cancer susceptibility (93), and a plethora of cancer risk loci
were documented to be transcribed into ncRNAs that play vital
roles in tumorigenesis and progression.

Diagnosis and Prognosis
LncRNAs can serve as diagnostic and prognostic biomarkers if
they were highly correlated with particular cancer states. For
example, the expression of lncRNA PRNCR1 was elevated in
the urine samples of prostate cancer patients, rendering it a
fine non-invasive indicator of prostate cancers (94). Many other
lncRNAs have been associated with various malignancies such
as MALAT1 in non-small-cell lung cancer and hepatoblastoma,
HOTAIR in pancreatic and colorectal malignancies (95), FOXD2-
AS1 in colorectal cancer (96), LSINCT5 in breast and ovarian
cancers (97), PTCSC3 in papillary thyroid cancer (98), TUG1
in bladder urothelial cancer (99), and UCA1 in squamous
carcinoma (38, 100, 101), suggesting their diagnostic potential.
However, we are still unclear on what alterations in the
primary sequence of lncRNAs mean for their functionalities,
and how to predict the activities of lncRNAs through their
secondary structures and the properties of its interacting disease-
associated proteins (102), answers to which may advance our
understandings on the working mechanisms of lncRNAs that
drive their prognostic roles.

Tumors ubiquitously exhibit dysregulated miRNA expression
and such profiles convey useful information for tumor
classification and prognosis. MiRNAs are present in numerous
body fluids including saliva, plasma, serum, and amniotic fluid
(103). Thus, extracellular miRNAs are potential biomarkers for
disease diagnosis. Serum miRNAs have been associated with the
incidence of both solid tumors and hematologic cancers, and
proposed for early detection of various malignancies (104, 105).
As miRNAs are featured by having multiple targets, they are
typically used in panels for cancer diagnosis/therapeutics. A
serum miRNA classifier consisting of 7 miRNAs (miR-29a, miR-
29c, miR-133a, miR-143, miR-145, miR-192, miR-505) has been
used for hepatocellular cancer early detection in a retrospective,
longitudinal, multicenter biomarker identification study (106).
The miRNA7TM panel was approved by CFDA for liver cancer
diagnosis in August 2017, which becomes the first ncRNA panel
translated into clinics and released on the market in the world.
It outweighs the traditional alpha-fetoprotein (AFP) kit in being
capable of identifying AFP-negative liver cancers from just 0.2ml
blood plasma with 84% sensitivity and 88% specificity. Another
classifier consisting of 6 miRNAs, i.e., miR-20a-5p, miR-21-5p,
miR-103a-3p, miR-106b-5p, miR-143-5p, and miR-215, was
established to classify stage II colon carcinomas into patients

having high and low risks regarding disease progression, and
was demonstrated as a reliable prognostic tool for disease
recurrence prediction (107). A microRNA-based signature
(MiROvaR) comprised of 35 miRNAs was developed to predict
disease progression or early relapse of epithelial ovarian cancers
from a cohort study (108). Fourteen circulating miRNAs were
identified associated with docetaxel chemotherapy response
among prostate cancers from a phase I discovery study (that
included 97 patients) (109), out of which six (miR-132, miR-
200a, miR-200b, miR-200c, miR-375, miR-429) were verified
with prognostic values from the following phase II validation
study (that consisted of 89 patients) (110). Besides, circulating
miRNAs have been correlated with diverse cardiovascular
disorders (111). It is worth noting that the origin and functions
of extracellular miRNAs, though being actively investigated,
are not fully characterized. Whether circulating miRNAs in
mammals exhibit hormone-like actions or achieve sufficient
concentrations in certain tissues to repress distal targets remains
unanswered. This, once addressed, can provide useful insights to
avail clinical translation of miRNAs.

Therapeutics
LncRNAs in Therapeutics

LncRNAs can be targeted to combat against disease progression
and enrich current treatment modalities in the control cancer
patient who developed resistant to traditional therapies.
For example, lncRNA aHIF is an antisense RNA (aRNA)
overexpressed in human renal cancer with drugging potential;
LINK-A overexpression was observed in breast and lung cancer
patients that had developed resistance to AKT inhibitors,
providing the rational for targeting LINK-A, either alone or
in combination with AKT inhibitors, in the treatment of such
cancers (112).

