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Abstract: The search for higher-quality nanomaterials for medicinal applications continues. There
are similarities between electrospun fibers and natural tissues. This property has enabled electrospun
fibers to make significant progress in medical applications. However, electrospun fibers are limited
to tissue scaffolding applications. When nanoparticles and nanofibers are combined, the composite
material can perform more functions, such as photothermal, magnetic response, biosensing, antibacte-
rial, drug delivery and biosensing. To prepare nanofiber and nanoparticle hybrids (NNHs), there are
two primary ways. The electrospinning technology was used to produce NNHs in a single step. An
alternate way is to use a self-assembly technique to create nanoparticles in fibers. This paper describes
the creation of NNHs from routinely used biocompatible polymer composites. Single-step procedures
and self-assembly methodologies are used to discuss the preparation of NNHs. It combines recent
research discoveries to focus on the application of NNHs in drug release, antibacterial, and tissue
engineering in the last two years.

Keywords: polymer composites; nanoparticle; polymer blends; medical applications; electrospinning

1. Introduction

COVID-19 has contributed to a worldwide healthcare crisis resulting in several hun-
dreds of thousands of deaths over recent years and complications that can lead to severe
pneumonia [1,2]. In synergy with Polymer Engineering, Bioengineering, and Advanced
Manufacturing, the mRNA vaccine was successfully developed and blocked the further
spread of the virus on a large scale [3,4]. The mRNA-1273 vaccine approved for use under
urgent circumstances has the potential to be unsafe for delivery, being inherently unstable
while the large density of negative charges makes it difficult to cross cell membranes [5,6],
and the latest research uses polymer-based composites as carriers for effective vaccine
delivery [7].

In medical applications, polymers with superior biocompatibility are often used
to not produce antibody reactions or even stimulate inflammation in contact with the
human body [8–10]. Synthetic polymers include: polycaprolactone (PCL), poly (vinyl
alcohol) (PVA), polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) [11,12]; natural
polymers include: Chitosan (polysaccharide), cellulose (polysaccharide), gelatin (protein),
silk proteins (proteins) [13], etc. In biomedical applications, natural polymers are often
perceived as relatively safe, biocompatible and degradable polymers [14]. Cellulose is a
linear polysaccharide, the main component of the cell wall, which is currently the most used
in biological applications from bacteria [15]. Taokaew et al. composite nanofibers based
on bacterial cellulose with Garcinia mangostana peel extract exhibited potent bacterial
inhibition against Gram-positive bacteria while treating the membranes with MCF-7 breast
cancer cells for 48 h, only 5% of the cancer cells remained viable [16]. The protein class of
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silk fibroin, unlike other natural polymers, has outstanding elasticity and strength, which
is of interest in tissue engineering applications [17,18].

The advantages of synthetic polymers over natural polymers are their stability, supe-
rior mechanical properties and degradability. PCL is an aliphatic semicrystalline polymer
with hexanoic acid formed by esterolysis [19], which can be excreted through the digestive
system, thus making it biocompatible, biodegradable, non-toxic and popular in medical
applications, such as drug delivery, wound plug dressings and stents. The use of PCL scaf-
folds for tissue engineering has been reported in detail by Janmohammadi et al. [20]. Zavan
and co-works prepared a bilayer fibrous scaffold with the outer layer of PCL exhibiting
the best in vitro response to fibroblasts and weak adhesion to cellular tissues due to the
hydrophobicity of PCL to cellular tissues, while the inner layer used gelatin-modified PCL
to significantly promote gene expression in endothelial cells [21].

Nanoscale polymers have a wide range of uses in various fields, especially in medical
applications, where the electrospinning process (Figure 1) is one of the most convenient
ways to prepare nanofiber membranes (1–100 nm) directly and continuously [22–26]. Labo-
ratory electrospinning setup generally has three components: a high voltage electrostatic
generator (1–30 kv), a spinning head and a collector (opposite charge target) for the process
of producing various continuous nanofiber assemblies with controlled morphology and
dimensions from polymer solutions or melts under a high voltage electric field [27–29].
The development of the electrospinning (ES) process was a somewhat difficult journey. In
the 16th century, William Gibert discovered a conical droplet formed when charged amber
approached water droplets. Micro-droplets are also ejected from the conical droplets. The
beginning of electrospinning technology is recognized to be in 1934, when Anton Formalas
invented a device to prepare polymer fibers by electrostatic force action, presenting for the
first time how a polymer solution could form the jet between electrodes. Subsequent years
of intermittent patent publication have not attracted much attention from researchers. In
1990, Reneker’s research team at the Acolon University, USA, went deeper into the electro-
spinning (ES) process and applications, with ES of various organic polymer solutions into
fibers, ES process is rapidly becoming a research hotspot, entering a new era of vigorous
development [30,31].
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To prepare the desired nanofibers, the electrospinning process usually requires setting
parameters, the main influencing factors being the system (nature of the polymer, solution
viscosity, conductivity and surface tension) [32], process parameters (voltage, receiving
distance and flow rate) [33] and environmental factors (temperature and humidity) [34].
Specific effects on electrospun fiber morphology are shown in Table 1.

Table 1. Effect of control parameters on the morphology of electrospun fibers.

Influence Factors Influence Results Reason for Influence Ref.

System
parameters

Polymer
concentration

The higher the
concentration, the
coarser the fiber

As polymer concentration or molecular weight
increases, so does solution viscosity. Greater
entanglement between molecule chains and

increased intermolecular Coulomb forces result
from this condition. As a result, the fiber

diameter expands.

[35]

The molecular weight
of polymers

The higher the
molecular weight, the

thicker the fiber
[36,37]

Surface tension
The higher the surface
tension, the finer the

fiber

The droplet’s surface tension rises, and the jet
must expend more energy to offset this

negative effect. The speed of the jet slows
down, requiring more time to stretch the fibers.

As a result, the fiber diameter decreases.

[38]

Conductivity

Conductivity increases
within a reasonable

range; fiber diameter
decreases and increases
again; fiber diameter is

not controllable

The charge accumulates on the surface of the jet
when the conductivity is increased. The fibers
stretch more quickly in this state. As a result,

the diameter of the fiber is lowered. The
coulombic repulsion at the jet interface is

intensified when the solution conductivity is
raised further. Uncontrollable fiber diameter

distribution results from the unstable bending
whip effect.

