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Abstract

Value-based decision-making is of central interest in cognitive neuroscience and psychol-

ogy, as well as in the context of neuropsychiatric disorders characterised by decision-mak-

ing impairments. Studies examining (neuro-)computational mechanisms underlying choice

behaviour typically focus on participants’ decisions. However, there is increasing evidence

that option valuation might also be reflected in motor response vigour and eye movements,

implicit measures of subjective utility. To examine motor response vigour and visual fixation

correlates of option valuation in intertemporal choice, we set up a task where the participants

selected an option by pressing a grip force transducer, simultaneously tracking fixation shifts

between options. As outlined in our preregistration (https://osf.io/k6jct), we used hierarchical

Bayesian parameter estimation to model the choices assuming hyperbolic discounting,

compared variants of the softmax and drift diffusion model, and assessed the relationship

between response vigour and the estimated model parameters. The behavioural data were

best explained by a drift diffusion model specifying a non-linear scaling of the drift rate by

the subjective value differences. Replicating previous findings, we found a magnitude effect

for temporal discounting, such that higher rewards were discounted less. This magnitude

effect was further reflected in motor response vigour, such that stronger forces were exerted

in the high vs. the low magnitude condition. Bayesian hierarchical linear regression further

revealed higher grip forces, faster response times and a lower number of fixation shifts for

trials with higher subjective value differences. An exploratory analysis revealed that subjec-

tive value sums across options showed an even more pronounced association with trial-

wise grip force amplitudes. Our data suggest that subjective utility or implicit valuation is

reflected in motor response vigour and visual fixation patterns during intertemporal choice.

Taking into account response vigour might thus provide deeper insight into decision-making,

reward valuation and maladaptive changes in these processes, e.g. in the context of neuro-

psychiatric disorders.
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Author summary

Value-based decision-making is a process of particular interest in cognitive neuroscience.

Impairments in decision-making are hallmarks of several neuropsychiatric disorders, and

specifically temporal discounting, i.e. the devaluation of future rewards, is discussed as a

potential marker for psychiatric disorders. Subjective utility during value-based decision-

making is commonly inferred on the basis of participants’ choices only. Here were investi-

gated if motor response vigour and visual fixation patterns may serve as additional and

implicit measures of subjective utility during intertemporal choice. We demonstrate that

motor response vigour and visual fixation patterns are related to the reward magnitudes

and subjective value differences between options. Further, we show that the choice and

response time data are well accounted for by a drift diffusion model including a non-lin-

ear scaling of the drift rate by the subjective option value differences. Our results suggest

that measures of motor response vigour and visual fixation patterns may provide further

insight on valuation during decision-making when combined with choice and response

time data.

Introduction

Motivation entails the willingness to perform effortful actions in order to obtain rewards. Indi-

viduals normally adapt the level of effort expended to the expected utility of a reward. An ade-

quate adjustment of effort to expected utility is crucial to ensure reward receipt, whilst

avoiding unnecessary energy expenditure. Whether a reward is worth a given effort depends

on its expected (subjective) utilty. The expected utility of a reward does not equal its utility in

an absolute sense, but is contingent upon both intraindividual and external factors. For

instance, rewards that are temporally more distant are typically devaluated, resulting in a pref-

erence for smaller, but sooner rewards, over larger, but later rewards, a process known as tem-

poral discounting [1, 2].

The degree of discounting delayed rewards has been linked to a range of harmful behav-

iours and psychiatric conditions, including impulsivity, substance abuse and addiction (for a

review, see [3]). For instance, individuals suffering from substance use disorders appear to be

biased towards choosing immediate compared to delayed, but larger, rewards [4, 5].

Key brain circuits involved in value-based decision-making include the medial prefrontal

cortex and striatum. Here, brain activity correlates with subjective value in a variety of tasks,

such as valuation of goods and intertemporal choice [6–8]. The devaluation of rewards by both

cognitive and physical effort appears to be associated with BOLD activation in mostly overlap-

ping neural structures [9].

