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A B S T R A C T   

Background and Purpose: The accuracy and precision of radiation therapy are dependent on the characterization 
of organ-at-risk and target motion. This work aims to demonstrate a 4D magnetic resonance imaging (MRI) 
method for improving spatial and temporal resolution in respiratory motion imaging for treatment planning in 
abdominothoracic radiotherapy. 
Materials and Methods: The spatial and temporal resolution of phase-resolved respiratory imaging is improved by 
considering a novel sampling function based on quasi-random projection-encoding and peripheral k-space view- 
sharing. The respiratory signal is determined directly from k-space, obviating the need for an external surrogate 
marker. The average breathing curve is used to optimize spatial resolution and temporal blurring by limiting the 
extent of data sharing in the Fourier domain. Improvements in image quality are characterized by evaluating 
changes in signal-to-noise ratio (SNR), resolution, target detection, and level of artifact. The method is validated 
in simulations, in a dynamic phantom, and in-vivo imaging. 
Results: Sharing of high-frequency k-space data, driven by the average breathing curve, improves spatial reso-
lution and reduces artifacts. Although equal sharing of k-space data improves resolution and SNR in stationary 
features, phases with large temporal changes accumulate significant artifacts due to averaging of high frequency 
features. In the absence of view-sharing, no averaging and detection artifacts are observed while spatial reso-
lution is degraded. 
Conclusions: The use of a quasi-random sampling function, with view-sharing driven by the average breathing 
curve, provides a feasible method for self-navigated 4D-MRI at improved spatial resolution.   

1. Introduction 

The accuracy and precision of radiation therapy are dependent on 
the characterization of target motion [1]. Respiration-induced tumor 
and organ-at-risk (OAR) displacements are of concern primarily for lung 
and upper abdominal malignancies. In these anatomical sites, a typical 
workflow for treatment planning employs an estimate of target and OAR 
motion in order to determine safety margins. Four-dimensional X-ray 
computed tomography (4D-CT) is currently the most widely adopted 

modality for estimating the displacement of abdominothoracic targets. 
The electromechanical design of CT scanners limits the sampling pattern 
to axial or helical line-integrals and often leads to re-sampling artifacts. 
For organs in the abdomen, lesion detection is further challenged by the 
lack of inherent CT contrast between tumors and the surrounding pa-
renchyma. In this context, the main advantage of magnetic resonance 
imaging (MRI) is the simplicity with which the sampling function can be 
designed and the wide range of inherent MRI contrast mechanisms. 
These advantages can be exploited in the investigation of novel 
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acquisition and reconstruction methods for improved image quality and 
target detection in treatment planning [2–10]. The increased quality of 
planning images will directly impact the accuracy of manual or auto-
matic contouring. 

Respiratory motion may be estimated with 2D, 3D, or 4D imaging: 
phase navigators [11], time-resolved tomographic or projection imaging 
[12], and time-resolved or respiratory phase-resolved volumetric im-
aging [13] represent respective acquisitions from each approach. While 
recent technical advances in MRI hardware and software are encour-
aging, the acquisition of time-resolved 3D datasets with sufficiently high 
spatiotemporal resolution and coverage remains challenging. The 
alternative strategy, respiratory phase-resolved 4D imaging, is based on 
prospective or retrospective sorting of projections into a predefined 
number of breathing phases. 

Phase-resolved imaging relies on the measurement of a breathing 
signal. The estimation of the amplitude and period of breathing motion 
guides image sorting into respective respiratory phases. The signal may 
be determined from the displacement of an external device placed on the 
patient surface, from image-based respiratory surrogate metrics, or from 
projection data in the Fourier domain [7,11,14–21]. An image for each 
respiratory phase is then reconstructed from the raw data that has been 

assigned to that motion state. 
MRI pulse sequences that rely on non-Cartesian sampling provide 