[39–41]

Process
parameters

Voltage

The fiber diameter
decreases with higher
voltage and increases
with higher voltage

As the voltage rises, the charge density on the
jet’s surface rises in accumulation. The

circumstance may lead to a significant effect of
jet stretching. Therefore, the fiber diameter

decreases. The flow rate at the spinneret, on the
other hand, increases as the voltage is raised
more. Instead, the diameter of the fiber rises.

[42]

Flow rate

The flow rate increases;
the fiber diameter

increases; and further
increases may result in

droplets

The solution at the spinneret rises as the flow
rate increases. This condition causes the fiber’s
diameter to thicken. When the flow rate is too
fast, the solution’s gravity causes it to trickle

straight down.

[43,44]

Receiving distance
Acceptance distance

enlarges and fiber
diameter reduces

The additional receiving distance gives the jet
more time to extend. The fiber’s diameter

shrinks in this circumstance.
[45]

Environmental
factors

Temperature

Within a reasonable
range, the fiber

diameter decreases as
the temperature

increases

The temperature has the greatest influence on
the viscosity of the solution. The viscosity of
the solution reduces as the temperature rises.
The intermolecular Coulomb force is lessened

in this scenario.

[46]

Humidity
Humidity increases

and grooves appear on
the fiber surface

When humidity is too high, fiber production is
accelerated. Water droplet condensation on the
fiber surface. Wrinkles occur on the surface of

the fibers as a result of this process.

[47]

Synthetic polymers have modifiable mechanical properties, but the hydrophobic
nature contributes to an absence of cell adhesion and the onset of inflammation, which is



Polymers 2022, 14, 351 4 of 27

usually modified by natural polymers. One problem that most natural polymers suffer
from is the deficiency of certain mechanical properties [48]. To combine the advantages of
various polymers and overcome their limitations, the desired properties have been achieved
using blends of these polymers instead of using single polymers by optimizing the ratio
between the components of the blend. During drug release, the hydrophobic properties
of the polymer seriously affect the release performance of the loaded drug. Huo and co-
workers used PCL blended with gelatin to effectively improve the hydrophobic properties
of the composite fiber. Drug release demonstrated that the increased PCL content made
the composite fiber more hydrophobic, which belonged to the slow release of artemisinin
(ART) and enhanced the therapeutic effect [49]. Chen et al. improved the defect of gelatin’s
poor hemostasis ability for large wounds by co-mixing sodium alginate, which can form a
gel on the wound surface, and achieved hemostasis of rat wounds in only 1.53 min [50].

Nanofiber membranes are prepared by the ES process of polymers, and the application
scenario is constrained to fiber scaffolds [51–53]. Researchers are not satisfied with this
single role, so various functional nanofiber membranes have been prepared by ES in
combination with multifunctional materials, among which NNHs show great potential to
combine the advantages of nanoparticles with the properties of polymers. Additionally,
the is a wide range of application scenarios [51–58]. Of interest is that as with decades
of research, the number of electrospun nanoparticle articles published occupies half the
number of electrostatic spinning (Figure 2). It shows the pivotal position of NNHs.
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Multiple nanoparticles have been successfully prepared into nanofibers, which mainly
include: metal [59], metal oxide [60] and polymer nanoparticles (NPs) [61,62]. The presence
of NPs in polymer solution is uniformly dispersed and will be randomly distributed on
the surface or inside the nanofibers (NFs). Therefore, the co-blending of NPs with polymer
solutions is the most common form. During the process of electrospinning the mixture
into fibers, the homogeneity of NPs in the polymer solution and the interfacial interaction
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between nanoparticles and polymer solution significantly affect the performance of NNHs.
To attenuate the effects of the above factors, the NPs can be mixed by physical mixing
methods (stirring and sonication), by dissolving the NPs and polymer in different solvents
separately or adding a certain amount of surface activator. The electrospun fiber precursor
working solution can effectively reduce the phenomenon of nanoparticle agglomeration
and even blockage of the spinning heads after mixing uniformly [63–65]. Secondly, other
processes combined with ES technology can also effectively load NPs into NFs. For instance,
the modification of NFs by plasma technology. This methodology promotes the interaction
between NPs and easily loads NPs on the nanofiber surface [66]. The electrospray [67]
or magnetron sputtering [68] technology allows the uniform spraying of NPs on the fiber
surface. The single-fluid ES process requires mixed solutions with a certain viscosity
and dispersion. Otherwise, a non-spinnable or agglomerative phenomenon will occur.
Multi-fluid dynamics have been studied for many years. The design of the spinneret
is especially important. The morphological structure of the nanofibers is similar to the
spinneret structure [69]. Multi-fluid dynamics ES processes often require only one fluid
available for spinning to form nanofibers [70]. Zheng et al. used TiO2 suspension as the
sheath layer and PEO as the core layer, which perfectly avoided the enrichment of TiO2NPs
using a modified coaxial electrospinning process, and the uniform TiO2NPs on the nanofiber
surface enhanced the absorption of UV light [71]. The NPs are loaded in nanofibers based on
the above single-step process, and if the NPs are not well dispersed in the working solution,
many self-assembly strategies are available to grow NPs in the fibers by initiation effects in
the precursor solution, including: in situ synthesis [72], hydrothermal-assistance [73] and
calcination [74].

NNHs prepared by combining the characteristics of biocompatible polymers and
multifunctional nanoparticles are already practical in medical applications [75,76]. The
objective of this review is to investigate the preparation of nanofiber and nanoparticle
hybrids in-depth by combining different processes with ES; concentrate on the most recent
breakthroughs of NNHs in the medical area (Figure 3); and provide clear concepts for
research workers in material preparation and application.
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2. The Methods for Creating Polymer-Based Nanofiber-Nanoparticle Hybrids (NNHs)
2.1. Overlapping of Electrospinning and Other Techniques

ES is a top-down molding process for the direct and continuous preparation of
nanofibers. NNHs in the preparation of NPs in the spinning precursor solution, due
to a certain stability, will not form a homogeneous solution in organic solvents. In addition
to the large-scale manufacturing of NNHs, other technologies are often used in further
combination with ES.