A well-characterized function of lncRNAs is its modulatory
roles on chromatin states (113). Thus, we can target aRNAs
to achieve locus-specific up-regulation of a protein and its
natural variants, e.g., by targeting BDNF-AS, the natural antisense
transcript of BDNF, 2- to 7-folds up-regulation on BDNF
expression with no visible effect on the neighboring genes was
observed both in vitro and in vivo (114). To achieve this,
single-stranded oligonucleotides, namely antagoNATs, can be
fabricated to degrade these antisense transcripts and/or block
their interactions with sense mRNAs (114) which, however,
needs in vivo adaptations such as chemical modifications
toward improved metabolic stabilities and minimized length
for enhanced cellular uptake. The locked nucleic acids (LNA)-
modified antisense oligonucleotides strategy was established
accordingly. Brown et al. combined the carbamate DNA
backbone analogs with the LNA (LNA-CBM) to confer enzymatic
resistance and thermodynamic stability, and oligonucleotides
modified with LNA-CBM exhibited increased stability in the
presence of fetal bovine serum and snake venom (115).

LncRNAs can also be targeted, at least in vitro, using
siRNAs if the targeted region in the antisense transcript did
not directly overlap with the sense transcript. For example,
through a loss-of-function RNA interference screen targeting
797 aRNAs, the functionalities of aRNAs against CCPG1
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and RAPGEF3 in disrupting signalings orchestrating cell
viability were revealed (116). It is worth mentioning that
some aRNAs such as BACE-AS has high basal expression
level and, can mask miRNA binding sites through forming
duplexes with mRNAs; and siRNAs targeting these antisense
transcripts will down- rather than up-regulate the targeted
transcripts (117).

MiRNAs in Therapeutics

Dysregulation of miRNAs can be well-tolerated in normal
tissues yet can profoundly alter cell behavior in response
to pathologic stress. Thus, miRNA offers a potential tool to
perturb a disease progress without creating unexpected adverse
effects in normal cells. The antagoNAT that is modified with
LNA through a covalent bridge connecting the 2’-oxygen
and 4’ carbon of the ribose moiety of the nucleotide can
form strong duplexes with its target miRNAs, sequester these
targeted miRNAs but do not promote their degradation. Tiny
LNAs were later created to inhibit miRNA families sharing
homology by targeting their seed regions (118). AntagoNATs
modified with LNA can be systemically delivered by injection
with little or no toxicity, with sufficient uptake and desirable
therapeutic efficacy being reported in, e.g., immune, vascular
and heart systems in rodents. An LNA-modified antagoNAT
against miR-122 (namely SPC3649) was developed to fight
against hepatitis C virus infection, where a dose-dependent
prolonged viral reduction was observed after 4 weeks of
treatment without observable toxicity from a human Phase
II study (119). TargomiRs are minicells carrying miR-16-
based mimic miRNAs targeting EGFR, which counteract
recessed expression of miR-15 and miR-16 family miRNAs in
malignant pleural mesothelioma by design; and a phase I, open-
label, dose-escalation study assessing the safety and activity
of TargomiRs was conducted in patients carrying malignant
pleural mesothelioma, with positive results being reported (120)
(Table 2, Supplementary Table 1).

As many miRNAs appear to be beneficial rather than
pathologic, the development of miRNA mimics represents
another important therapeutic regime. Through encapsulating or
conjugating synthetic miRNA duplexes inside/to nanoparticles
such as liposome or using adeno-associated virus as the
delivery vehicle, successes (recessed tumor growth without
obvious toxicity to normal cells) in miRNA mimicry-based
therapeutics have been achieved in many tumor animal models

(121, 122). However, the use of injectable, naked miRNA
mimics, unlike miRNA inhibitors, remains problematic, as
the complementary strand needs to be modified to facilitate
stability and cellular uptake but has the potential to act as an
anti-miRNA.

OPPORTUNITIES BROUGHT BY NCRNAS
TO CANCER CONTROL

The regulatory roles of RNAs, in particular ncRNAs, on
gene expression has led to the establishment of experimental
tools such as RNA interference and CRISPR/Cas9 for gene
modulation. The functions of ncRNAs in transducing signals
of multiple core cancer pathways such as Hedgehog, JAK/STAT,
WNT, HIF, NFkB, PI3K/PTEN, result in their translational
applications in both diagnosis and therapeutics. As prognostic
biomarkers, ncRNAs may capture dynamic subtle alterations
due to pathological stimuli that are difficult to be precisely
monitored using DNAs or proteins. Therapeutically, targeting
ncRNAs offers us a direct tool to inhibit protein function or
down-regulate gene expression and represents a promising
strategy to up-regulate endogenous genes in a locus-specific
manner. That is, inhibiting miRNAs using antagoNATs can
effectively up-regulate many downstream target genes, which
is difficult to achieve using conventional strategies. This is
therapeutically advantageous as it is easier to inhibit rather than
up-regulate a drug target where the latter typically requires
the identification of appropriate agents; and conventional
strategies that restore reduced gene expression or recessed
protein functionalities possess various limitations including, e.g.,
a need of lifespan intake of therapeutic proteins that may be
associated with adverse immune response by themselves,
and difficulty in producing synthetic proteins that can
fully mimic the plethora of endogenous counterparts of
targeted proteins.

