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Purpose: Exploration of the relationship between a novel paired box 6 (Pax6) mutant and Pax6 in Bufo raddei Strauch.
Methods: RT–PCR, yeast 2-hybrid system, and co-immunoprecipitation were used to analyze the Pax6 protein and its
mutant during embryonic eye development in Bufo raddei Strauch.
Results: We have cloned the Pax6 ORF sequence from Bufo raddei Strauch. Here we report the cloning of a novel
Pax6 homolog of Bufo raddei Strauch named Pax6 variant. Comparing the 2 genes, the homolog of ORF nucleotide
sequence is more than 99% in Bufo raddei Strauch; only the proline-serine-threonine(PST)-rich transaction domain differs.
The deduced amino acid sequences of PST region are 53.1% identical. An interaction was found between Pax6 and
Pax6 variant via yeast 2-hybrid system; with further study, we found that they interacted in vivo via co-
immunopricipitation.
Conclusions: A Pax6 mutant was first found in Bufo raddei Strauch. Interaction between Pax6 and Pax6 variant may play
a critical role during eye development in Bufo raddei Strauch. This suggests that expression of Pax6 variant may play a
role and appears to be a necessity in eye development, but that Pax6 itself is still pivotal in eye development.

Paired box 6 (Pax6) is expressed throughout eye
development [1-3], and has been reported to be a master of
eye development. However, in true moles (Talpidae), Pax6
was found to be dispensable [4], although it was recently
found to be pivotal in initiation of lens fiber cell differentiation
[5]. Pax6 is also important in the central nervous system. Via
alpha-crystallin, Pax6 regulates survival of dopaminergic
olfactory bulb neurons [6]. In the forebrain, accurate
expression of Pax6 is important for cortical progenitor
proliferation [7]; in the rat hindbrain, Pax6 is required for
coordinating boundary-cell specification, and within the
hindbrain, boundary region neurogenesis can be reduced [8].
In the postnatal limbic system, Pax6 plays a key role in the
generation of multiple subtypes of neurons [9]. In postnatal
cerebellum development, Pax6 is pivotal in the life of the
developing granule cell [10], and by an essential cephalic
ectodermal patterning center, Pax6 can regulate craniofacial
form [11]. Pax6 is crucial for cell development; it plays an
essential role in controlling the expression of the key genes
involved in pancreatic alpha cell differentiation and function
[12]. In mouse embryonic stem cells, Pax6 can induce retinal
neuron progenitors [13], and the epidermal growth factor-
responsive neural stem cells can be regulated by Pax6 [14].
Overexpression of Pax6 can change development and
function in some cells, and the level of Pax6 directly maintains
normal corneal epithelial cells [15], but inhibits the growth of
cultured human retinoblastoma cells [16]. Via the MET
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tyrosine kinase receptor, Pax6 participates in cancer
progression [17]; some researchers have found that glioma
angiogenesis can be restrained by Pax6 [18]. Pax6 expression
levels can be controlled by forkhead box G1 (Foxg1) in
telencephalic progenitor proliferation cells [19]. Some genes,
like sine oculis homeobox 3 (Six3) and orthodenticle
homeobox (Otx), may play a prominent role in Pax6
expression in the early development of the stalked crinoid
Metacrinus rotundus [20]. It was reported that Pax6 was
connected with hormones; Pax6 can restrain androgen
receptors by reducing coactivators to AR target promoters
[21], and can influence islet function via its variant, which is
shown to reduce Pax6 expression in human islets [22]. In the
endocrine pancreas, some transcription factors are involved
in the activation of the glucagon gene, which is controlled by
Pax6 [23].

Pax6 includes 3 functional domains: the paired box, the
paired homeobox, and the proline, serine, threonine–rich
(PST-rich) region [24]. Some Pax6 mutations have only
partial homeodomain or none at all [25,26]. The loss of 1
functional allele of Pax6 leads to mouse small eye [27,28],
Peter’s anomaly, and congenital cataracts in human eye
development [29,30]. Some novel mutations in Pax6 can
cause the classic aniridia phenotype [31]. In disease research,
some Pax6 mutant rats serve as a model for autism [32].