AgNPs in PCL nanofibers suffer from inhomogeneous dispersion and irregular ion
release. To address this problem, Valerini and co-workers employed the magnetron sputter-
ing technique to sputter Ag targets onto the surface of PCL nanofibers at a low power of
500 w. SEM images of PCL NFs after Ag magnetron sputtering show higher contrast. Com-
posite NFs with 22 nm size AgNPs were deposited on the surface. Although the Ag content
was only 0.1 wt.%, the PCL-Ag nanofibers showed a faster and stronger antibacterial effect
by depositing all AgNPs on the nanofiber surface by magnetron sputtering technique [77].
Immersion of nanofibers (NFs) in NPs suspension loaded with NPs is the simplest approach;
however, significant rejection occurs due to the different hydrophilic properties of NPs and
NFs, leading to ineffective results. Liu et al. introduced oxygen-containing polar functional
groups to the surface of PLLA membranes by a facile plasma technique. Negatively charged
pPLLA membranes, impregnated in AgNPs solution, were well aggregated with NPs on
the fiber surface driven by electrostatic interactions [78]. Electrospray, a sister technology to
electrospun fibers, is commonly employed to generate NPs [79]. Fahimirad and co-workers
sprayed chitosan NPs loaded with curcumin onto the surface of PCL/chitosan/curcumin
nanofibers by electrospray, which showed no significant change in nanofiber diameter.
While effectively promoting the swelling ability and degradation rate of nanofibers, the
composite fibers healed 98.5% of the wounds infected by MRSA through wound closure
experiments [80].

2.2. Encapsulating Nanoparticles in the Working Fluids

The presence of NPs necessarily affects the spinnability and composite fiber morphol-
ogy during the preparation of NNHs. NPs appear agglomerated in the working solution,
and needle blocking may occur during ES, or the NPs will not appear uniformly on the
fibers. These issues can lead to reduced mechanical properties and loss of functional sites
in composite fiber membranes. There are three ways to deal with them to avoid a similar
situation: (1) disperse NPs uniformly in the working solution by physical methods such as
stirring; (2) separately dissolve NPs and polymers in different solvents; (3) modify them us-
ing surfactants to promote uniform dispersion. With different natures of nanoparticles and
polymer solutions in the mixing process, there is a large interfacial force, and the mixture
can be added to a quantitative amount of surfactant, promoting the orderly arrangement
of nanoparticles no longer agglomeration. Karagoz and co-workers took this approach by
adding a quantitative amount of Triton x-100 (surfactant) to a mixture of ZnO nanorods
and DMF, sonicated for 20 min, then added the polymer under rapid stirring until complete
dissolution. Fiber diameters were uniformly distributed, and no beads were observed [81].

2.3. Formation of NNHs in the Single-Step Process

With a precursor working solution using suitable solvent and proper dispersion, the
NPs are uniformly dispersed in the working solution, which requires only a single-step
process to form NNHs by adjusting the ES process parameters (Figure 4A). Lopresti et al.
incorporated silica (AS) or clay (CLO) NPs into 10% PLA solution and gathered them
by a cylindrical grounded drum at 15 KV. The phenomenon of particle aggregation or
clustering was evident with the increase in NPs content of the composite fibers (Figure 4E).
Moreover, the composites with a certain number of added NPs exhibited brittleness, but
bone cells diffused faster on the composites with higher particle content [82]. Abdelaziz
and co-workers encapsulated silver nanoparticles (AgNPs) and hydroxyapatite (HANPs)
in PCL/CA solution. Interestingly, the tensile stress of the composite fibers loaded with
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10% HANPs was up to 3.39 MPa, well above that of pure PCL/CA nanofibers, but then the
tensile stress of the composite fibers with 20% HANPs dropped sharply to 2.22 MPa, per-
haps because the mechanical property change of NNHs with the addition of nanoparticles
is a parabolic. This interesting phenomenon could contribute to the reference of optimizing
the relationship between NNHs proportioning and mechanical properties [83].
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Figure 4. (A) Simple preparation of NNHs based on the single-step process. (B) Schematic diagram
of coaxial preparation of NNHs and Transmission Electron Microscopy (TEM), reprinted with per-
mission from Ref. [84]. Copyright 2021 John Wiley and Sons. (C) Schematic diagram of simultaneous
electrospinning and electrospraying. (D) Scanning Electron Microscopy (SEM) images of CDP-PVP-
PANI fiber cross-sections and Energy dispersive X-Ray spectroscopy map. Reprinted from Ref. [85].
(E) Scanning Transmission Electron Microscopy (STEM) images of PVA/AS or PVA/CLO fibers with
different particle concentrations, Reprinted from Ref. [82].
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The polymer solution and NPs are divided into different syringes to eliminate the
agglomeration of NPs inside the fibers, which are encapsulated in the fibers by coaxial elec-
trospinning or electrospray. Navarro Oliva and co-workers prepared core-shell-structured
NNHs by the coaxial electrostatic spinning technique using an Fe3O4 solution as the core
layer and a PVDF polymer solution as the shell layer. As shown in Figure 4B, TEM images
showed that the NPs were uniformly dispersed inside the fibers without agglomeration [84].
Combining both electrospinning and electrospraying to prepare NNHs is also a convenient
method. These two processes are carried out simultaneously, and NPs can be uniformly
distributed in the fiber layer (Figure 4C).

The electrospinning process (ESP) has evolved from single-fluid to multi-fluid as
research has progressed [86]. Yu’s research team successfully prepared nanofibers with
obvious core-shell structures and smoother fiber surfaces by modified tri-axial ESP and
achieved intelligent three-stage controlled drug release [87,88]. Pursuing a simple and
convenient preparation method, the main preparation method of NNHs is currently the
uniaxial ES process. Integrating the preparation of NNHs with more sophisticated ES
techniques is a challenge. The incorporation of NPs somewhat reduces the capability of
NFs. There are two obvious drawbacks: (1) The addition the NPs reduces the interactions
between polymer chains and decreases the mechanical properties of NNHs. (2) NPs
are wrapped in fibers and cannot be functionalized. However, Radacsi et al. avoid the
defect that NPs are encapsulated by nanofibers and cannot realize the specific surface area
enhancement by using cesium dihydrogen phosphate (CDP) for spontaneous nucleation
along the solute growth in porous nanofibers; the moist water in the air acts as a solute
transport fast channel. Thus, NPs are not only grown inside the fibers but also are uniformly
dispersed on the fiber surface. This strategy perfectly avoids the defect that NPs are
encapsulated by nanofibers and cannot realize the specific surface area enhancement
(Figure 4D) [85].

2.4. The Nanoparticles from Nanofibers through Molecular Self-Assembly

NPs are formed spontaneously by self-assembly strategies [89,90], combining this
scheme with ESP, based on post-processing to form NPs spontaneously in fibers, such as in
situ synthesis, hydrothermal-assistance and calcination.