advantages in several clinical applications [22]. Projection-encoding, or 
radial sampling, refers to the acquisition of the MR signal along rays 
(spokes, views) traversing the center of k-space. This imaging technique 
can generate inherently volumetric measurements, has reduced sensi-
tivity to flow and motion artifacts, and allows for shorter echo times as 
compared to traditional Cartesian methods [23]. The raw data in k-space 
have the additional advantage of providing an estimate for the respi-
ratory signal without the need for an external tracking device [20]. 
When the number of rays in radial imaging is chosen to satisfy the 
Nyquist criterion at the periphery of k-space, the sampling function is 
redundant towards the center of k-space [24]. The redundancy can be 
exploited in methods of projection-encoding with view-sharing (PEVS) 
which attempt to improve spatiotemporal resolution and coverage based 
on the premise that the periphery of k-space, where high-frequency 
features are encoded, does not need to be updated as often as the cen-
ter [25–27]. 

The primary aim of this study is to demonstrate a 4D-MRI technique 
for improving the spatiotemporal resolution of phase-resolved respira-
tory motion imaging by considering a novel sampling function based on 

Fig. 1. Sampling and reconstruction strategy for respiratory imaging with 4D-PEVS. (a) In this diagram, k-space data for each respiratory phase (PH) are represented 
by a rectangle (for clarity, respiratory cycle hypothetically divided into four phases). Grayscale intensity (black = all, white = none) illustrates the amount of 
respective k-space data used to reconstruct phase 1. (b) k-space sampling functions (for clarity, only end-point of radial spokes shown). MR data for each phase are 
acquired in a quasi-random distribution of non-overlapping k-space points. (c) An overview of PEVS filters (2D k-space shown). The periphery of k-space data from all 
phases may contribute equally to the reconstruction of phase 1 (equal frequency cutoff) or the contribution of k-space from neighboring phases can be reduced by 
varying the cutoff frequency (variable frequency cutoff). fN represents the radial distance in k-space below which the sampling rate is higher than that required by the 
Nyquist criterion. (d) Sampling function for reconstruction of phase 1; black represents the sampling points for phase 1 while gray represents the sampling points 
from all other phases. 
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quasi-random projection-encoding and peripheral k-space view-sharing. 
The average breathing curve is used to optimize spatial resolution and 
temporal blurring by limiting the extent of view-sharing in the Fourier 
domain. The method further exploits the property of the center of k- 
space to estimate the breathing signal, obviating the need for an external 
surrogate marker. 

2. Materials and methods 

2.1. Sampling and reconstruction technique 

We hypothesize that 4D-PEVS, with the degree of view-sharing 
guided by the average breathing curve, improves the quality of respi-
ratory motion imaging. Fig. 1 shows an overview of the sampling and 
reconstruction strategy. For simplicity, assume the respiratory cycle is 
divided into four phases, as depicted in Fig. 1(a). A three-dimensional 
radial function with a quasi-random distribution of polar/azimuthal k- 
space angles can be designed such that it provides efficient sampling of 
each respiratory phase while simultaneously sampling the entire k-space 
with non-overlapping points, as shown in Fig. 1(b). In this work, we 
consider radial sampling with the multidimensional golden means [28] 
and the stack-of-stars trajectories [29]. The multidimensional golden 
means trajectory provides radial sampling in all three dimensions while 
the stack-of-stars trajectory provides radial sampling in two dimensions 
and Cartesian in the third one. These functions allow for randomized 
acquisitions that enable efficient k-space sampling for each respiratory 
phase, and the methods are becoming readily available for routine 
clinical use in most diagnostic scanners. 

The amount of data sharing can be controlled by a k-space filtering 
method, conceptually described in Fig. 1(c). For the sampling function 
of a given respiratory phase, we define fN to be the radial distance below 
which the sampling rate is equal to or higher than that required by the 

Nyquist criterion. When reconstructing the image from this phase (phase 
1 in the example in Fig. 1), peripheral k-space data from the remaining 
respiratory phases can be added in varying degrees by increasing the 
cutoff sampling frequency above fN. The cutoff frequency can be global, 
as in the case of the equal frequency cutoff approach, or respiratory 
phase dependent, as shown for the general case of the varying frequency 
cutoff approach in Fig. 1(c). 

