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Abstract: Plumbagin is a plant naphtoquinone exerting anti-cancer properties including 

apoptotic cell death induction and generation of reactive oxygen species (ROS). The aim of 

this study was to elucidate parameters explaining the differential leukemia cell sensitivity 

towards this compound. Among several leukemia cell lines, U937 monocytic leukemia 

cells appeared more sensitive to plumbagin treatment in terms of cytotoxicity and level of 

apoptotic cell death compared to more resistant Raji Burkitt lymphoma cells. Moreover, 

U937 cells exhibited a ten-fold higher ROS production compared to Raji. Neither differential 

incorporation, nor efflux of plumbagin was detected. Pre-treatment with thiol-containing 

antioxidants prevented ROS production and subsequent induction of cell death by 

apoptosis whereas non-thiol-containing antioxidants remained ineffective in both cellular 

models. We conclude that the anticancer potential of plumbagin is driven by pro-oxidant 

activities related to the cellular thiolstat. 
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1. Introduction 

Development of anti-cancer drug resistance and differential susceptibility of patients remain the 

main factors reducing the effectiveness of current chemotherapeutic treatments. Combinational 

therapies and the identification of novel potent and specific anti-cancer agents could contribute to 

improve existing therapies. However, it has become clear that a personalized approach could be the 

key to more effective treatments. In this view, correlative studies linking cancer patients’ genetic or 

epigenetic [1–3] background to treatment response will be crucial for both therapeutic outcome and 

elucidation of unknown molecular mechanisms to eventually achieve “targeted therapies”. 

Natural compounds, whether extracted from terrestrial or marine organisms, offer a large variability 

of molecular scaffolds with anti-cancer potential. Frequently, they derive from medicinal or dietary 

traditions that already provided health-promoting effects for centuries [4–7]. Amongst the best-known 

plant compounds, polyphenols like curcumin [8–11] or polysulfides [12–15], cardiac glycosides [16–18] 

were recently investigated and corresponding anticancer mechanisms were identified. Moreover 

interesting anti-cancer compounds from entophytic fungi were recently investigated [19,20]. 

Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) is a secondary metabolite produced by 

various plants (Plumbago zeylanica, Dionaea muscipula, Nepenthes gracilis, Drosera binata or 

Juglans regia) [19,21,22] and acts as a potent anti-cancer agent in various cellular cancer models, 

including breast, cervical, gastric, lung, melanoma, prostate cells [23–28]. A number of studies have 

shown that plumbagin acts on cancer cells as cell cycle inhibitor [24,28,29], cytotoxic agent [27,30–34], 

angiogenesis inhibitor [35,36], and as a modulator of various cancer-specific pathways (i.e., mediated 

by NF-κB [37,38] or mitogen activated protein kinases (MAPK) [28,29,39]. Mechanistic studies 

suggest that the anti-cancer effects of plumbagin depend mostly on its ubiquitous pro-oxidant activities. 

Accordingly, plumbagin elicits intracellular ROS in a number of cancer cell models; moreover, 

strategies preventing or scavenging ROS formation inhibit the biological effects ascribed [40–44]. 

Glutathione (GSH), the major cellular anti-oxidant, was identified as a direct target of plumbagin by its 

ability to bind GSH [22,45]. Indirectly, it has been suggested that plumbagin acts as an electrophile 

against GSH [46]. Finally, plumbagin was shown to inhibit glutathione-S-transferase (GST) [47,48]. 

Altogether, these findings suggest that plumbagin regulates the cellular redox state by modulation of 

GSH even though additional redox-dependent mechanisms could be directly or indirectly involved. 

The favorable differential effect of plumbagin on cancer vs. healthy cell models and the confirmation 

of its effectiveness in in vivo experimental models suggest plumbagin as a promising candidate for 

more advanced investigations. However, further elucidation of its mechanism of action is still required 

especially to identify the most susceptible cancer cell models. 