2.4.1. In Situ Synthesis

The smooth surface of electrospun fibers and certain stability of the polymer, NPs
cannot be perfectly and uniformly attached to the fiber surface by electrostatic adsorption
or functional group action. The fiber impregnated with a ligand solution instigates bonding
using a reducing agent or other reduction in the composite material to form NPs [91,92].
Lv et al. cross-linked potato starch as a polymer after forming starch fiber mats immersed
in AgNO3 solution, and Ag+ was reduced to AgNPs by heating at 60 ◦C protected from
light. The average particle size of AgNPs increased with the concentration of AgNO3, but
the particle size decreased significantly and agglomerated together when the concentration
reached 100 mg/mL [93]. The technology is also applied to MOF-based nanofibers. Li
and co-workers synthesized PW12@UiO-66 crystals in situ on PAA-PVA nanofibers. The
surface of the fibers was completely covered by crystals at 12 min of growth, and the
MOF crystals were enriched on the surface of NNH but with the disadvantage of ran-
dom arrangement [94]. Lee and co-workers adopted a hydrodistillation-induced phase
separation method to form dense cavities on the surface of PLA nanofibers, followed by
uniform growth of ZIF-8 crystals on the porous fiber surface (Figure 5A [95]). Using COF
materials with similar properties to MOF, Ma et al. adopted soaking PAN membranes
in COF material precursor solutions, where Schiff base condensation occurred at room
temperature to form COF spherical particles, and PAN@COF composite fibers showed
excellent thermodynamic stability at 300 ◦C (Figure 5B) [91]. The NNHs prepared by this
method, with dense particle aggregation, provide a sufficient number of sites of action that
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may provide a good solution for the adsorption of tissue fluids or other substances. Similar
results from in situ synthesis can be found in Figure 5C [96] and Figure 5D [97].
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2.4.2. Calcination

Calcination is another effective method to prepare NNHs. Precursor fibers are pre-
pared by the sol–gel method in combination with ESP, and calcination forms nanoparticles
in the fibers [98]. Xie fabricated PVP composite fibers, which were maintained at 800 ◦C for
30 min, and iron-cobalt (FeCo) alloy nanoparticles (30–50 nm) were uniformly distributed
in CNFs (150–300 nm), which achieved electrocatalytic degradation of antibiotics in wastew-
ater [99]. Ding’s research team proposed the use of ball-milling precursor sols to form
homogeneous nuclear to precisely control crystal nucleation and growth for the purpose of
grain refinement to avoid problems, such as the appearance of impurity phases and crack
expansion during the preparation of flexible chalcogenide LLTO nanofibers (Figure 5D).
Meanwhile, the soft grain boundary is constructed by adopting 200–900 ◦C stage calci-
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nation, which shows the excellent mechanical properties of flexible electronic fiber films
based on perovskite ceramic oxide [92]. Nanofibers obtained by unusual calcination are
brittle and inflexible. To reduce such a situation, Shan et al. formed porous structures using
the template method with sacrificial PAA heated at 700 ◦C for 2 h to modulate the PAA
concentration driving phase separation during calcination stage pyrolysis (Figure 5C) [91].
Similarly, Li and colleagues inherited the MOF structure in ZIF/PAN-Ni-15 composite
nanofibers at the sacrifice of ZIFNPs by calcining at 700 ◦C for 2 h, followed by annealing
to form a rosary morphology in the fibers [74].

2.4.3. Hydrothermal-Assistance

Hydrothermal-assistance is a common method to prepare a variety of inorganic oxide
crystals, which is based on the conditions of low temperature and isobaric pressure. The
uniform distribution of substances avoids the appearance of impurity phases by means
of an aqueous medium, obtaining nanoparticles (such as spheres, cubes, flowers, etc.)
with diverse morphologies [100–102]. The combination of hydrothermal and ESP for the
preparation of multilayer heterostructures provides superior performance at a low cost
and is green, easy to operate and well received by researchers. Küçük et al. immersed
TiO2 fibers (100–200 nm) in an alkaline Ba (OH)2·8H2O solution by a simple hydrothermal
reaction, which unexpectedly transformed the composite fibers into tetragonal crystals,
demonstrating that metal oxide nanofibers can also be precursors for the preparation of
BaTiO3 crystals [103]. Mukhiya and colleagues grew MOF materials on PAN-prepared car-
bon nanomats (350 nm). First growth of ZIF-67 crystals was attributed to the hydrothermal
reaction of cobalt carbonate hydroxide with 2-methylimidazole. The synthesis of ligands
by deprotonated 2-methylimidazole with Co2+ was responsible for the crystals’ second
growth. The composite fiber membrane has high specific capacity and excellent service
life, with strong advantages in energy storage applications [104]. In terms of the same
application, Poudel et al. prepared PAN/PMMA nanofiber membranes using a coaxial
ESP and sacrificed the internal PMMA after carbonization to obtain 3D hollow carbon
nanofibers (3DHPCNF). By adopting two hydrothermal methods, Fe2O3 was first synthe-
sized on the fiber surface, and then this was used as a precursor to hydrothermally generate
ZMALDH@Fe2O3/3DHPCNF with ternary metal salts in an autoclave. The LDH lamellar
structure was thinned by changing the content of Zn, and the transformation of nanosheets
to nanowires was found at high Zn2+ content, which is a novel top-down way to obtain
ternary LDH-electrospun hollow carbon nanofibers, providing a new idea for subsequent
design [105].

3. The Biomedical Applications of Nanofiber-Nanoparticle Hybrids (NNHs)

Electrospun fibers, which are based on biomaterials, have been developed in biomed-
ical fields such as tissue scaffolds for a long time, but the single role is not enough for
sophisticated practical applications. Researchers have combined multi-functionalized
NPs with NFs to develop innovative materials for drug delivery, antibacterial and tissue
engineering.

3.1. Drug Delivery

Drug delivery systems (DDSs) release drugs through specific control devices and
certain doses to achieve the purpose of enhancing the immunity of the body or treating
diseases [106,107]. It is difficult to advance medicine without the use of medications.
While drug activity is crucial, the method of administration is more so. Pharmacokinetics
(PK), duration of action, metabolism and toxicity are the key elements that influence drug
delivery [108]. NNHs inherit the excellent biocompatibility and high specific surface area
of electrospun fibers but also the function of NPs, which can load different drugs into
NNHs for a precise controlled release [109,110]. The advantages of NPs are their high
specific surface area, superior bioavailability and functionalization. Similarly, in practical
drug delivery applications, nanofibers can be electrospun with biocompatible polymers,
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resulting in minimal harmful effects on humans [111]. Tuğcu-Demiröz and co-workers
employ ionic gelation to load benzydamine onto chitosan NPs. Composite NPs were
embedded in NFs and hydrogels, respectively. On the one hand, NFs have a large specific
surface area. The medicine, on the other hand, diffuses across a short distance in the fiber.
Benzydamine released 53.03% in the composite fiber system after 24 h. Because of the
strong polymer matrix, the hydrogel system only released 15.09% of benzydamine. This is
insufficient for the required drug concentration for vaginal infections [112]. In the process of
release, benzydamine enters the nanofiber after the initial release of chitosan nanoparticles,
and the secondary release can achieve a slow release and prolong the action time.