CHALLENGES FACED BY NCRNAS IN
CANCER CONTROL

Many challenges must be overcome to fully convey the promise
of ncRNA-based therapeutics. First, targeted and efficient
delivery of oligonucleotide-based therapies, particularly anti-
miRNA, miRNA mimics, siRNA, and shRNA, into tissues

TABLE 2 | Example clinical trials involving miRNAs as cancer biomarkers.

Name Panel size Study type Study size Clinical use Cancer type References

7-miR

panel

7 Multicenter, retrospective,

longitudinal study

257 patients for discovery, 352 and 139

patient from two cohorts for validation

Early detection Hepatocellular

carcinoma

(106)

6-miR

panel

6 MicroRNA expression

analysis

40 patients for discovery, 138 for validation Risk of disease

progression

Stage II colon

cancer

(107)

MiROvaR 35 Cohort study 179 patients for discovery, 263 and 452

patients from two cohorts for validation

Early relapse or

progression

Epithelial

ovarian cancer

(108)

6-miR

panel

6 Phase II clinical trial 2 cell lines for discovery, 97 patients for

validation

Early relapse or

progression

Prostate

cancer

(110)
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and cells remains a crucial hurdle. This is worthy of special
attention as ncRNAs especially miRNAs may accelerate disease
in one tissue and be tumor suppressive in another, e.g., miR-
26a promotes gliomagenesis (123) but shows double-sided
roles in the carcinogenesis of hepatocellular cancers (124,
125). Second, safety imposes an important challenge before
drugging ncRNAs can be clinically applicable. Oligonucleotide
sequence has been reported to have adverse effects due
to, mostly, protein binding. For instance, phosphorothioate-
containing oligonucleotides show pro-inflammatory properties.
More preclinical and clinical studies are needed to decipher
such correlations between sequence motifs and such liabilities.
Off-target is another source of unanticipated events, which
warrants our consideration from multiple aspects in the
design of oligonucleotide-based drugs including, e.g., RNA
structure, its association with various proteins, mismatch in
the cleavage site etc. Third, the effects of ncRNAs may vary
among cancer types, e.g., lncRNA Xist is tumor suppressive
in osteosarcoma (126), cervical cancer (8), and breast tumor
(127), but is oncogenic in pancreatic cancer (47), gastric cancer
(128), thyroid cancer (129), colon cancer (130), hepatocellular
carcinoma (131), non-small-cell lung cancer (132), bladder
cancer (133), glioblastoma (134), and nasopharyngeal carcinoma
(135). Fourth, there exists an inconsistency between short-
term chemical inhibition and genetic deletion, complicating
our understanding toward the functionalities of ncRNAs in
relation to disease control. For instance, despite the pathological
associations they demonstrate, germ-line depletion of miR-21
does not affect cardiovascular pathology, H19-knockout mice
does not show a disease phenotype (136), HOTAIR-deletion
does not abolish PRC2 targeting (137), and MALAT1 and
NEAT1 removal yields normal and viable mice (138, 139).
This indicates that chronic loss-of-function of ncRNA may lead
to adaptive responses to compensate for its absence, which
makes our last concern, i.e., whether therapeutic efficacy of
drugs targeting ncRNAs will decline with time due to the
compensation of the target network for diminished ncRNA
activity, challenging.

It is also important to address the differences between
targeting lncRNAs andmiRNAs. First, aRNAs, a type of lncRNAs,
are primarily chromatin modulators suppressing transcription in
the nucleus, whereas miRNAs are post-transcriptional repressors
affecting mRNA stability in the cytoplasm. Second, antagoNATs
can be used to target aRNA through cleaving or blocking a
RNA or protein target, whereas steric blockade is typically
used to inhibit miRNA. Third, there are much more yet
less-studied lncRNA species than miRNAs. Fourth, cis-acting
aRNAs are gene-locus specific, whereas miRNAs can affect
the stability of many mRNAs. As several problems faced by
drugging miRNAs naturally vanish when targeting lncRNAs,
lncRNAs deliver more clinical promises than miRNAs despite
the fact that they are less-well studied for clinic translation.
For example, it is difficult to establish a precise correlation
between miRNA target engagement and therapeutic efficacy
as miRNAs can moderately modulate myriad targets to evoke
their effects and oligonucleotides may be sequestered in various
cellular compartments to create further uncertainties; such a

problem does not exist in the case of lncRNAs given their
working mechanisms.