In this study, we analyzed the effect of plumbagin on the viability of a panel of human 

hematopoietic cancer cell models, including chronic and acute forms of hematological malignancies 

(U937, Raji, K562, Jurkat, HL-60) compared to peripheral blood mononuclear cells (PBMCs) from 
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healthy donors. We selected the U937 (most sensitive) and Raji (less sensitive) cells for a comparative 

mechanistic study. As PBMCs were not affected by the treatment, we also confirmed the excellent 

differential anti-cancer potential of plumbagin. Altogether, we observed that the pro-oxidant regulation 

is independent of a differential intake/uptake of the compound by the two cancer cell models. We 

rather demonstrate the differential ability of the compound to elicit ROS in U937 and Raji cells as well 

as to impact the intracellular GSH pool. We finally suggest a differential expression of redox-related 

factors as potential regulators of the observed differential susceptibility. 

2. Results and Discussion 

2.1. Plumbagin Reduces Leukemia Cell Viability 

Evaluation of the effect of plumbagin on the viability of different leukemia cell lines by trypan blue 

exclusion assay revealed that this compound presents a cytotoxic effect towards all cell lines tested 

(Table 1). U937 cells appear as the most sensitive cell line with an IC50 ranging from 0.82 ± 0.04 μM 

to 0.66 ± 0.02 μM observed between 24 and 72 h of treatment. Raji cells were less sensitive with an 

IC50 value of 5.06 ± 0.22 μM and 2.66 ± 0.03 μM respectively after 24 and 72 h treatment. Even at the 

highest concentration tested (10 μM), PBMCs were not affected by plumbagin treatment. For further 

mechanistic studies of the effects of plumbagin, we selected U937 and Raji cells to perform a comparative 

analysis using IC50 concentrations at 24 h, respectively, 1 µM for U937 and 5 µM for Raji cells. 

Table 1. Cytotoxic effect of plumbagin on different human leukemia cell lines compared to 

PBMCs from healthy donors. IC50 values were determined by three independent trypan-blue 

assays after 24, 48 and 72 h of treatment. The data are the mean of at least three 

independent experiments ± SD. N.C. stands for “not cytotoxic” (viability > 80%) for a 

concentration up to 10 μM. 

Cell Lines 
IC50 (µM) 

24 h 48 h 72 h 

HL-60 1.38 ± 0.37 0.92 ± 0.16 0.90 ± 0.13 
Jurkat 2.20 ± 1.07 0.98 ± 0.15 0.86 ± 0.16 
K562 1.07 ± 0.33 0.90 ± 0.32 0.89 ± 0.30 
Raji 5.06 ± 0.22 3.49 ± 0.12 2.66 ± 0.03 
U937 0.82 ± 0.04 0.68 ± 0.01 0.66 ± 0.02 

PBMC N.C. N.C.  

2.2. Plumbagin Induces Apoptotic Cell Death 

Considering the elevated levels of cytotoxicity, we analyzed the type of cell death triggered by 

plumbagin in U937 and Raji cells by fluorescence microscopy after staining with Hoechst and 

propidium iodide (PI). 24 h of treatment at a concentration of 1 μM (U937) and 5 μM (Raji) induced 

the appearance of nuclear morphological alterations compatible with apoptosis in both cell lines 

(Figure 1A,B). This finding was further confirmed by the analysis of the exposure of phosphatidylserine 

by Annexin V/PI assay (Figure 1C,D). Results pointed out that both cell lines died by an apoptotic 

process in a dose-dependent manner. These results were confirmed by Western-blot analysis that 
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showed caspase cleavage and decrease Mcl-1 and Bcl-2 anti-apoptotic protein expression levels, starting 

from the respective IC50 concentration of plumbagin in U937 and Raji cells (Figure 2A). Pre-treatment 

with the pan-caspase activity inhibitor (Z-VAD-FMK) prevented the 17–10 kDa caspase-3 fragment 

formation. This result confirms that plumbagin induces cell death by a caspase-dependent apoptotic 

process (Figure 2B). These results have been confirmed by fluorescence microscopy analysis after 

Hoechst staining (data not shown). 