For the reconstruction of a given respiratory phase, the k-space fre-
quency cutoff can be written as: 

fi = fN + δi*(kmax − fN) (1)  

where the index i references the k-space data of the respective respira-
tory phase, the parameter δi controls the amount of view-sharing, and 
kmax is the maximum k-space coordinate that defines the spatial reso-
lution being reconstructed. We consider the following PEVS strategies: 

δi = 1, ∀i : no view − sharing (NVS)
δi = 0, ∀i : equal sharing from all phases (ESP)

δi = Δsn : view − sharing driven by respiratory signal (RSGR)
(2) 

where Δsn is the normalized change in the average breathing signal 
(sn). The average breathing signal is estimated from all cycles in the 
dataset while the difference is with respect to the phase being recon-
structed, as depicted in Fig. 2. The method of view-sharing driven by the 
average breathing signal will be referred as respiratory signal-guided 
reconstruction (RSGR). In this technique, δi defines the fractional 
change in the average breathing curve. PEVS with RSGR relies on the 
premise that the average breathing signal is a measure of spatial changes 
across respiratory phases and accordingly adapts the amount of data 
sharing to minimize spatiotemporal blurring. 

Fig. 2. (a) Input curve for diaphragm motion and (b) respiratory signal extracted from the center of k-space. If the cardiac signal is superimposed on the breathing 
signal, its effect on retrospective sorting can be discarded by applying a band-pass filter. In this example, a type II Chebyshev filter has been applied. (c) Averaged and 
normalized breathing signal used to derive Δsn. (d) Example of RSGR filter used for reconstruction of phase 2. 
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2.2. XCAT digital phantom simulations 

The proposed sampling and reconstruction strategies were validated 
in the 4D extended cardiac torso (XCAT) digital phantom [30,31]. The 
4D-XCAT phantom was used to simulate the abdominothoracic anatomy 
of the adult male with the parameters listed in Supplementary Materials 
S1. Noise was modeled with a Gaussian distribution of SNR = 15 [32]. 
The MR signal was simulated by sampling the Fourier transform of the 
XCAT phantom along the points defined by the three radial trajectories 
described above. The breathing signal was estimated from the DC- 
component of k-space or from principal component analysis of pro-
jections along the z-direction [7]. The signal was retrospectively sorted 
into ten equal respiratory phases based on phase angle. Gridding 
reconstruction was implemented with a modified Kaiser-Bessel kernel 
[33] and iterative density compensation factors [34,35]. 

2.3. Phantom experiments 

The method was validated experimentally using a 4D phantom 
consisting of a 2 mm inner diameter polyethylene tube placed over 
another tube with an inner diameter of 15 mm. Both tubes were filled 
with a 5 mM CuSO4 solution and oriented such that their long axes were 
on orthogonal planes. The phantom was connected to a linear actuator 
(Dynamic Phantom, CIRC, Norfolk, VA) able to generate a user-selected 
trajectory. The phantom motion and imaging parameters are listed in 
Supplementary Materials S2. The motion trajectory was confirmed with 
cine-MRI and compared to that estimated from the reconstruction with 
4D-PEVS. 

2.4. In vivo experiments 

The feasibility of the proposed technique was tested in free-breathing 
lung and abdominal imaging in human volunteers. The study was 
approved by the Institutional Review Board and informed consent was 
obtained prior to data acquisition. The experiments were performed in 
MRI scanners from two vendors using the imaging parameters listed in 
Supplementary Materials S3. 