PERSPECTIVES

LncRNAs and miRNAs each represent a big class of ncRNAs
with profound clinical implications, but differ greatly in terms
of the nuclear acid biology, cellular behaviors and working
mechanisms. Though both functioning through perfect or
imperfect base-pairing with DNAs, RNAs and proteins, lncRNAs
can take on more diversified action modes such as decoy,
scaffold and guide which are all derived from their long length
and the tertiary structure they can form. While lncRNAs can
regulate gene expression in both directions, miRNAs, on the
other hand, represent a class of sole negative gene expression
regulators either through degrading target mRNAs or halting the
translation of target genes; however, the regulatory flexibility of
miRNAs can be largely extended by targeting lncRNAs, forming
regulatory miRNA-lncRNA axes orchestrating the spatial and
temporal cellular behavior under both normal and pathological
conditions (140–145).

The identified mechanisms are not mutually exclusive and
one ncRNA may have multiple working mechanisms under
different circumstances. For example, the lncRNA H19 can
function as a miRNA reservoir of miR-675 that suppresses
cell growth (37) and as a miRNA sponge of let-7a that up-
regulates cyclin D1 expression (146); the lncRNA XIST interacts
with histone methyltransferase at the transcriptional level in
regulating chromosome dosage compensation (46), and sponges
miR-34a to promote colon cancer progression at the post-
translational level (130).

Other types of ncRNAs may also function as disease
indicators or therapeutic targets. For instance, deficiency in
SNORD50A/B snoRNAs can augment the functionalities of K-
Ras that ultimately leads to hyperactivated MAPK/ERK signaling
and carcinogenesis; and SNORD50A/B deletion occurs at a
frequency of >10% in each of 12 common cancers. Therefore,
exploring the varieties of ncRNAs, and functionalities and clinical
use of novel types of ncRNAs represent another promising
research domain for improved cancer management.

NcRNAs have offered a plethora of opportunities toward

delicate gene modulations and precision medicine. Challenges
faced by bringing ncRNAs to the bed-side could be well-

resolved only if multi-domain knowledges and techniques

were intelligently brought together. Nanomaterials such as
gold nanoparticles (AuNPs), carbon-based nano-composites, and
liposome could help to achieve targeted and efficient delivery of
ncRNAs given their flexibility in surface modification, size and
hydrophobicity control, as well as other physiochemical features
that can, e.g., protect cargoes from fast degradation. For instance,
by encapsulating a miRNA antagoNAT against miRNA-122
harboring 2′-OMe and phosphorothioate modifications (namely,
AMO122) inside YSK05-MEND that is a multifunctional
nano-vehicle (MEND) containing a pH-sensitive lipid YSK05,
more liver deposition and drug efficacy were observed for
YSK05 carried by MEND than free YSK05 that ultimately
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led to enhanced liver cancer treatment efficacy in vivo (147).
Computational approaches and high-throughput technologies
could be utilized to resolve issues related to seemingly
unpredictable effects of ncRNAs in different tissues by drawing
a comprehensive picture on the spatio-temporal regulatory
properties of a given ncRNA.

As being consistent with many biological networks, the
experimentally derived RNA interactome is scale-free (148). A
scale-free network is biologically plausible given its robustness to
extra- or intra- cellular perturbations and evolutionary economy
in pertaining functionalities. In such networks, the number of
nodes is negatively correlated with that of interactions involved,
formulating a hierarchical structure. A failure is more likely to
hit a node with fewer degrees rather than a hub. In addition,
a scale-free network is organized such that low-degree nodes
are condensed in sub-networks that are connected by a few
promiscuous nodes; thus, a given functionality can be easily
reached by convolving small number of players through multiple
paths. On the contrary, promiscuous nodes are prevalent in
a flat network, and have been reported in many pathological
events such as gene fusions (149, 150). Thus, a scale-free network
may represent an ordered and homostatic state, and a flat
network may be indicative of a chaotic and diseased state.
Toward this end, alterations in a network’s structure may suggest
a switch between ergodic sets and the associated cell states,
and we may consider selecting nodes or connections capable
of toggling a network’s structure as candidates for subsequent
clinical translations.

CONCLUSIONS

With the rapid development of various bioinformatics
technologies, a plethora of ncRNAs and their roles in
tumorigenesis have been uncovered. Abnormally expressed
ncRNAs might be adopted as diagnostic/prognostic biomarkers,
and therapeutic targets for cancer management. More studies
investigating novel mechanisms of ncRNAs in mediating

cancer initiation and progression are needed for comprehensive
understandings on their roles in carcinogenesis, and solutions

to challenges faced by translating ncRNAs into clinics are
imperatively needed to embrace the new paradigm shift from
protein coding to non-coding RNA regime. Toward these goals,
integrative efforts from multiple domains such as nanomaterials,
computational system biology, molecular biology, and clinical
medicine should be intelligently brought together.
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