Pax6 homolog has now been described in other
invertebrates, such as flatworm, ribbon worm, C. elegans,
squid, sea urchin, and ascidian [33]. Some species also contain
a second DNA-binding domain, the paired-type
homeodomain that is separated from the NH2-terminal [34,
35]. The COOH-terminal domain is not conserved between
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vertebrates, Drosophila eyeless, and the ascidian Pax6
protein, but they may have biochemical functions [36-39].
Most mutations of Pax6 result in specific defects in the
development of the eye; some can influence the nuclear signal
transfer, and others can influence the combination of the DNA
match domain [26]. Through direct or indirect protein–protein
interaction, the efficiency of transcription factor can be
improved [40]. Pax6 mutations lead to several ocular defects;
with Pax6-consensus binding sequence, Pax6(5a)-consensus
binding sequence, and homeodomain binding sequence
containing luciferase reporters, the transactivation potential
of Pax6(5a)-G36A was enhanced [41].

We conducted a study in amphibians, focusing on Bufo
raddei strauch, which is distributed in the northern part of
China, and is even found in saline-alkali soil, given its strong
adaptability. It serves as the consumer lying at the base of the
food chain; it is an important species in maintaining the
diversity of species and the stability of the ecosystem. This
species is gonochorism and ovulate in water and then the eggs
grow into tadpoles. In winter, when the temperature falls
below 10 °C, they initiate hibernation in caves. Bufo raddei
strauch belongs to anura bufonidae. The optic vesicle can be
clearly observed when the embryon of Bufo raddei strauch
reach 6 days; after 7.5 days, the pigment of cornea begins to
reduce and the lens begins to appear.

METHODS
Animal: Bufo raddei Strauch embryos were obtained at 6
days’ growth.
Gene clones and protein expression: Total RNA was isolated
from the Bufo raddei Strauch when the embryos grew to 6
days, and then was reverse transcribed into cDNA. The
sequences of the entire open reading frame for the full-length
Bufo raddei Strauch Pax6 and Pax6 variant was amplified by
means of polymerase chain reaction; at the same time, vectors
were successfully constructed (Table 1).

The plasmid for pET-28-Gfp-Pax6 included a partial
sequence of Pax6 ORF, only 231 bp in the PST region, which

has 432 bp. The pET-28-Gfp-Pax6-variant has only 147 bp in
PST region, which has 348 bp of Pax6 variant ORF sequence.
All recombinants were verified by DNA sequencing. Four
proteins were expressed in Rosetta (DE3) cells and purified
via nickel affinity column; these were Pax6-His, Pax6-
variant-His protein, Gfp-Pax6-His, and Gfp-Pax6-variant-
His.

Preparation of antiserum against Gfp-Pax6 and Gfp-Pax6
variant: Per Bradford, the concentration of purified fusion
proteins was examined. First, 1 mg of Gfp-Pax6 protein was
mixed with 1 ml Freund's incomplete adjuvant (Invitrogen,
Shanghai, China), and then injected into a rabbit. After 3 days,
1 ml Freund's incomplete adjuvant (Invitrogen) was replaced
by 1 ml Freund's complete adjuvant, which was mixed with
antigen protein, and was injected into the rabbit. The same
operation was conducted 3 times at weekly intervals. At the
same time, Gfp-Pax6-variant protein replaced the Gfp-Pax6
protein, and was injected into another rabbit using the same
method. Finally, polyclonal antisera were obtained and
purified.

Yeast two-hybrid system: Four recombinants were obtained
by primers, as shown in Table 2. The entire open reading
frame of Pax6 and Pax6 variant was cloned and digested by
Nde1 and EcoR1 (Takara, Tokyo, Japan). They were
respectively linked to pGBK-T7 vectors which were digested
by the same enzymes. Meanwhile, Pax6 and Pax6 variant
were digested by EcoR1 and Xho1, respectively, and linked
to pGAD-T7 vectors, which were digested by the same
enzymes. These 4 recombinants were verified by DNA
sequencing, and were transferred into Yeast Y190. Six
experimental groups were constructed: Pax6-pGAD-T7 and
Pax6-variant-pGBK-T7, Pax6-pGBK-T7 and Pax6-variant-
pGAD-T7, Pax6-pGAD-T7 and pGBK-T7, Pax6-variant-
pGBK-T7 and pGAD-T7, Pax6-pGBK-T7 and pGAD-T7,
and Pax6-variant-pGAD-T7 and pGBK-T7. Each group was
transferred into Yeast Y190, so that 6 different yeast
expression systems were produced. After they grew in culture

TABLE 1. PRIMERS OF PLASMID WHICH WAS CONSTRUCTED FOR PROTEIN PURIFICATION.