2.5. Image quality assessment 

The effect of view-sharing on image quality was assessed quantita-
tively by considering three features: resolution, target detection, and 
noise. Spatial resolution was estimated using the reconstruction edge- 
spread function (rESF). Adjacent line profiles were measured in a 
region-of-interest (ROI) at the lung-liver interface and rESF was 

computed as the mean of the spatial derivative (i.e., image gradient) in 
the ROI. In this framework, higher values of rESF imply a sharper edge, 
hence higher spatial resolution. Improvements in resolution are assessed 
by separately considering features that have minimal motion and fea-
tures with large temporal changes during the respiratory cycle. 

Target detection was estimated by analyzing the location of the 
lesion center-of-mass, lesion circularity and solidity, and lesion volume 
as a function of respiratory phase. Circularity and solidity were included 
as metrics for assessing target shape changes with respect to simulated 
spherical target. The mean value of the image quality metrics across 
breathing phases was compared using one-way ANOVA with repeated 
measures. Pairs of reconstruction techniques were analyzed with the 
paired-sample t-test. Statistical significance was determined based on a 
P-level less than 0.05. 

The impact of the technique on signal-to-noise ratio (SNR) was 
evaluated by examining the noise floor. The noise floor was estimated by 
the standard deviation of signal intensity in a large background region 
devoid of streaking artifacts or NMR signal [32]. 

3. Results 

3.1. XCAT digital phantom simulations 

Fig. 2 demonstrates the properties of the center of k-space in the 
context of monitoring respiratory motion and provides an example of 
the normalized change in the average breathing signal used for 4D-PEVS 
with RSGR. Panels 2(a) and 2(b) compare the input respiratory signal 
and the k-0 signal from the simulation of the XCAT phantom. Although 
the cardiac signal may be superimposed on the breathing signal, its ef-
fect on retrospective sorting can be discarded by applying a band-pass 
filter. The breathing signal averaged over all phases is shown in Fig. 2 
(c). This function is used to derive Δsn, plotted in Fig. 2(d). A montage of 
all phases reconstructed using RSGR-PEVS is provided in Supplementary 
Figure. S2. 

Fig. 3 presents a comparison of the reconstruction techniques for the 
stack-of-stars sampling trajectory. Improvements in spatial resolution 
are quantified by the line profiles through the simulated stationary 
pulmonary vessels, as shown in Fig. 3(b). Given the size of the vessels, 
the ratio of the peak-to-peak amplitude of the line profiles can serve as a 
surrogate measure for the modulation transfer function. Under this 
assumption, when compared to reconstruction without view-sharing, 
RSGR-PEVS and ESP-PEVS respectively improve spatial resolution by 
approximately 65 % and 70 %. 

Fig. 4 illustrates spatial resolution improvements in features with 
large temporal changes during the respiratory cycle. Spatial resolution 

Fig. 3. Comparison of reconstruction techniques demonstrating spatial resolution improvements in features with minimal motion during the respiratory cycle. (a) 
Top and bottom row are chosen in locations representative of stationary features in the spinal canal and pulmonary vessels. From left to right: XCAT phantom, NVS- 
PEVS, ESP-PEVS, RSGR-PEVS. Arrows point to regions that demonstrate improvements in spatial resolution. (b) Line profiles through pulmonary vessels (arrow in 
panel (a), bottom row). The effect of view-sharing is shown for the stack-of-stars trajectory. See Supplementary Figure S4 for the multidimensional golden 
means trajectory. 

E. Subashi et al.                                                                                                                                                                                                                                 



Physics and Imaging in Radiation Oncology 25 (2023) 100409

5

was evaluated using the reconstruction edge-spread function estimated 
at the lung-liver interface, highlighted in panel 4(a). Mean rESF was 
significantly different across reconstruction techniques (p-value≪0.05); 
RSGR-PEVS outperforms NVS-PEVS which in turn outperforms ESP- 
PEVS. This result demonstrates how reconstruction with equal data 
sharing degrades spatial resolution by approximately 10 % in regions 
with rapid motion. In these regions, ESP-PEVS leads to an overlay of 
moving edges which in turn causes spatial blurring. Spatial resolution 
also varies across breathing phases, as shown in Supplementary 
Figure S3. RSGR-PEVS optimizes spatial resolution and minimizes 
temporal blurring by limiting the extent of data sharing in the Fourier 
domain. Although edges are blurred, RSGR-PEVS and NVS-PEVS can 
determine the location of the lung-liver interface with comparable ac-
curacy, while ESP-PEVS underestimates overall displacement, as shown 
in Fig. 4(c). 