It is well established that midbrain dopaminergic neurons play a central role in decision-

making and reward processing [10, 11]. Direct evidence for the involvement of dopamine in

effort-based decision-making comes from studies in patients with Parkinson’s disease (PD)

and from pharmacological studies manipulating dopamine transmission. In patients with PD,

effort-based decision-making appears to be disrupted—they have been found to exert less

force for rewards compared to healthy controls, and to exert less force when being off com-

pared to on their dopaminergic medication [12, 13]. In turn, pharmacological enhancement of

dopamine transmission via levodopa in healthy participants increased the force levels exerted

to obtain high vs. low rewards. Following debriefing, none of the participants reported to

excert higher forces to obtain high rewards [14], suggesting that the behaviour reflects an

implicit motivational process [14].
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Pessiglione and colleagues [15] found that participants exert more force to obtain higher

rewards even in cases where the rewards have only been presented subliminally. Also, across

different social contexts (collaborative and competitive), force production was strongly related

to subjective utility, and increased with absolute monetary value [16]. Further, subjective util-

ity in value-based decision-making is reflected in eye movement vigour [17]. For instance, as

participants approach their decision, eye movement vigour (i.e. peak velocity of a saccade as a

function of amplitude) becomes greater for the preferred reward option, and the difference in

eye movement vigour is closely linked to the difference in assigned subjective values of the

options [18].

While value-based decision-making is a complex process requiring information integra-

tion, value computation and comparison, in most experimental settings, the process of evaluat-

ing a reward’s utility is often inferred from the participants’ choices only. However, from the

above findings it appears that measures of response vigour may provide additional insights

into motivation and value-based decision-making rather than measures of choice behaviour

alone. In the present study, we therefore investigated if measures of response vigour, specifi-

cally handgrip force applied during choice selection, and visual fixation patterns may serve as

implicit measure of outcome utility and decision conflict during intertemporal choice. There

are well-established models to describe subjective valuation during intertemporal choice,

allowing for a well-grounded modelling of the relationship between response vigour and sub-

jective utility [19–21].

In contrast to the incentive force task used by Pessiglione and colleagues [15, 16], where the

force applied was directly related to the payout and visually fed back to the participants, we

captured implicit motivational processes by keeping the amount of force produced hidden

from the participants and unrelated to the payout. Besides being instrumental in obtaining a

reward, the allocation of effort may also be a correlate of the underlying evaluation process.

We further included an experimental manipulation known to substantially affect reward valu-

ation during temporal discounting, the magnitude effect [22, 23]. This effect describes the

reduction in discount rates that occurs during intertemporal choice for increasing reward

amounts, and we explored whether this effect is also reflected in the handgrip response.

Models of value-based decision-making, including temporal discounting, typically imple-

ment action selection using the softmax function [24]. We extend this approach by jointly

modelling the choices and response times (RTs) with the drift diffusion model (DDM) [25], a

form of sequential sampling model for two-alternative forced choice tasks. The drift diffusion

model assumes that choices are driven by a noisy accumulation process, which terminates as

soon as the level of accumulated evidence has reached one of two response boundaries. The

model’s strength lies in the incorporation of both choices and RTs in the model estimation. It

has proven to be a useful model in explaining choice behaviour and RTs during value-based

decision-making in our and others’ prior work [19, 26–29].

We analysed the relationship between the subjective value differences as derived from the

estimated drift diffusion model parameters and the force applied and fixation shifts during

response selection. Further, we assessed the relationship between decision conflict, motor

response vigour and visual fixation patterns. As outlined in the preregistration of our study

(https://osf.io/k6jct), we tested the following hypotheses:

(i). Delay influences reward evaluation: Participants show a tendency to devaluate rewards

that are temporally distant (temporal discounting).

(ii). Differences in subjective utility modulate response times and grip force: Faster response

times and stronger effort (handgrip force) in trials with high subjective value differences.
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(iii). Decision conflict is reflected in motor response vigour and visual fixation patterns: Lon-

ger deliberation (response time), less vigour (grip force) and more frequent fixation

shifts between the options during high-conflict decisions (choice options with similar

subjective value).

(iv). Higher rewards are discounted less and elicit more effort: Lower discount rates, faster

response times, and greater motor response vigour (grip force) for larger rewards

(between-conditions magnitude effect).

Materials and methods

Ethics statement

The study was approved by the local institutional review board (Ethics Committee of the Med-

ical Faculty of the University of Cologne) and all participants provided informed written

consent.