For the mechanism of release of NNHs-loaded drugs: (1) one drug in two phases: the
drug is loaded on nanoparticles that need to cross the barrier between nanoparticles and
nanofibers during the release to achieve the effect of slow release. (2) Dual drug biphasic:
two drugs are loaded in separate materials with different properties to achieve the required
effect by different types of release mechanisms.

3.1.1. One-Drug Biphasic

One-drug biphasic is an advanced therapeutic approach to chronic diseases by pre-
cisely designing the carrier to act rapidly in the first burst and then to work longer with
chronic illness. For example, He and co-workers used ethylcellulose (EC) and polyethylene
glycol (PEG) small-molecule solutions in the core sheath to simultaneously load ibuprofen
(IBU) through an improved coaxial ESP. The prepared engineered spindles-on-a-string
(SOS) nanofiber hybrid possesses typical controlled drug release properties. When the SOS
structural mixture contacts water, the hydrophilic small molecule PEG rapidly dissolves to
release IBU, while the hydrophobic EC drug on the other side is continuously released in a
slow-release form (Figure 6A) [113]. This precise controlled release means providing the
patient with the desired drug environment in the first instance, followed by a prolonged
slow release to provide effective blood levels [114–117].
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Facing the complex living system of organisms, hydrophobic drugs confront barriers in
the delivery pathway. The use of NPs as carriers can improve the solubility of hydrophobic
drugs. Simultaneously, the Enhanced Permeability and Retention (EPR) effect of NPs can
stabilize tumor aggregation [115]. These benefits steadily improve the use and efficacy of
hydrophobic drugs [117]. Recently, Xu et al. prepared CUR/CUR@MSNs-NFs by ESP by



Polymers 2022, 14, 351 12 of 27

loading curcumin (CUR) in SiO2NPs. The scaffolds exhibited excellent biphasic release,
which released 54% in the first 3 days and all in 35 days [118]. In addition, by modifying the
SiO2NPs, the amine-functionalized MSNs are hydrophilic and positively charged, resulting
in a more prominent anti-cancer effect [119]. Li and co-workers used amphiphilic lignin
nanoparticles (LNPs) loaded with the anticancer drug paclitaxel (PLNPs) encapsulated
in PVA/PVP nanofibers, which exhibited a 59% initial abrupt release compared to the
rapid abrupt release of PLNPs (Figure 6B) [115]. In the same manner, adriamycin DOX
was inserted into layered nanohydroxyapatite LHAp (DOX@LHAp) to blend it with PLGA.
For obtaining nanofibers, DOX was loaded with 2D layered material. The release showed
significant attenuation at the initial stage of release and subsequent strong prolonged
release. The in vitro release showed excellent controlled release ability (Figure 6C) [116].
However, the relevant tests are still in the laboratory stage, and the in vivo situation is more
complex because there are many influencing factors. Therefore, the in vivo drug release
situation needs further research.

3.1.2. Dual-Drug Biphasic Approach

Inside the face of this more complicated therapeutic environment, the role of a single
drug is considerably limited. To treat this shortcoming, the dual-drug biphasic approach is
adopted. The ES process is used to load various drugs onto different materials. In a dual-
drug biphasic release, core-shell and Janus composite fibers are frequently employed [120].
The existence of beads on a string in the ESP is frequently unloved, with most people
believing that smooth fibers and uniform particles are the desired result. Nevertheless,
according to the Janus beaded fibers prepared by Li and co-workers through a homemade
eccentric spinning head with a hydrophilic polymer PVP containing the MB model drug
and a hydrophobic polymer EC containing ketoprofen (KET) on other side, the beads
on a string have more advantages in the drug release phase compared to the prepared
Janus nanofibers (Figure 7). The drug is evenly enclosed in the fibers throughout the
stretching process, forming a good compartment. Because of the low viscosity of the
solution during the stretching phase, the beaded structure generates an unstable jet during
electrospinning. This phenomenon causes polymer aggregation to generate discrete bumps.
The hydrophilic side of Janus beads releases MB quickly, whereas the hydrophobic side
takes longer to release ketoprofen (IPU). This facilitates a dual-drug controlled release [121].
Then, encapsulating a nanoparticle-loaded drug in a nanofiber loaded with another drug
may yield pleasantly exciting results in a controlled drug release through the difference
of their properties [116]. Gupta et al. formed core-shell fibers by loading kaempferol
in biodegradable albumin nanoparticles that were monolithically encapsulated in PCL
loaded with dexamethasone [122]. After a weak burst release at 24 h, a sustained slow
release of 15 days is possible, allowing the prolonged simultaneous action of both drugs to
synergistically promote osteogenesis. Furthermore, single encapsulation of kaempferol-
loaded albumin nanoparticles in PCL nanofibers with in vitro dissolution of the drug
revealed a decrease in drug release rate from both composite fibers, but this is a gratifying
result, where the presence of nanoparticles reduces the continuity of the fibers, resulting in
a decrease in the drug release rate.