Figure 1. Cell death was assessed in U937 and Raji cells treated with plumbagin for 24 h 

at concentrations corresponding to their respective IC50 values. (A,B) Double staining with 

Hoechst and propidium iodide (PI) (the images shown are representative for at least three 

independent experiments); scale at the lower right corner = 100 μm. Arrows point to cells 

showing apoptotic features after plumbagin treatment; (C,D) Annexin V/PI staining and 

flow cytometry analysis (one of three experiments shown). Cell population corresponding 

to early and late (in secondary necrosis) apoptotic cells are respectively in the lower and 

upper right quadrants. All results presented are the mean ± SD of at least three independent 

experiments. The values in both tables correspond to percentage of apoptotic cells of at 

least three independent experiments. * p < 0.05, ** p < 0.01 and *** p < 0.001 compared 

to non-treated cells, respectively. 
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Figure 1. Cont. 

 

2.3. Plumbagin Induces Different Levels of Intracellular ROS in U937 vs. Raji Cells 

Published data demonstrated the capacity of plumbagin to elicit ROS in cancer cells [26,27,49]. 

Analysis of intracellular ROS production in U937 and Raji cells exposed to plumbagin was performed 

by flow cytometry analysis after staining with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). 

As shown in Figure 3A,B, plumbagin induces ROS production in both cell lines tested. U937 cells 

show a very robust increase in intracellular ROS already after 15 min treatment at 1 μM plumbagin. 

Raji cells, in contrast, show a much milder intracellular ROS increase compared to the positive control 

hydrogen peroxide (H2O2, 50 μM). The level of ROS production induced by plumbagin is ten-fold 

higher in U937 compared to Raji cells. The incubation of Raji cells with a lower, sub-apoptogenic, 

concentration of plumbagin (1 μM) showed a comparable level of ROS production. The flow cytometry 

analysis did not reveal any cell subpopulations differently responsive to ROS production, therefore 

indicating a homogenous ability of cells to increase ROS production upon treatment. Moreover, no 

significant changes in ROS production were observed for longer incubation times with both cell lines. 

These results suggest that the differential plumbagin-induced ROS production is an early event. 
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Figure 2. Effect of plumbagin on pro- and anti-apoptotic cell markers. (A) Caspase 

activation and expression of anti-apoptotic Mcl-1 and Bcl-2 markers were analyzed by 

Western-Blot after 16 h of treatment by plumbagin; (B) Pre-treatment with Z-VAD-FMK 

(50 μM), a pan-caspase activity inhibitor. Western Blot analysis (left panel); fluorescence 

microscope observations upon double staining with Hoechst. Arrows point to cells showing 

apoptotic features after plumbagin treatment (right panel). C: control, Z: Z-VAD-FMK,  

P: plumbagin (1 μM), Z/P: cells pre-treated with Z-VAD-FMK and then treated with 

plumbagin (1 μM). U937 cells treated with VP16 were used as apoptosis positive control. 

Results are representative of at least three independent experiments. 
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Figure 3. Time-course analysis of ROS measured in U937 (A) and Raji (B) cells upon 

treatment with plumbagin was assessed with 2',7'-dichlorodihydrofluorescein diacetate 

(H2DCFDA). Results are the mean ± SD of at least three independent experiments.  

* p < 0.05, ** p < 0.01 and *** p < 0.001 compared to non-treated cells, respectively. 
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2.4. Differential ROS Generation Is not a Consequence of a Different Uptake/Efflux of Plumbagin 

The observed ROS generation could be the consequence of a differential internalization of 

plumbagin. As plumbagin is a fluorescent pigment [45], we then investigated differential internalization. 