Plasmid Primers Vector Enzyme cut
sites

Fragment
size

pET-28-Pax-6 5′-CCGGAATTCATGCAGAACAGTCACAGCGGA-3 pET28 EcoR I, Hind III 1270
 5′-CCCAAGCTTCTGTAGTCTTGGCCAGTACTG-3′    
pET-28-Pax-6 variant 5′-CCGGAATTCATGCAGAACAGTCACAGCGGA-3 pET28 EcoR I, Hind III 1182
 5′-AAAAAGCTTTAAAATACTGCTGAACATCC-3′    
pET-28-Gfp-Pax-6 5′-AAACCATGGGTAAAGGAGAAGAAC-3 pET28 NcoI, Hind III 948
 5′GTCTGGCTGGGTACAGGGGGTTTGTATAGTTCATCCATG-3′    
 5′CATGGATGAACTATACAAACCCCCTGTACCCAGCCAGAC-3′    
 5′TTTAAGCTTCTGTAGTCTTGGCCAGTACTG-3′    
pET-28-Gfp-Pax-6-variant 5′-AAACCATGGGTAAAGGAGAAGAAC-3′ pET28 NcoI, Hind III 864
 5′-CTCCAGGGGAAATGAGACTTTGTATAGTTCATCCATG-3′    
 5′-CATGGATGAACTATACAAAGTCTCATTTCCCCTGGAG-3′    
 5′-AAAAAGCTTTAAAATACTGCTGAACATCC-3    

               The Table displays the specific primers of each gene, and appropriate vector, enzyme cut sites and product length.
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medium, which lacked Leu and Trp, for 3 days, the surviving
yeast colony was transferred to a culture medium containing
dicyandiamide and that lacked Leu, Trp, and His, where some
of the yeast colony still continued to grow. The surviving yeast
colony was transferred into nitrocellulose membrane, frozen
by liquid nitrogen for 30 s, then melted at room temperature.
Then the membrane carrying some yeast colony was
incubated in buffer (60 mM Na2HPO4, 40 mM NaH2PO4,
1 mM KCl, 5 mM MgSO4, 0.27% (v/v) β-mercaptoethanol,
35mg/ml X-gal) to observe color change.

Co-immunoprecipitation (Co-IP): The embryos were
collected at 6 days after fertilization. The samples were pooled
and ground to a powder with liquid nitrogen. The powder was
dissolved in lysis buffer that contained 100 mM Na2HPO4,
1 mM EDTA, 1 mM EGTA, 5% (v/v) glycerol, 5 mM
MgCl2, 100 mM KCl, 10 mM NaCl, 0.1% (v/v) Triton X-100
(Invitrogen), 0.1% (V/V) Tween-20 (Invitrogen), 10 mM
Tris-HCl, 35μg/ml PMSF (Invitrogen), 0.5μg/ml Leupeptin
(Invitrogen) pH 7.5) [42,43]. After incubation on ice for 30
min, it was centrifuged at 13,000× g at 4 °C for 30 min. The
supernatant was collected and we proceeded with
determination of protein concentration. Then, 1 mg total
protein was incubated with 1 μg rabbit anti-gfp-Pax6 antibody
in a total volume of 1 ml. We use anti-GST antibody in a
negative control group. After 2 h incubation at 4 °C, the
protein and antibody mix was incubated with 20 μl of
magnetic Protein A (Sigma-Aldrich, Shanghai, China)
particles at 4 °C for 1 night with shaking. Particles were
separated with a magnetic stand and then washed 4 times with
wash buffer: TBST. Particles were boiled in 5× loding buffer:
0.25 mol/l Tris-HCl, pH 6.8, 10% SDS, 0.5% bromophenol
blue, 5% β-mercaptoethanol, 50% (v/v) glycerol. Western
blotting experiments were performed in biologic replicates.
Taking the same method, we use rabbit anti-gfp-Pax6-variant
antibody to replace rabbit anti-gfp-Pax6 antibody.
Experiments were also performed in biologic replicates.

RESULTS
The Pax6 gene of Bufo raddei Strauch has 3 functional
domains. The homology of ORF region is 83% in Xenopus

laevis. In humans and mice, the homology is 84% and 82%,
respectively. The homology of Pax6 protein is greater than
95% in vertebrates. The homology of the paired box is 98%,
the paired homeobox is 100%, and PST region is 96% in
Xenopus laevis.

The ORF region of Pax6 variant has 1,182 bp. The locus
of Pax6 variant is FJ175151 in Genebank. Compared with
Pax6, the homolog of ORF nucleotide sequence of Bufo
raddei Strauch is more than 99% and compared with the
Pax6 variant B of Xenopus laevis, the homolog is 84%. The
analysis based on DNAMAN software (Lynnon Corporation,
Quebec, Canada) indicates the Pax6 variant also has 3
functional domains: the paired box, the paired homeobox, and
the PST region. The Pax6 variant protein has 393 amino acids,
among which only the PST region differs from Pax6 of Bufo
raddei Strauch. Compared with the PST region of Pax6, Pax6
variant protein loses 50 amino acids in 345–394 AA, and
because of frame shift, the 395–422 AA differ from the same
region of the Pax6 protein, and in the end of the PST region,
the Pax6 variant adds 21 amino acids (Figure 1).