3.1.3. Smart Response Drug Delivery

Characteristics, such as site-specific rather than systemic action, controlled drug
release and intelligent responsive release, need to be satisfied for effective drug deliv-
ery systems [123–125]. The advantages of NNHs are evident in blending functionalized
nanoparticles within electrospun fibers, which can facilitate the combination of material
benefits to achieve the desired properties [126]. Liu et al. developed a fiber surface growth
particle morphology fiber through secondary growth of an MOF material by adjusting
different concentrations of ligands (2-MIM) and the reaction time. The number of fiber
surface particles (ZIF-8) grown produced differences in drug release analysis. When the
concentration of ligands (2-MIM) is increased, the more ZIF-8 particles grow on the fiber,
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leading to a decrease in the amount of drugs released. The presence of nanoparticles
significantly reduced the drug release capacity. After 72 h of dissolution experiments,
89% of APS was released at pH = 5.5, and only 40% of APS was released at pH = 7.2.
The relative extremely slow rate obviously depends on the pH value (Figure 8B) [127].
Croitor et al. prepared NNHs by a single-step blending process of 10% PLA with different
masses of GO stirred well and by ESP [120]. The surface of the fiber is flat and smooth,
and the diameter of fiber decreases significantly after loading GO nanoparticles. GO has
superior electrochemical properties and can respond rapidly under external electric field
stimulation. Through an in vitro drug dissolution test, the drug release capacity at 10HZ
PLA/GO/Q is about 8000 times more than that without external stimulation (Figure 8C).
In the treatment process, the ability to achieve an intelligent response to the characteristics
of drug release through the modulation of electrical signals alone is undoubtedly a ground-
breaking innovation. However, in the drug delivery process, it is necessary to provide the
appropriate release rate. Too fast a release of drugs can easily reach the peak, biological
activity can become to high or a certain degree of toxicity can even be produced. How to
precisely regulate the ability to release drugs through changes in electrical signals is still a
challenge [128].
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For the same purpose, Banerjee et al. generated a PCL composite fiber containing
superparamagnetic iron oxide nanoparticles (SPIONs). The NPs can carry rhodamine B
model drugs. Under external stimulation, the NPs generate magnetically. Furthermore, the
NPs create thermal energy as a result of Néel–Brownian relaxation [129]. The morphology
of the composite under human-acceptable laser irradiation showed a molten state compared
to pure PCL electrospun fibers with no significant change, which was attributed to the
second effect of SPIONs (Figure 8A). In vitro assays showed that the release of rhodamine
B from RF-EMF exposure showed a linear increase at a certain time, reaching 40% release
after the fifth activations. Controllability is perfectly illustrated. Nevertheless, one should
be aware that the magnetocaloric effect of SPIONs is complementary to thermosensitive
polymers, but the generated high heat may affect the performance of the polymers as well
as the biological activity of the heat-insensitive drugs [130,131].
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Figure 8. (A) Schematic diagram of the preparation process of magneto-thermal responsive nanofiber
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stimulated PCL/GO/Q composite nanofiber under 10 HZ electrical stimulation reprinted from
Ref. [120].

3.2. Antibacterial

Recently, with the abuse of antibiotics, different types of drug-resistant bacteria
emerged [39,132–134], and the combination of different types of materials based on NNHs
can also generate excellent antibacterial ability against drug-resistant bacteria (Table 2). The
preparation of NNHs by loading the bactericidal nanoparticles in the precursor solution
begins with the mixed uniform solution, which is prepared into fibers by ESP. Mainstream
bactericidal nanoparticles mainly include metal (AuNPs [135,136], AgNPs [137,138]) and
metal oxides (ZnO [139], CuO [140] and TiO2 [141]), etc. The accumulation of AgNPs in
mitochondria leads to mitochondrial dysfunction. Additionally, AgNPs disrupt the DNA
structure, resulting in non-replication and effectively suppressing bacterial multiplication.
These two fundamental factors lead AgNPs to possess potent bactericidal potential [142].
Li et al. manufactured PCL nanofibers loaded with AgNPs and cisplatin (DDP), which
can be used to prevent airway inflammation and resist granulation tissue proliferation. In
comparison with the control group, the PCL-DDP-AgNPs scaffold showed no adhesion to
rabbit peritracheal tissues, as shown in Figure 9D, while the coated plate had a superior
antibacterial effect [137]. Yang and co-workers prepared Janus nanofibers PVP-CIP/EC-
AgNPs by loading AgNPs on the EC side through bide-by-side electrospinning (Figure 9A).
The Janus fibers from the disc-diffusion experiment showed a larger circle of inhibition
against S. Aureus and E. Coli than fibers loaded with a single antimicrobial agent, which
may be due to the simultaneous action of AgNPs and CIP, steadily increasing the antimi-
crobial capacity [132]. AgNPs are easily aggregated in polymer fibers, which affects the
mechanical properties of the fibers and significantly compromises the antibacterial effect.
Bakhsheshi-Rad et al. doped GO/AgNPs into PLLA fibers. They deposited composite
fibers onto a bio-implant Mg alloy. SEM images of composite fibers co-cultured with bacte-
ria revealed considerable bacterial cell membrane disruption (Figure 9B). When compared
to PLLA nanofibers, GO/AgNPs/PLLA efficiently inhibits bacterial proliferation [133].
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This strategy provides new ideas for surface modification of metallic biomaterials, but high
concentrations of AgNPs possess a degree of toxicity to normal cells. There is no presence
of Ag elements in the organism. For example, if they are mostly deposited inside the liver,
they will cause irreversible damage to the organism. Therefore, how to effectively and
precisely control the amount of AgNPs released deserves researchers’ deep thinking [143].
There is a similar situation for AuNPs. Ibrahim et al. employed carboxymethyl chitosan
(CMCS) as a green reducing agent for AuNPs. AuNPs were encased in PVA nanofibers.
This technique reduces the cytotoxicity of AuNPs generated by the chemical reductant
method while efficiently preventing bacterial growth. It signifies that safety has been
improved further (Figure 9C) [135].
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Figure 9. (A) Process diagram for the preparation of parallel structured NNHs, reprinted with
permission from Ref. [132]. Copyright 2020 Elsevier. (B) Scanning electron microscopy (SEM)
images of bacteria cultured on PLLA and PLLA/3GO-Ag, reprinted with permission from Ref. [133].
Copyright 2020 Elsevier. (C) MTT method to measure the cellular activity of various materials on
epidermal cells, reprinted with permission from Ref. [135]. Copyright 2020 Elsevier. (D) Optical
images of bronchial stents on rabbit trachea and assessment of bacterial inhibition by plate count
method, reprinted from Ref. [137].
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Table 2. Examples of NNHs used as antimicrobial agents.

Polymers NPs NNHs Preparation
Methods Bacterial Strains Evaluation

Methodology Antibacterial Ability Ref.