Analysis of the intracellular fluorescence of plumbagin by flow cytometry (see “Experimental” section) 

revealed that this compound accumulates similarly in U937 and Raji cell lines as a function of 

incubation time (Figure 4A). Besides, in the drug-efflux test, no decrease of the plumbagin-generated 

intracellular fluorescence was observed in both cell lines up to 90 min of incubation in plumbagin-free 

culture medium (recovery). Fluorescence maintained very high levels up to 4 h (not shown) without 

any difference depending on the cell models. Untreated cells did not show any modulation of 

fluorescence over the time as expected (data not shown). This aspect may reveal specific aspects 

related to the intracellular metabolism of the compound and may deserve future investigations, beyond 

the scope of this study. Altogether, we can exclude a differential internalization or efflux of the 

compound as the responsible factor for lower ROS levels in Raji. 

Figure 4. (A) Plumbagin uptake assay was performed after treatment of cells at 5 μM. 

Samples were collected and analyzed by flow cytometry without additional staining;  

(B) Plumbagin efflux assay was performed after 30 min of incubation with the same 

concentration of plumbagin used for the uptake assay, followed by recovery in plumbagin-free 

medium (see “Experimental” section) [50]. U937 and Raji cells were collected at indicated 

times and their auto-fluorescence was analyzed by flow cytometry. Untreated cells did not 

show any modulation of fluorescence over the time as expected (data not shown). Results 

are the mean ± SD of at least three independent experiments. 
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Figure 4. Cont. 

 

2.5. Thiol-Containing Antioxidants Prevent Plumbagin-Induced Apoptosis 

As ROS are known to play a key role in apoptosis induction [51], we investigated the effect of 

antioxidants on ROS generation and apoptotic cell death induction. Using BSO, a GSH depletor, and 

H2O2 as positive controls for ROS generation, our analysis showed that the pre-treatment with DTT [52], 

NAC [12,15] and Trolox [53] buffers plumbagin-dependent ROS production whereas the metal chelator 

Tiron [53,54], a hydroxyl radical and superoxide scavenger, remained ineffective as antioxidant agent 

in both models (Figure 5A,C). Then, we estimated the percentage of apoptosis by analyzing the loss of 

mitochondrial membrane potential (see “Experimental” section), a marker of the mitochondrial apoptotic 

pathway [12,50]. Only pre-treatment with DTT or NAC, two thiol-containing antioxidants, prevented 

cell death, while non-thiol antioxidants, Tiron and Trolox, did not affect apoptosis, although Trolox 

was able to buffer ROS formation (Figure 5B,D). Cancer cells typically develop alterations of their 

oxidative status, by showing altered expression patterns of enzymes whose function might depend on 

thiol modulation [40,42,43,55–57]. Our findings indicate an ability of plumbagin to eventually lead to 

the modulation of important intracellular functions especially those dominated by thiol modulation, 

which include also enzymes controlling and/or modulating the cellular redox status in cancer cells.  
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Figure 5. (A) ROS measurement in U937 after 15 min of treatment with plumbagin using 

H2DCFDA. Cells were pre-treated with BSO and different antioxidants (DTT, NAC, Tiron 

and Trolox) prior to ROS analysis by flow cytometry; (B) Mitochondrial membrane 

potential was determined in U937 cells 24 h after plumbagin treatment; (C) ROS measurement 

in Raji cells was performed under the same conditions as used for U937 cells (see point (A)); 

(D) Mitochondrial membrane potential was determined in Raji cells 24 h after plumbagin 

treatment. Results are the mean ± SD of at least three independent experiments. For the 

statistical analysis, results were considered as statistically significant for p values  

* p < 0.05, ** p < 0.01 and *** p < 0.001 when compared to their respective control 

(black bars for the ROS measurement analysis), and were considered as statistically 

significant for p values §§ p <0.01 and §§§ p <0.001 when compared to cells treated only 

with the vehicle DMSO. 
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Figure 5. Cont. 
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2.6. Plumbagin Decreases the Intracellular GSH Level 

Next, we investigated the impact of plumbagin on GSH as it has been shown that GSH depletion is 

a common feature in apoptotic cell death [58]. To elucidate the mechanisms explaining the differential 

sensitivity, we measured the level of total GSH, which is 30% higher in Raji compared to sensitive 