Pax6 and Pax6 variant of Bufo raddei Strauch were
cloned and recombinant proteins were expressed successfully
in Rosetta (DE3). By SDS–PAGE, 46 kDa and 43 kDa protein
bands were observed (Figure 2). His-tagged fusion proteins
were purified by a nickel affinity column. At the same time,
Gfp-Pax6 and Gfp-Pax6-variant protein were expressed
(Figure 2) and purified, and they were used as antigens and
injected into the rabbit.

Yeast two-hybrid system: Six different Yeast expression
systems were produced successfully. When they grew in
culture medium lacking Leu, Trp and His for 3 days, only 2
groups could grow, they are Pax6-pGAD-T7 and Pax6-
variant-pGBK-T7, and Pax6-pGBK-T7 and Pax6-variant-
pGAD-T7. Each group was transferred to nitrocellulose filter
membrane, after incubation in x-gal buffer for 8 h at 30 °C,
the color of the yeast colony turned blue (Figure 3). This
experiment shows only Pax6 and Pax6 variant proteins
express in the same cell of yeast y190, the cell activates the
reporter gene, and histidine gene 3 (HIS3) and β-galactosidase
(LacZ) were expressed, so the yeast colony could grow in a

TABLE 2. PRIMERS OF PLASMID WHICH WAS CONSTRUCTED FOR YEAST TWO-HYBRID SYSTEM.

Plasmid Primers Vectors Enzyme cut
sites

Fragment
size

Pax-6- pGBK-T7 5′-GGAATTCCATATGATGCAGAACAGTCACAGCGG-3′ pGBK-T7 Nde1, EcoR1 1288
 5′-CCGGAATTCCTGTAGTCTTGGCCAGTACTG-3′    
Pax-6-pGAD-T7 5′-CCGGAATTCATGCAGAACAGTCACAGCGG-3′ pGAD-T7 EcoR1, Xho1 1285
 5′-CCGCTCGAGCCTGTAGTCTTGGCCAGTACTG-3′    
Pax-6-variant-pGAD-T7 5′-CCGGAATTCATGCAGAACAGTCACAGCGG-3′ pGAD-T7 EcoR1, Xho1 1198
 5′-CCGCTCGAGCTAAAATACTGCTGAACATCC-3′    
Pax-6-variant- pGBK-T7 5′-GGAATTCCATATGATGCAGAACAGTCACAGCGG-3′ pGBK-T7 Nde1, EcoR1 1201
 5′-CCGGAATTCTAAAATACTGCTGAACATCC-3′    

               The Table displays the specific primers of each gene, and appropriate vector, enzyme cut sites and product length.
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culture medium that lacked His, and the color of the colony
turned blue when incubated in x-gal buffer. The results show
that Pax6 and Pax6-variant interact in yeast y190.

Co-immunoprecipitation: First, the rabbit anti-Gfp-Pax6
antibody was used to do immunoprecipitation, rabbit anti-
GST antibody was used in negative control, then rabbit anti-
Gfp-Pax6 antibody was used to do western blotting. The
results show that a heavy chain of antibodies was found in the

negative group and experimental group (Co-IP), and Pax6
protein was found in the experimental group and 2 positive
controls. When using Gfp-Pax6-variant antibody to do
western blotting, the Pax6-His was replaced with Pax6
variant-His in the inputs. The results show that Pax6-variant
protein was found in the experiment and 2 positive controls.
When using rabbit anti-Gfp-Pax6-variant antibody to do
immunoprecipitation, first using anti-Gfp-Pax6-variant

Figure 1. Structural analysis of Pax6
ORF and Pax6 variant ORF of Bufo
raddei Strauch. There is only 53.1%
similarity in PST between the Pax6 and
Pax6 variant in homology analysis
employing DNAMAN software
(Lynnon Corporation, Quebec,
Canada). From the 67th amino acid to
the 3 'end, Pax6 variant protein has 49
Amino acids while Pax6 has 78 amino
acids.