Sample

Based on the effect sizes of previous studies reporting a magnitude effect for temporal dis-

counting and handgrip force, respectively [15, 22, 23], a power analysis yielded a sample size of

N = 20 (effect size Cohen’s dz = 1.1698 and dz = -0.7481, respectively, α error probability = .05,

power = .95, one-tailed paired t-test). We doubled the sample size and tested 42 participants in

total. As two participants had to be excluded due to technical issues, the final sample consisted

of N = 40 participants (30 women, 34 right-handed, 39 with German Abitur, 1 with German

Mittlere Reife or GCSE), aged 18 to 39 (M = 23.95, SD = 4.90).

The participants were recruited through university bulletins, mailing lists and by word-of-

mouth recommendation. Eligibility criteria included normal or corrected-to-normal vision

and German as first language (or profound German language skills). Participants with strongly

impaired vision, strabismus and psychiatric disorders were excluded.

Task

The study was implemented as one-group, repeated-measures within-subject design, including

two conditions. The participants performed 192 trials of an intertemporal choice task, whereby

they had to choose between smaller-but-sooner (SS) and larger-but-later (LL) rewards. On one

half of the trials, the SS reward was lower (10 €, low condition), and on the other half the SS

reward was higher (20 €, high condition). The SS reward was always available immediately,

while the LL reward consisted of combinations of sixteen ratios of the SS reward value [1.03

1.05 1.10 1.15 1.20 1.25 1.35 1.45 1.50 1.70 1.90 2.20 2.50 2.90 3.30 3.80] and six delay periods

in days [1 7 13 31 58 122]. The order of the trials and the assignment of the options to the left

and right side of the screen were presented in randomised order. The participants were finan-

cially reimbursed for participation and additionally received the payout from one randomly

selected trial (restricted to maximum 40 €).

Experimental setup

The measurements took place at the Psychology Department of the University of Cologne.

During testing, the participants were seated in a dimly lit, electrically and acoustically shielded

room, with their head placed in a chinrest. Prior to the experiment, they were instructed to

press the handgrip with maximal force three times in succession with their dominant hand.
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The procedure was disguised as calibration procedure. Following that, the participants were

instructed that the level of force exerted is irrelevant to the task structure.

After presenting both options, one of the two options could be preselected through visual

fixation. For this purpose, we used an eyetracking system (SensoMotoric Instruments, Model:

RED 500, sampling rate: 500 Hz) to track the fixation patterns and highlight the currently

fixated reward option in real-time. For highlighting the fixated option, the corresponding

screen areas were defined as follows: Left area<¼ 1

10
screen pixels of x-coordinate x 4, middle

area>¼ 1

10
screen pixels of x-coordinate x 4 and<¼ 1

10
screen pixels of x-coordinate x 6, right

area>¼ 1

10
screen pixels of x-coordinate x 6.

The responses were logged using a hand dynamometer measuring grip force (BIOPAC Sys-

tems, Inc., Model: TSD121C, isometric range: 0–100 kgf). The force threshold to register a

choice was set to 0.70 kgf. The threshold was determined in pilot measurements in such a way

that false positive signals, caused by holding and slightly moving the force transducer, were

avoided, while at the same time ensuring that no effort was required for a response. There was

no response time limit. After having preselected an option through visual fixation, participants

could still deliberate and decide for the other option as long as the force transducer had not

been pressed. The measured variables included the participants’ choices, response times, fixa-

tion shift patterns and handgrip force applied during response selection, as well as their maxi-

mum handgrip force.

Data analyses

Preprocessing. All logfiles were checked for stereotypic response patterns (exclusively SS

or LL choices), none were found. Choice patterns consisting of exclusively SS or LL choices

may indicate that the participants proceeded heuristically rather than including values and

delay periods in their reasoning. Valid response times are physiologically limited to a lower

bound of around 100 to 200 ms [30, 31]. Since even implausibly fast outlier trials must be

assigned a probability density> 0, modelled response time distributions for a given participant

are shifted towards zero as much as required to accommodate for such response times. This

may lead to poor model fits at the level of individual participants, and consequently may also

impact on the fits of hierarchical models. Therefore, we excluded trials with response times

below 200 ms. Further, we excluded trials with response times> 10 s. The participants

were instructed that there was no time pressure for the decision, but that they should decide

according to their gut feeling and not think long about the decision. Since the task was com-

paratively simple, long reaction times likely reflect a lack of attention rather than the process of

interest. Finally, we excluded trials with maximum grip force values falling below the threshold

for logging a response (technical issue with faulty signal on parallel port). In total, 139 trials

(1.81% of trials) from 26 participants were excluded. The grip force data were further baseline-

corrected to zero, normalised to each participant’s maximal voluntary contraction (MVC,

greatest force exerted over three contractions), and smoothed with a moving average of 50

samples.