U937 cells (Figure 6A). These differential GSH levels could explain the plumbagin-induced ROS 

production observed in the two selected models (Figures 3 and 5). Then, we analyzed the GSH/GSSG 

ratio after stimulation with plumbagin using BSO- and NAC-treated cells as controls. Plumbagin 

decreases the GSH/GSSG ratio in both cell lines in a dose-dependent manner. NAC treatment per se 

did not significantly alter the GSH/GSSG ratio observed in control cells. 

Figure 6. (A) Total glutathione levels (GSH + GSSG) were determined in U937 and Raji 

cells using a GSH/GSSG-Glo Assay (Promega). Cells pre-treated during 24 h with BSO  

(1 mM) were used as control; (B) GSH/GSSG ratios of U937 and Raji cells were measured 

after 1 h of treatment with plumbagin. Cells pre-treated during 24 h with BSO (1 mM) or 

NAC (10 mM) were used as control. Results are the mean ± SD of at least three 

independent experiments. * p < 0.05, ** p < 0.01 and *** p < 0.001 compared to  

non-treated cells, respectively. 

 

 

0 

20000 

40000 

60000 

80000 

100000 

120000 

Control BSO

R
el

at
iv

e 
lu

ci
fe

ra
se

 U
n

it
s 

U937 

Raji 

A 

*** *** 

0 

10 

20 

30 

40 

50 

60 

Control BSO 1 µM 5 µM Control  1 µM  5 µM 

R
at

io
 G

S
H

/G
S

SG
 

U937 

Raji 

Plumbagin NAC 

B 

** 

* 

* 

* 

* 



Molecules 2014, 19 10023 

 

 

In Raji cells, a 40% decrease is observed at 5 μM compared to a decrease of 60% in U937  

cells (Figure 6B). The analysis of reduced GSH by O-phthalaldehyde (OPA) assay revealed that a dose 

of 5 μM of plumbagin is requested to decrease the GSH content by 25% in Raji cells whereas 1 μM is 

sufficient to reach the same level in U937 cells. 24 h pre-treatment with NAC completely abrogates the 

previously described depletion of GSH by plumbagin (Table 2). 

Table 2. Intracellular GSH level was determined using OPA probe after 1 h of treatment 

with plumbagin. Cells pre-treated during 24 h with NAC (10 mM) were used as control. 

Results are the mean ± SD of at least three independent experiments (values are indicated 

as a ratio of fluorescence values between treated and control cells). * p < 0.05, and  

** p < 0.01 compared to non-treated cells, respectively. 

Treatment Cell Lines Control H2O2 (50 µM) Plumbagin (1 µM) Plumbagin (5 µM) 

Control (DMSO) 
U937 100.00 88.38 ± 17.87 67.34 ± 9.21 (*) 66.20 ± 13.26 (*) 
Raji 100.00 94.10 ± 13.88 88.49 ± 16.93 80.38 ± 5.59 (*) 

NAC (10 mM) 
U937 100.00 89.99 ± 6.42 92.59 ± 17.54 85.71 ± 3.86 (**) 
Raji 100.00 111.36 ± 11.02 110.76 ± 8.74 90.85 ± 14.80 

3. Experimental 

3.1. Reagents 

Plumbagin (Sigma-Aldrich, Bornem, Belgium) was dissolved in dimethyl sulfoxide (DMSO) 

(Sigma-Aldrich) at a concentration of 100 mM. Subsequent dilutions were made in cell culture 

medium. Buthionine sulfoximine (BSO), N-acetyl-L-cysteine (NAC), H2O2, propidium iodide (PI) and 

Trolox were purchased from Sigma. Z-VAD-FMK (Calbiochem, San Diego, CA, USA). Tiron was 

purchased from Alfa Aesar (Karlsruhe, Germany) and dithiothreitol (DTT) from Roche (Prophac, 

Luxembourg). Dichlorofluorescein diacetate (H2DCFDA), and O-phthalaldehyde (OPA) probes were 

purchased by Life technologies Invitrogen (ThermoFisher, Alost, Belgium). 