Lesion detection is characterized in Fig. 5. No significant difference 
was found when comparing the coordinates of the lesion center-of-mass, 
as shown in panel 5(a) (p-value = 0.32, p-value = 0.45, p-value = 0.76 
for SI, AP, LR, respectively). Distortions estimated by lesion circularity, 
solidity, and volume are examined in Fig. 5(b). Lesion distortion is not 
significantly different in images reconstructed with RSGR-PEVS and 
NVS-PEVS (for circularity, solidity, and volume: p-value = 0.77). Lesion 
circularity and solidity is significantly lower in images reconstructed 
with ESP-PEVS while lesion volume is significantly higher (p- 
value≪0.05). In these images, circularity is approximately 9 % lower 
and solidity is approximately 3 % lower. Again, ESP-PEVS leads to an 
overlay of moving edges which in turn causes significant lesion distor-
tions. This can be appreciated in Fig. 5(c) where the truncation artifact 
can be observed at the lesion boundary. The artifact is caused by the k- 
space discontinuity of ESP-PEVS. 

3.2. In vivo experiments 

Fig. 6 demonstrates improvements in image quality in a volunteer 
study using the 3D radial stack-of-stars trajectory. The effects of 
reconstruction on resolution, detection, and SNR are analyzed in an 
approach analogous to the one used in the digital XCAT phantom. The 
mean rESF across breathing phases reveals that the degree of blurring in 
moving edges reconstructed with RSGR-PEVS is comparable to that 
found in images reconstructed without view-sharing, as seen in panel 6 
(b). Reconstruction with equal data sharing degrades spatial resolution 
by approximately 26 % in regions with rapid motion. Panel 6(c) com-
pares the detection of the location of the lung-liver interface. This 
example demonstrates that equal sharing of the data at the periphery of 
k-space leads to temporal blurring that results in a lung-liver interface 
that may appear as stationary. Finally, a comparison of the noise floor 
reveals that while ESP-PEVS provides the largest improvement in SNR 
(decrease of noise floor by approximately 32 %), RSGR-PEVS also pro-
vides an improvement in SNR (decrease of noise floor by approximately 
28 %), as shown in Fig. 6(d). 

4. Discussion 

This proof-of-principle study develops and validates a method for 

(caption on next column) 

Fig. 4. Comparison of the effect of view-sharing reconstruction techniques in 
regions with large temporal changes (a) Dashed box highlights lung-liver 
interface where the average rESF was estimated. (b) Mean rESF across 
breathing phases as a function of reconstruction technique. Normalized value of 
unity refers to highest spatial resolution. In regions with large temporal 
changes, RSGR-PEVS provides a significant improvement in spatial resolution 
while ESP-PEVS degrades spatial resolution. Bar-plots depict average ± stan-
dard error of mean. (c) Displacement of lung-liver interface determined from 
ten line profiles at the region highlighted in panel (a). The effect of view- 
sharing is shown for the stack-of-stars trajectory. See Supplementary 
Figure S5 for the multidimensional golden means trajectory. 
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Fig. 5. Characterization of lesion detection as a function of reconstruction method. (a) Displacement of lesion center-of-mass in (left) superior-inferior (center) 
anterior-posterior and (right) left–right direction. (b) Shape metrics as a function of respiratory phase: (left) circularity, (center) solidity, and (right) volume of lesion. 
(c) Sagittal view at respiratory phase 3 for reconstructions with (left) NVS-PEVS, (center) ESP-PEVS, and (right) RSGR-PEVS. Notice truncation artifact and intensity 
ripples (arrows) caused by the sharp discontinuity in k-space sampling with ESP-PEVS. The effect of view-sharing is shown for the stack-of-stars trajectory. See 
Supplementary Figure S6 for the multidimensional golden means trajectory. 