Computational modelling of behaviour. Temporal discounting model. Ensuing from

previous research on the effects of immediacy vs. delay on choice behaviour, we assume

temporal discounting to be hyperbolic [32, 33]. We quantified the discount rates using a

model-based approach of hyperbolic discounting. To capture the choice behaviour in both

conditions within a single model, we fitted a single subject-specific discount rate parameter k
(estimated in logarithmic space), modelling the discount rate in the low condition, plus a sub-

ject-specific parameter s, modelling the change in the discount rate from the low compared to
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the high condition.

SVðLLÞt ¼
At

1þ ekþIt�sk � IRIt
ð1Þ

Here, SV is the subjective (discounted) value of the delayed reward and A is the amount of

the LL reward on trial t. K is the (subject-specific) discount rate for the low condition (in loga-

rithmic space), s is a (subject-specific) shift in log(k) from the low to high condition, I is a con-

dition indicator variable (zero for low trials, one for high trials), and IRI is the inter-reward-

interval.

Softmax choice rule. The softmax action selection rule is a commonly used choice rule for

value-based decision making and reinforcement learning, applied in our own and others’ pre-

vious work [24, 34, 35]. Here we applied this model as a baseline or reference model. The soft-

max choice rule models the probability of choosing the LL reward on trial t as

PðLLÞt ¼
eb�SVðLLtÞ

eb�SVðLLtÞ þ eb�SVðSStÞ
ð2Þ

SV is the subjective value of the LL option, and β is an inverse temperature parameter,

describing the stochasticity of the choices (for β = 0 the choices are random, while as β
increases, the choices become increasingly dependent on the values of the options).

Drift diffusion model. We further modelled the participants’ choices using the drift diffu-
sion model (DDM), whereby the softmax choice rule is replaced by the drift diffusion choice

rule. For the boundary definitions of the DDM, we applied stimulus coding, with the lower

boundary defined as choosing the SS reward, and the upper boundary defined as choosing the

LL reward. For this purpose, choices towards the lower boundary were multiplied by -1. When

using absolute RT cut-offs, single fast trials force model parameters to adapt these trials und

hence lead to a poor model fit at the single-subject level [19]. We therefore excluded each par-

ticipant’s slowest and fastest 2.5% trials from the analysis. The response time on trial t is dis-

tributed following the Wiener first passage time (WFPT):

RTt � wfptða; t; z; uÞ ð3Þ

The parameter α reflects the boundary separation (modelling a speed-accuracy trade-off), τ
is the non-decision time (modelling processing time unrelated to the decision process), υ is the

drift rate (modelling the rate of evidence accumulation), and z is the starting-point bias

(modelling a bias towards one of the boundaries). Using the JAGS Wiener module [36], z may

range between 0 and 1, whereby z = .5 indicates no bias in either direction, z< .05 indicates a

bias towards the lower boundary (SS option), and z> .05 indicates a bias towards the upper

boundary (LL option). First, we fitted a null model (DDM0) without value modulation. This

model comprises four parameters (α, τ, z, and υ), which are constant across trials for each par-

ticipant. To connect the drift diffusion model with the valuation model (see Eq 1), we imple-

mented two further models comprising a function which links the trial-by-trial variability in

the drift rate υ to the value differences. First, we realised a linear model (DDMlin), following

Pedersen, Frank, and Biele [37]:

ut ¼ ucoeff � ðSVðLLtÞ � SVðSStÞÞ ð4Þ

The parameter υcoeff maps the value differences onto the drift rate υ and transforms these

differences to the proper scale of the DDM [37]. As a last step, we implemented a sigmoid
model (DDMsig), entailing a non-linear transformation of the scaled value differences with an