3.2. Cell Culture 

HL-60 (human promyelocytic leukemia), Jurkat (T-cell leukemia), K562 (human chronic 

myelogenous leukemia), Raji (Burkitt lymphoma) and U937 (histiocytic lymphoma) cells were cultured 

in RPMI 1640 medium (Lonza, Verviers, Belgium) supplemented with 10% (v/v) fetal calf serum 

(FCS) (Lonza) and 1% (v/v) antibiotic-antimycotic (BioWhittaker, Verviers, Belgium) at 37 °C and 

5% of CO2, humidified atmosphere. Exponentially growing cells were used for plumbagin treatment. 

Cells treated with DMSO (1 ‰) were used as control. For specific experiments, Raji and U937 cells 

were pre-treated with NAC (10 mM) or BSO (1 mM) for 24 h, DTT (100 μM) for 2 h, or with Tiron 

(10 mM) or Trolox (1 mM) for 1h before plumbagin treatment. Control cells were not pre-treated.  

Z-VAD-FMK (50 μM, 1 h) 

Healthy blood samples were kindly donated as buffy coats by the Red Cross (Luxembourg, Grand 

Duchy of Luxembourg). By applying diluted (1/3) blood onto a Ficoll layer (GE Healthcare, Diegem, 

Belgium) followed by centrifugation (500 g, 30 min), mononuclear cells were isolated and collected. 
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The isolated peripheral blood mononuclear cells (PBMCs) were cultured at 37 °C and 5% CO2 for 24 h 

before use. 

3.3. Cell Viability Assay 

Cancer cells (2 × 105 cells/mL) and PBMCs (2 × 106 cells/mL) were incubated with different 

concentrations of plumbagin during 24, 48 or 72 h. Cell viability was assessed by trypan blue 

exclusion test. 

3.4. Fluorescence Microscopy 

After plumbagin treatment, cells were stained with Hoechst 33342 (Calbiochem) and propidium 

iodide (Sigma–Aldrich) during 20 min at 37 °C. Labeled cells were analyzed with an inverted Cell M 

Olympus Microscope (Olympus, Aartselaar, Belgium) and Cell M software. 

3.5. Apoptosis Assays 

Apoptosis was assessed and estimated by three different assays: (1) analysis of nuclear 

fragmentation (Hoechst staining and fluorescence microscope observation, performed as previously 

described [59]; (2) evaluation of phosphatidylserine exposure and (3) evaluation of mitochondrial 

membrane potential. Evaluation of phosphatidylserine exposure was performed with the Annexin V: 

FITC Apoptosis Detection Kit I (BD Pharmingen, Erembodegem, Belgium) according to the 

manufacturer’s instructions. Briefly, after 24 h of treatment with different concentrations of plumbagin,  

1 × 106 cells were washed with cold phosphate buffered saline (PBS), resuspended in binding buffer 

and stained with Annexin V-FITC and propidium iodide for 15 min. To evaluate the reduction of 

mitochondrial membrane potential, plumbagin-treated cells were stained with 50 nM MitoTracker Red 

CMXRos (Invitrogen) during 20 min at 37 °C according to the manufacturer’s protocol. For both 

approaches, stained samples were analyzed by flow cytometry (FACSCalibur, BD Biosciences,  

San Jose, CA, USA). Data were recorded using CellQuest and further analyzed by FlowJo software 

version 8.8.7 (Tree Star Inc, Ashland, OR, USA) available online: http://www.flowjo.com. 