Fig. 6. Image quality as a function of reconstruction method in a volunteer study. (a) Axial slice for (left) NVS-PEVS, (center) ESP-PEVS, and (right) RSGR-PEVS. 
Images normalized by maximum value of reconstructed intensity and displayed using equal window/level settings. (b) Mean rESF across breathing phases at lung- 
liver interface as a function of reconstruction technique. In regions with large temporal changes RSGR-PEVS provides a significant improvement in spatial resolution 
while ESP-PEVS does not improve resolution. Bar-plots depict average ± standard error of mean. (c) Displacement of lung-liver interface as a function of breathing 
phase. (d) Effect of reconstruction technique on noise. The noise floor (σ) is estimated by the standard deviation of signal intensity (across phases) in a large 
background region with no NMR signal. 
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improving the spatiotemporal resolution of respiratory motion with 4D- 
MRI. The technique defines a novel sampling function based on quasi- 
random projection-encoding and peripheral k-space view-sharing. The 
respiratory signal is determined from k-space data, obviating the need 
for an external surrogate marker. The average breathing curve is used to 
optimize spatial resolution and minimize temporal blurring by limiting 
the extent of data sharing in the Fourier domain. It is shown that the 
proposed technique can measure respiratory-induced motion with 
improved spatial resolution. These findings complement research in 
methods for improved respiratory imaging with novel sampling and 
reconstruction techniques [4,7,36]. Note that when compared to com-
pressed sensing methods that rely on sparsity for improvements in 
spatiotemporal resolution [7], in this study we explicitly define how the 
data is shared. This allows us to improve image quality using a fast 
reconstruction method, such as re-gridding. The addition of compressed 
sensing reconstruction will likely provide further enhancements in 
image quality. 

PEVS exploits the redundancy of the 3D radial sampling function 
towards the center of k-space. In this framework, the raw MR data for 
each respiratory phase is acquired using a limited number of k-space 
views by implementing a randomized sampling function. The amount of 
data sharing at the periphery of k-space can be guided by the breathing 
signal based on the hypothesis that the average signal is a measure of 
spatial changes across respiratory phases. Under such conditions, the 
requirements on temporal resolution may be relaxed at the benefit of 
improved spatial resolution and coverage. We validate this assumption 
and demonstrate the advantages of the method in developing a 4D-MRI 
protocol for respiratory motion imaging. Note that our work uses re- 
gridding as part of reconstruction and does not evaluate iterative or 
artificial-intelligence based reconstructions which may provide further 
improvements when combined with PEVS. Furthermore, RSGR-PEVS 
requires the breathing signal to be known for the entire acquisition (in 
order to compute the average breathing signal) and will currently work 
only for retrospective sorting. 

Spatial resolution improvements with RSGR-PEVS are location and 
respiratory-phase dependent. In regions with rapid temporal changes 
the effects of the reconstruction technique are not trivial, as shown in 
Supplementary Figure S3. This is a consequence of variable data sharing. 
Alternatively, equal sharing of the periphery of k-space would result in 
blurring, distortion, and truncation artifacts, as seen in Fig. 4 and Fig. 5. 
RSGR-PEVS leads to selective improvements in spatial resolution while 
balancing the effects of temporal blurring. The simulations in the digital 
phantom reveal that the choice of the sampling function may have a 
limited effect on image quality. When comparing the multidimensional 
golden means trajectory (radial sampling in all three dimensions) and 
the stack-of-stars trajectory (radial sampling in two dimensions and 
Cartesian sampling in the third one) the results are generally the same. 
The similarity in spatial resolution is primarily due to the use of isotropic 
voxels for simulations. While a typical stack-of-stars acquisition has a 
larger voxel size in the Cartesian dimension (to improve coverage), we 
chose isotropic voxels to avoid confounding factors from volume aver-
aging. The main difference between these trajectories arises for re-
constructions with equal sharing of the periphery of k-space, as can be 
seen when comparing the results for circularity and solidity for ESP- 
PEVS. Overall, circularity and solidity are lower for the stack-of-stars 
trajectory with ESP-PEVS which may be due to the effect of inter-stack 
temporal blurring, in addition to temporal blurring from equal sharing 
at the periphery of k-space. Note that these results may also be depen-
dent on spatial resolution as circularity and solidity are metrics that rely 
on thresholding. Finally, the degree of improvement in all metrics used 
to quantify image quality will depend on the sampling function, patient 
breathing signal, and sequence parameters. A specific implementation of 
the method may benefit from a similar analysis presented here. 