Figure 2. SDS–PAGE for induced
expression of recombinant proteins. The
4 recombinant proteins are Pax6-
variant-His, Pax6-His, Gfp-Pax6-His,
and Gfp-Pax6-variant-His, which were
expressed in E. coli Rosetta (DE3).
Their respective molecular weighs are
43 kDa, 46 kDa, 35 kDa, 32 kDa. All of
sample 1 consists of induced proteins;
all of sample 2 is negative controls,
which were not induced.
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antibody to do western blotting, Pax6-variant was found in
both the experiment and 2 positive controls. Then using anti-
Gfp-Pax6 antibody to do western blotting, Pax6 variant-His
was replaced by Pax6-His of the inputs; Pax6 protein was
found in both the experiment and 2 positive controls (Figure
4). The experimental group shows that Pax6 and Pax6 variant
can form a complex, through rabbit anti-Gfp-Pax6 antibody
or rabbit anti-Gfp-Pax6-variant antibody, combined with
magnetic Protein A particles. These results suggest that Pax6
and Pax6-variant of Bufo raddei Strauch interact in vivo.

DISCUSSION
The adult Bufo raddei Strauch lives mostly on land and feeds
on small invertebrates such as insects. Their feeding habits
change after they undergo complete metamorphosis, which
indicates a kind of adaption to natural selection during its long
evolution; thus, they may be higher than Xenopus in their
evolutionary position. We first found a new Pax6 mutant of
normal Bufo raddei Strauch. The Pax6 mutant may be caused
by evolution. Several researchers found that most mutants of
Pax6 were lost in 3′ sequences [44]. The mutant proteins
combine with downstream genes that differ from Pax6 [45,

46]. The PST region of mutants may contain a part of
transcription activation [40]. Some mutations have been found
to occur in the COOH-terminal of Pax6, which contains the
DNA-binding domains but has lost most of the transactivation
domain. These mutants are dominant-negative in transient
transfection assays when they are co-expressed with wild-type
Pax6 [47]. A mutant of Pax6 was found in normal Bufo
raddei Strauch; it is located in the PST region of Pax6. It is
interesting that it can exist stably in normal Bufo raddei
Strauch, which differs from previous reports that some
mutants can lead to developmental problems in the eyes.

This study found that Pax6 and Pax6 variant were able to
interact in yeast, and the co-immunoprecipitation experiment
tells us that they still have a mutual effect in Bufo raddei
Strauch. The results indicate that Pax6 variant and Pax6
protein can form a compound, and can have influence on the
function of Pax6. Because the gst-Pax6-variant and gst-Pax6
proteins were not expressed and purified, whether the
interactions were direct or indirect is not known from the pull-
down experiment, so it is possible that some other proteins are
involved in the interactions. What is most significant is that
the mutant protein can regulate Pax6.

Figure 3. Yeast 2-hybrid system. A:
Yeast Y190 grow in culture medium
without Leu and Trp for 3 days at 30
degrees centigrade; Pax6-pGBK-T7 and
Pax6-variant-pGAD-T7    were      trans-
formed   into   the    first    yeast     colony,
Pax6-pGAD-T7 and Pax6-variant-
pGBK-T7 were transformed into the
second yeast colony. B: Yeast colony of
the experimental group grew in culture
medium containing dicyandiamide,
without Leu, Trp, and His, after growing
for 3 days at 30 °C. C: yeast colony
transformed into nitrocellulose filter
membrane; adding buffer containing x-
gal, the color is displayed blue.
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Pax6 is a key regulator in eye development; it expresses
early in cells fated to form the eye and parts of the forebrain,
hindbrain, and spinal cord [48]. As an early marker of corneal
epithelial cell differentiation, Pax6 has high-level expression
in early cell cultures, but then is found at very low levels in
proliferating cells [49]. Thus, we infer that Pax6 is also
reduced in Bufo raddei Strauch eye development. The
combination of Pax6 and pax6 variant protein may result in
the downregulation of Pax6 by their interaction.

Some elements of transcriptional activation involve
leucine, proline, glutamic acid, serine, and threonine [50]. We
found in the PST region of Pax6 that the ratio of proline,
serine, and threonine were 15%, 19%, and 12%, respectively,
but in the Pax6 variant, the ratios were 10%, 17%, and 11%,
respectively. Using 3D-PSSM software, we found that Pax6
had 2 more α-helixes than the Pax6 variant protein in the PST
region, which makes it possible that the Pax6 and Pax6 variant
have mutual effects and form a complex structure.

Mutations in Pax6 lead to a variety of ocular anomalies
in human beings and mice. However in Bufo raddei Strauch,
the Pax6 variant has no impact on pathological changes, but
may have a role in eye development. The mutual effect
between Pax6 and Pax6 variant may be important for eye
development; we assume it to be a special evolution in Bufo
raddei Strauch. Pax6 is still pivotal for eye development, but
the expression of Pax6 variant appears to be a necessity.
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