3.6. Western-Blot 

Total proteins extracts were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS–PAGE, 12%) and transferred onto nitrocellulose membranes (Hybond™-P membrane, GE 

Healthcare). Membranes were pre-hybridized with 5% non-fat milk in PBS 1X containing 0.1% (v/v) 

Tween 20 (PBS-T) overnight at 4 °C or 1 h at room temperature. Membranes hybridizations with 

primary antibodies directed against caspase-3, caspase-7, caspase-8, caspase-9 (Cell Signaling, Bioké, 

Leiden, The Netherlands), Bcl-2 (Calbiochem) and β-actin (Sigma) used as loading control, were 

carried out in PBS-T containing 5% milk or 5% bovine serum albumin (BSA) for 1 h at room temperature 

or overnight at 4 °C, according to the providers’ protocols. Etoposide-treated U937 cells (VP16,  

100 μM, 4 h) were used as apoptosis positive control and equal loading of samples was controlled 

using β-actin. After incubation with primary antibodies, membranes were washed and probed with the 

corresponding secondary (horseradish peroxidase conjugated) antibodies following manufacturers’ 
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instructions for 1 h at room temperature. Proteins of interest were visualized with ECL Plus Western 

Blotting Detection Reagents (GE Healthcare) using the ImageQuant LAS 4000 Mini (GE Healthcare). 

3.7. Evaluation of ROS Production 

Raji and U937 cells were treated with plumbagin during 15, 30, 45, 60 or 120 min. 20 min before 

the end of the treatment, cells were stained at 37 °C with 10 μM of 2',7'-dichlorodihydrofluorescein 

diacetate (H2DCFDA) (LifeTechnologies, Gent, Belgium) and analyzed by flow cytometry (FACSCalibur). 

In the presence of ROS, the non fluorescent cell permeant DCFDA is converted in highly fluorescent 

2',7'-dichlorofluorescein (DCF). 50 μM of H2O2 for 15 or 30 min were used as an inducer of ROS 

production (positive control). Relative intracellular ROS levels were depicted as mean fluorescence 

intensity (MFI). 

3.8. Plumbagin Intracellular Uptake and Efflux 

Exponentially growing Raji and U937 cells were exposed to 5 μM plumbagin. Plumbagin uptake 

was assessed by measuring plumbagin intracellular fluorescence from compound-loaded cells after 

different incubation times (15, 30, 45, 60, 90 and 120 min). At the end of these specific incubation 

times, cells were collected, centrifuged and re-suspended in fresh medium for further analysis. Efflux 

of plumbagin was evaluated in the following way, as previously described for doxorubicin [50].  

After 30 min of incubation with plumbagin (5 μM), plumbagin-containing medium was removed and 

cells were re-suspended in fresh medium for recovery [50]. Fluorescence was evaluated immediately 

(T = 0 min) and after 15, 30, 60, and 90 min. Plumbagin fluorescence was evaluated at the indicated 

times by flow cytometry using a FACSCalibur, tuned at 488 nm, at standard pass filters; FL2  

(FL2 = 585/42 nm). Data were recorded using the CellQuest software and further analyzed with FlowJo. 

3.9. Analysis of GSH Content 

Reduced (GSH) and oxidized (GSSG) glutathione measurements were performed using the 

GSH/GSSG-Glo™ Assay kit (Promega, Leiden, The Netherlands). Briefly, after treatment with 

plumbagin, 5 × 105 cells are collected, centrifuged and resuspended in 1 mL of pre-warmed Hank’s 

Buffered Salt Solution (HBSS). Cells treated with BSO served as a positive control of depletion of 

GSH content [60]. A volume of 25 μL of the cell suspension is transferred into wells of a 96-well 

plate. An equivalent volume of appropriate lysis buffer is then added. GSH/GSSG-Glo assay is then 

performed following manufacturer’s instructions. The analysis of cellular GSH content was carried out 

by staining of the cells with o-phtalaldehyde (OPA), a permanent fluorescent probe. OPA is a direct 

tool that can interact with small thiol groups (e.g., GSH) in order to form adducts with them. Briefly, 

Raji and U937 cells were treated with 1 or 5 μM of plumbagin for 1 h. At the end of the incubation 

time, cells were washed with PBS and incubated with 50 μM OPA for 20 min. OPA fluorescence was 

evaluated by spectrofluorimetry (SpectraMax Gemini EM, Molecular Devices, Sunnyvale, CA, USA). 
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3.10. Statistical Analysis 

Results from at least three independent experiments were analyzed for statistical significant 

differences using the Student’s t-test. They are expressed as the mean ± SD. p-values <0.05 (*),  

<0.01 (**) and <0.001 (***) were considered as statistically significant. 