The use of k-space data as a surrogate for sorting projections into 
respective respiratory phases has been previously demonstrated for 
sampling functions other than view-sharing. RSGR-PEVS can be 

implemented with an average breathing signal estimated with any of the 
techniques already mentioned, such as from the displacement of an 
external device placed on the patient surface, from image-based respi-
ratory surrogate metrics, or from projection data in the Fourier domain 
[7,11,14–21]. However, the challenges in the physical design of the MRI 
scanner and limitations of the external respiratory surrogates [37] 
reinforce the need for marker-less and self-sorted methods, an example 
of which is presented in this work. 

In conclusion, this work demonstrates a 4D-MRI technique for 
improving the spatiotemporal resolution of respiratory motion imaging 
using a novel sampling function based on quasi-random projection- 
encoding and peripheral k-space view-sharing. The respiratory signal is 
used to optimize spatial resolution and minimize temporal blurring by 
limiting the extent of data sharing in the Fourier domain. 
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intrathoracic tumor mobility during whole breathing cycle by dynamic MRI. Int J 
Radiat Oncol Biol Phys 2004;59:952–9. 

[14] Ehman RL, McNamara MT, Pallack M, Hricak H, Higgins CB. Magnetic resonance 
imaging with respiratory gating: techniques and advantages. Am J Roentgenol 
1984;143:1175–82. 

[15] Kubo H, Hill B. Respiration gated radiotherapy treatment: a technical study. Phys 
Med Biol 1996;41:83. 

[16] Kubo HD, Len PM, Minohara S-i, Mostafavi H. Breathing-synchronized 
radiotherapy program at the University of California Davis Cancer Center. Med 
Phys 2000;27:346–53. 

[17] Riederer SJ, Tasciyan T, Farzaneh F, Lee JN, Wright RC, Herfkens RJ. MR 
fluoroscopy: Technical feasibility. Magn Reson Med 1988;8:1–15. 

[18] Cai J, Chang Z, Wang Z, Paul Segars W, Yin F-F. Four-dimensional magnetic 
resonance imaging (4D-MRI) using image-based respiratory surrogate: A feasibility 
study. Med Phys 2011;38:6384–94. 

[19] Vergalasova I, Cai J, Yin F-F. A novel technique for markerless, self-sorted 4D- 
CBCT: Feasibility study. Med Phys 2012;39:1442–51. 

[20] Larson AC, White RD, Laub G, McVeigh ER, Li D, Simonetti OP. Self-gated cardiac 
cine MRI. Magn Reson Med 2004;51:93–102. 

[21] Brau ACS, Brittain JH. Generalized self-navigated motion detection technique: 
Preliminary investigation in abdominal imaging. Magn Reson Med 2006;55: 
263–70. 

[22] Feng L. Golden-Angle Radial MRI: Basics, Advances, and Applications. J Magn 
Reson Imaging 2022;56:45–62. 

[23] Glover GH, Pauly JM. Projection Reconstruction Techniques for Reduction of 
Motion Effects in MRI. Magn Reson Med 1992;28:275–89. 

[24] Lauzon ML, Rutt BK. Effects of polar sampling in k-space. Magn Reson Med 1996; 
36:940–9. 