PVA/CS CuNPs PVA/CS/Cu Co-blending

S. Aureus (ATCC 25923);
B. cereus (ATC 11788);
E. coli (ATCC 35218);

P. aeruginosa (ATCC 49189)

Antibacterial Circle

The size of the inhibition circle is:
S. Aureus (15.6 ± 1.1 mm); B. cereus

(29.6 ± 0.42 mm); E. coli
(13.3 ± 0.8 mm); P. aeruginosa

(10 ± 1 mm)

[144]

GEL/PCL/
P(DMC-AMA) nHAP JGM Co-blending E. Coli and S. Aureus CFU Counting The bacterial viability of S. Aureus

after 6 h was 0.1%. [145]

Starch AgNPs starch/AgNPs In-situ synthesis E. Coli (ATCC 35218);
S. Aureus (ATCC 29213) Disc Diffusion-8mm E. Coli (9.7 mm); S. Aureus (10.2 mm) [96]

PMMA ZnO nanorods/
AgNPs PMMA/ZnO-Ag NF Co-blending, in situ

synthesis
E. Coli (ATCC 25922);

S. aureus (ATCC 25923) Disc Diffusion-6mm E. Coli (7–17 mm); S. Aureus
(8.5–18.5 mm) [81]

CH/PEO 8Ce-BG CH-PEO-(8Ce-BG) Co-blending E. Coli and S. Aureus Flat Counting
Method E. Coli activity was only 55.3% [146]

PLLA GO-Ag PLLA-GO-AgNPs Co-blending S. Aureus (ATCC 12600);
E. Coli (ATCC 9637) Antibacterial Circle 3.01 mm–4.62 mm [133]

PVP K90/EC CIP/AgNPs PVP-CIP//
EC-AgNPs Co-blending S. Aureus (ATCC 27853);

E. Coli (ATCC 25922) Antibacterial Circle 24 h, E. Coli (17.8 ± 0.6mm mm);
S. Aureus (21.9 ± 0.6 mm) [132]

PVA ZnO PVA/ZnO Self-assembly S. Aureus (ATCC25923);
E. Coli (ATCC25922) MIC method E. Coli (62.5 µg/mL); S. Aureus

(250 µg/mL) [147]

PLGA/SF ZnO PSZ Co-blending E. Coli and S. Aureus
turbidity

measurement
method

PSZ antibacterial activity against
S. Aureus: 45.1–100% [148]
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3.3. Tissue Engineering

Simulating the structure and composition of the extracellular matrix (ECM) is a
method to provide suitable conditions for cell adhesion, differentiation and prolifera-
tion. Researchers have found that electrospun fibers are identical in properties to natural
tissues through the intersection of biological, medical and nano-engineering technolo-
gies [149,150] while offering high porosity. Electrospinning (ES) is considered one of the
most eligible technologies for tissue engineering, providing scaffolds for tissues to mimic
ECM composition and deliver Biofactors, thus promoting the growth of new tissues [151].

We will now discuss the functionalization of electrospun fibers by co-blending nanoparti-
cles in the spinning system. Lu and colleagues used SiNPs deposited on the surface of PLLA
electrospun fibers, which effectively enhanced the mechanical properties and hydrophilic
ability of the composite membrane, leading to better biocompatibility and promoting cell
adhesion and proliferation [152]. Orthopedic clinical challenges are surgical risks of bone
loss aptamers and pathogenic infections. Placing autografts or an Allograft is the best clinical
option to combat bone loss but with immune rejection problems and infection risks [153].
Following the development of NNHs, electrospun fiber tissue engineering scaffolds can be
fabricated from nanofibers and several nanoparticle hybrids, which mainly include: inorganic
nanoparticles (nanohydroxyapatite (nHA) [154], calcium phosphate (CaPs) [155], Molybde-
num Disulfid (MoS2) [156], Cerium dioxide (CeO2) [63] and Magnesium oxide (MgO) [157])
and metal nanoparticles (gold nanoparticles (GNPs) [158]), etc.

Nanohydroxyapatite (nHA) enhances the osseointegration and osteoconductive prop-
erties of hard tissues by embedding itself in the collagen matrix of hard tissues. Song and
co-workers spun NELL-1 functionalized chitosan nanoparticles (NNPs) and nHA in PCL
fibers (Figure 10A). By incorporating the NPs into PCL electrospun fibers, the authors
clearly increased the fiber diameter and demonstrated that nHA and NNPs enhanced cell
adhesion sites. nHA presence compared to unmodified nanofibers MC3T3-E1 cell prolifera-
tion and differentiation were enhanced [159]. Liu and colleagues prepared hydrogel fibrous
scaffolds containing gelatin-methacryloyl (GelMA) and calcium phosphate nano-particles
(CaPs). After 14 days of incubation in SBF, significant mineralized nodules developed on
the surface of CaPs@GelMA-F. Faster Ca2+ deposition in the early stage can significantly
boost the development of calcified nodules later on (Figure 10B). Moreover, bone defects
are accompanied by rupture of blood vessels. CaPs@GelMA-F cells were co-cultured with
HUVECs cells, resulting in pictures of dense vascular network topology. CaPs@GelMA-F is
also very effective in promoting angiogenesis [160].

Because of its unique physicochemical properties, where S is an important component
of many amino acids in living organisms, MoS2 is also an essential trace element in the
human body [141]. Researchers found that doping MoS2, a two-dimensional material,
with nanofibers can effectively promote cell proliferation and maintain cell viability of
BMSCs, and at the same time, the higher the MoS2 content, the stronger the osteogenic
ability [161,162]. Furthermore, Ma et al. found that the NIR photothermal properties
possessed by MoS2 can respond quickly, reaching the optimal temperature required for
osteogenesis (40.5 ± 0.5 ◦C) in 30 s with 808 nm NIR irradiation, as shown in Figure 10C.
The BV/TV capability under NIR irradiation reached 41.41 ± 0.52% [156].