4. Conclusions 

Plumbagin is a natural compound that exerts differential cytotoxicity towards leukemia cancer cells 

resulting from its modulatory activities on the cellular redox state, however the actual cellular targets 

of plumbagin in the redox control remain still under debate. ROS increase is commonly detected upon 

plumbagin treatment. Recently, several studies have pointed at the specific ability of plumbagin to 

modulate the intracellular thiols. These findings would imply the modulation of the intracellular 

thiolstat as relevant to trigger the anti-cancer effects of plumbagin, rather then the generation of ROS, 

which therefore would appear as a merely additional side effect, in the fact not essential for its 

anticancer activity. Our data seem to support this latter model (Table 3), as apoptosis induced by 

plumbagin in our sensitive (U937) and less sensitive (Raji) hematopoietic cancer cell models can be 

prevented only by antioxidants containing thiol species.  

Table 3. Summary of the results. A horizontal arrow (➙) indicates that the antioxidant has 

no effect on the parameter observed compared to the control. A downward arrow (➘) 

indicates a decrease of the parameter observed compared to the control. 

Cell Line U937 Raji 

Plumbagin model More sensitive (IC50 24 h = 1 μM) Less sensitive (IC50 24 h = 5 μM)
Cell death Apoptosis 

Plumbagin uptake Similar incorporation (up to 120 min) 
Plumbagin efflux No efflux, fluorescence remains constant 
ROS production Elevated Moderate 
GSH modulation GSH modulation depending on their respective IC50 

Antioxidant classification Thiol group Non-thiol group Thiol group Non-thiol group 
Antioxidant DTT NAC Tiron Trolox DTT NAC Tiron Trolox 

ROS production ➘ ➘➘ ➙ ➘ ➙ ➙ ➙ ➙ 
Apoptosis ➘ ➘ ➙ ➙ ➘ ➘ ➙ ➙ 

There is evidence that plumbagin may directly interact with GSH, by likely a nucleophilic addition, 

which in turn may contribute to GSH depletion [22,45]. The small intracellular thiol GSH is 

paradigmatic for a huge group of additional and more complex intracellular thiols potentially 

targetable by plumbagin, which also includes many structural proteins and enzymes. Tubulin is among 

the proteins/enzymes known to be bound by plumbagin [61]. Remarkably, thiol modulation is 

particularly relevant also for the multi-step activation of the pro-apoptotic Bcl-2 family members [62–64]. 

Strong evidence suggests the modulation of specific Bax (Bcl-2-associated X protein) cysteine residues 

is critical for the acquisition of its suitable conformation, oligomerization and translocation/insertion into 

the mitochondrial membrane [65]. It would be relevant in the future to investigate any potential ability 

of plumbagin to directly interact and thereby modulate i.e., Bax activation. Such interactions can 
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further contribute to protein derivatization [45]. Glutathione-S-transferases, which control detoxification 

through the consumption of glutathione (GSH), may also be inactivated by plumbagin. This 

modulation is paralleled by ROS formation [66]. A previous analysis of GSTP1 level expression, in 

our lab revealed that the less plumbagin-sensitive Raji cells do not expressed GSTP1 proteins in 

contrast to the most sensitive U937 cell model here investigated [67,68]. These differential alterations 

may potentially provide additional hints to may identify the reason of such differences in ROS 

generation. Taken all together, our and other findings indicate the ability of plumbagin to may 

eventually lead to the modulation of important intracellular functions dominated by thiol modulation. 
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