[25] Subashi E, Moding EJ, Cofer GP, MacFall JR, Kirsch DG, Qi Y, et al. A comparison 
of radial keyhole strategies for high spatial and temporal resolution 4D contrast- 
enhanced MRI in small animal tumor models. Med Phys 2013;40. 

[26] Korosec FR, Frayne R, Grist TM, Mistretta CA. Time-resolved contrast-enhanced 3D 
MR angiography. Magn Reson Med 1996;36:345–51. 

[27] Van Vaals JJ, Brummer ME, Thomas Dixon W, Tuithof HH, Engels H, Nelson RC, 
et al. “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn 
Reson Imaging 1993;3:671–5. 

[28] Chan RW, Ramsay EA, Cunningham CH, Plewes DB. Temporal stability of adaptive 
3D radial MRI using multidimensional golden means. Magn Reson Med 2009;61: 
354–63. 

[29] Peters DC, Korosec FR, Grist TM, Block WF, Holden JE, Vigen KK, et al. 
Undersampled projection reconstruction applied to MR angiography. Magn Reson 
Med 2000;43:91–101. 

[30] Segars WP, Mahesh M, Beck TJ, Frey EC, Tsui BMW. Realistic CT simulation using 
the 4D XCAT phantom. Med Phys 2008;35:3800–8. 

[31] Segars WP, Sturgeon G, Mendonca S, Grimes J, Tsui BMW. 4D XCAT phantom for 
multimodality imaging research. Med Phys 2010;37:4902–15. 

[32] Gudbjartsson H, Patz S. The rician distribution of noisy mri data. Magn Reson Med 
1995;34:910–4. 

[33] Beatty PJ, Nishimura DG, Pauly JM. Rapid gridding reconstruction with a minimal 
oversampling ratio. IEEE Trans Med Imaging 2005;24:799–808. 

[34] Johnson KO, Pipe JG. Convolution kernel design and efficient algorithm for 
sampling density correction. Magn Reson Med 2009;61:439–47. 

[35] Zwart NR, Johnson KO, Pipe JG. Efficient sample density estimation by combining 
gridding and an optimized kernel. Magn Reson Med 2012;67:701–10. 

[36] Han F, Zhou Z, Cao M, Yang Y, Sheng K, Hu P. Respiratory motion resolved, self- 
gated 4D-MRI using Rotating Cartesian K-space (ROCK). Med Phys 2017;44: 
1359–68. 

[37] Berbeco R, Seiko N, Hiroki S, George TYC, Steve BJ. Residual motion of lung 
tumours in gated radiotherapy with external respiratory surrogates. Phys Med Biol 
2005;50:3655. 

E. Subashi et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S2405-6316(22)00107-5/h0060
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0060
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0060
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0065
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0065
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0065
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0070
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0070
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0070
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0075
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0075
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0080
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0080
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0080
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0085
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0085
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0090
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0090
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0090
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0095
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0095
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0100
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0100
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0105
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0105
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0105
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0110
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0110
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0115
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0115
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0120
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0120
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0125
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0125
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0125
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0130
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0130
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0135
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0135
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0135
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0140
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0140
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0140
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0145
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0145
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0145
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0150
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0150
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0155
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0155
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0160
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0160
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0165
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0165
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0170
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0170
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0175
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0175
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0180
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0180
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0180
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0185
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0185
http://refhub.elsevier.com/S2405-6316(22)00107-5/h0185

	View-sharing for 4D magnetic resonance imaging with randomized projection-encoding enables improvements of respiratory moti ...
	1 Introduction
	2 Materials and methods
	2.1 Sampling and reconstruction technique
	2.2 XCAT digital phantom simulations
	2.3 Phantom experiments
	2.4 In vivo experiments
	2.5 Image quality assessment

	3 Results
	3.1 XCAT digital phantom simulations
	3.2 In vivo experiments

	4 Discussion
	Declaration of Competing Interest
	Acknowledgments
	Funding
	Appendix A Supplementary data
	References