In addition to the various applications in osteogenic tissues, NNHs also have a pos-
itive role for other tissue engineering formation. Neural tissue engineering (NTE) is an
emerging field. Material preparation requires excellent biocompatibility, certain mechanical
properties and good permeability to oxygen and nutrients, etc. [163]. Chen and co-workers
demonstrated the combination of melatonin MLT and Fe3O4-MNP with PCL to prepare
an outer-middle-internal triple-layer structural scaffold of PCL, Fe3O4-MNPs/PC and
MLT/PCL, with MLT effectively reducing oxidative loss. The results revealed that the
scaffold had a medullary axon diameter (3.30 µm) similar to the autograft group, which
significantly promoted neuronal axon growth (Figure 11D) [164]. Myocardial infarction is
one of the more common diseases in humans. Myocardial cells are gradually replaced by
scar tissue after necrosis, leading to heart failure and arrhythmias caused by changes in
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electrophysiological properties, so it is most important for cardiac tissue engineering to
have excellent elasticity, high electrical conductivity and promote the growth of myocardial
cells [165]. Zhao et al. employed the ES process to create carbon nanotube/silk protein
(CNT/silk) scaffolds. The majority of carbon nanotubes are contained within the fibers and
dispersed along the fiber development direction. Compared to monospun silk protein, the
elongation at the break of the composite fiber is up to 200% or more, and the tensile strength
reaches 5.0 Mpa (Figure 11C). The CNT/silk stent’s excellent electrical conductivity implies
that it is efficient in avoiding arrhythmia (Figure 11B) [166].
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Figure 10. NNHs for promoting bone tissue growth, (A) Schematic preparation of loaded dual
nanoparticle electrospun scaffolds, reprinted from Ref. [159]. (B) Osteogenic ability of loaded CaPs
with unloaded electrospun fibers (after alizarin red staining and), reprinted with permission from
Ref. [160]. Copyright 2020 Elsevier. (C) PCL and MoS2 co-blended preparation of NNHs. Schematic
diagram and micro-CT imaging with and without MoS2 under photothermal conditions, Reprinted
with permission from Ref. [156]. Copyright 2021 John Wiley and Sons.
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Figure 11. NNHs for other tissue engineering applications. (A) Schematic diagram for skin tissue
engineering, Reprinted with permission from Ref. [167]. Copyright 2021 Elsevier. Tensile curves
of CNT/silk scaffolds (B) for cardiac tissue engineering and (C) electrical conductivity, Reprinted
with permission from Ref. [164]. Copyright 2020 John Wiley and Sons. (D) Process flow diagram for
neural tissue engineering preparation, Reprinted with permission from ref. [164]. Copyright 2020
John Wiley and Sons.

The human immune system’s first line of defense is the skin. Skin injury is common
in everyday life. Wound dressings to meet the demands of skin tissue engineering are
scarce. A great wound dressing must not only support ECM regeneration but also protect
the skin from exogenous microorganisms [168]. NNHs fulfill the need for skin tissue
engineering owing to their versatility. Janus nanofibers were loaded with AgNPS and
RCSPs to impart antibacterial ability and bioactivity to electrospun fibers. In the present
work, interestingly, Janus nanofibers can be obtained based on the uniaxial electrostatic
spinning process through the presence of phase separation of PCL and PVP in a solution.
AgNPS in the free state is very susceptible to phagocytosis by normal cells due to its fine
particles and exists a certain degree of cytotoxicity, and RCSPs-Ag nanofibers in this study
had only 78.86% viability on NIH 3T3 cells [169]. The team designed a sandwich wound
dressing with AgNPs loaded with an intermediate layer of nanofibers to both impede the
invasion of exogenous microorganisms and avoid cytotoxicity (Figure 11A) [167].

4. The Present Challenges of NNHs in Medical Applications

Nanomedicine technology is constantly evolving. The use of functionalized nanofibers
and nanoparticle hybrids (NNHs) in medicine has shown encouraging effects. However,
there are a number of challenges that must be surmounted: (1) Most nanoparticles and
electrospun fibers necessitate the use of organic solvents in their fabrication. Organic solvent
residues make the composites less biocompatible. The green chemistry of preparation
should be considered. (2) The large-scale preparation of NNHs remains a challenge in
the face of industrialization needs. Multi-needle collaborative electrospinning has issues
with jet interactions, needle clogging and cleaning difficulties. Needle-free electrospinning
method initially allows the production of large quantities of nanofibers, but they are
exceedingly inhomogeneously dispersed. (3) Nanoparticles are sporadically arranged in
nanofibers, and NNHs have weak mechanical properties. This makes them more fragile as
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tissue scaffolds for tissue engineering applications. It is vital to investigate the “bridge” that
improves the interaction of NPs with the substrate. (4) Precisely controlling nanoparticle
alignment in fibers is a huge difficulty. This has the potential to have a significant impact on
the electron transport efficiency of NNHs in electrically sensitive drug release. This has a
detrimental impact on the biosensor as well. (5) The studies on NNHs in drug release were
carried out in a more ideal environment. When confronted with the organism’s complicated
physiological environment, more research is needed to determine how to precisely control
the drug’s initial burst release and duration of activity.

5. Conclusions and Outlook

In summary, combining current advanced technologies, nanofibers and nanoparticle
hybrids (NNHs) have a wide range of applications in the medical field, especially in
drug release, antimicrobial and tissue engineering. The electrospinning process (ESP)
developed NNHs provides a convenient way to load nanoparticles (NPs) in nanofibers
(NFs) in a single-step process; however, both dispersion of NPs in a polymer solution
and interfacial interactions directly affect the structure and properties of NNHs, which
can be sprayed directly on fibers by physical techniques (magnetron sputtering, plasma,
electrospray, etc.) or chemical synthesis based on nanoparticle methods (in situ synthesis,
hydrothermal-assisted, calcination, etc.) to grow NPs inside NFs.

Combining novel NPs has been attempted. Hypercrosslinked polymers with NFs
are still in a preliminary stage, which is based on Friedel–Crafts reaction [170,171]. The
one-step synthesis of NPs possesses controlled morphology [172], a specific surface area
as high as 4000 m2/g, excellent biocompatibility and high porosity often used for drug
delivery [173]. Combining both in the medical field is beneficial for the development of
new materials.

Clinical applications frequently demand scaffolds to be multifunctional, not only
to enhance cell reproduction but also to suit specific needs [174]. Scaffolds for tissue
engineering must also have regenerative properties, such as the capacity to promote blood
vessel formation or heal torn tissues [175]. More functional NPs will be placed into NFs
in the future to create novel biomaterials based on newer ES technology iterations that
combine more functional particles with multi-fluid technology (three-fluid or even four-
fluid ESP). The materials’ synergy may result in a new form of superfunctional composite.
In the future, humans will have to deal with complicated illness challenges. Personalized
custom brackets must be carefully considered. The mechanical characteristics of NNHs
have remained a source of contention. Three-dimensional printing technology is being used
with ESP to create an artificial intervertebral disc scaffold [176]. The mechanical properties
of the stent were all above the normal human threshold. Any use of NNHs in conjunction
with 3D printing technology is a potential trend. Materials are highly demanding for use in
living organisms. The high compression modulus of the human bionic scaffold can readily
injure neighboring tissues. While the modulus is too low, it is impossible to play the bracket
role [52]. Computational simulations are used to determine the best solution, and as a
result, a new sector of material design for NNHs will emerge [177]. Needle-free ESP offers
a novel approach to nanofiber preparation on a large scale [178,179]. The needle-free ESP
used to prepare NNHs on a large scale is expected to be commercialized soon.
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