S-shaped function as proposed by Fontanesi, Gluth, Spektor, and Rieskamp [26], where S is a
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sigmoid function centred at zero with slope m and asymptote ± υmax:

ut ¼ Sðucoeff � ðSVðLLtÞ � SVðSStÞÞÞ ð5Þ

SðmÞ ¼
2 � umax
1þ e� m

� umax ð6Þ

Ensuing from this model, we also realised a shift model (DDMshift), including the parame-

ters sα, sτ, sz, sυ, sucoeff , and sumax to model changes in the parameter distributions from the low to

high condition:

RTt � wfptðaþ It � sa; tþ It � st; z þ It � sz; uþ It � suÞ ð7Þ

ut ¼ Sðucoeff þ It � sucoeff � ðSVðLLtÞ � SVðSStÞÞÞ ð8Þ

SðmÞ ¼
2 � ðumax þ It � sumaxÞ

1þ e� m
� ðumax þ It � sumaxÞ ð9Þ

Since the drift rate depends on the absolute magnitudes of the values, which, in turn differ

between the low and high condition, condition effects are somewhat difficult to interpret.

Extending the modelling as set out in the preregistration plan, we therefore further compared

the drift diffusion models using absolute vs. normalised values (normalised by the maximum

value of the LL reward per magnitude condition).

Decision conflict. To assess the hypothesised relationship between decision conflict, motor

response vigour and visual fixation patterns, we considered two different operationalisations

of decision conflict, based on (i) the choice probability from the softmax choice rule and (ii)

the trial-wise drift rate as derived from the DDM. For decision conflict based on the softmax

model, we defined decision conflict from 1 (low conflict) to 5 (high conflict), with a probability

of 0.5 of choosing the LL reward as maximum conflict. To provide a common scaling from

low to high conflict, probabilities > 0.5 were ‘flipped’ (1 − p), implying that for instance a

probability of 0.1 and 0.9, respectively, of choosing the LL reward represent an equally low

decision conflict (choose SS with high probability, and choose LL with high probability,

respectively). The data were grouped into five bins using MATLAB’s discretize and

accumarray function (choice probabilities between 0 and 0.1 assigned to bin 1, choice prob-

abilities between 0.4 and 0.5 assigned to bin 5, etc.).

Further, extending our planned analyses, we assessed the relationship between motor

response vigour, visual fixation patterns and the subjective value differences and sums, respec-

tively, based on the estimated parameters of the drift diffusion model (using absolute subjec-

tive values).

Motor response vigour and fixation shifts. Motor response vigour (grip response). To

examine the relationship between the characteristics of the handgrip response and the choice

behaviour and estimated model parameters (subjective value differences, choice probabilities

and decision conflict), we modelled the handgrip response on individual trials with a Gaussian

function of the form

f ðxÞ ¼ ae�
x� b
cð Þ

2

þ h ð10Þ

using MATLAB’s fit function, where the coefficient a is the amplitude (height of peak), b the

centroid (centre of peak), c the width (width of peak) and h is a constant (to model offsets

from zero). The handgrip data were fitted trial-wise per participant. To test for a magnitude

effect in the grip force response, we used frequentist significance tests (one-tailed for
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amplitude and centroid, see section Introduction, hypothesis iv, significance threshold set

at .05, not corrected for multiple comparisons).

Fixation shifts. Using the eye tracking data, we assessed the relationship between the fre-

quency of fixation shifts between the choice options and the associated decision conflict (see

section Decision conflict). We defined fixation shifts as the number of switches between the

left and right option (skipping middle fixations, see section Task).

Effects of conflict, value difference and value sum. To assess the effects of conflict, we

regressed motor response vigour (single-trial Gaussian grip force model parameters) and the

number of fixation shifts onto the response conflict measures. We fitted a hierarchical Bayes-

ian linear regression of the form

yt ¼ aþ b1 � at þ b2 � bt þ b3 � ct þ b4 � dt ð11Þ

where y is the conflict on trial t, operationalised either (1) based on the choice probabilities

from the softmax model (see section Decision conflict), (2) as the trial-wise drift rate, based on

the estimated parameters of the best fitting drift diffusion model, or (3) as the value difference

between the (discounted) LL and SS reward on trial t, based on the estimated subject-specific k
parameters of the DDM (see Eq 1).

Since we observed no relationship between motor response vigour, number of fixation

shifts and conflict, neither for choice probability (softmax model) nor trial-wise drift rate

(DDM), we extended our analyses plan and also regressed motor response vigour and number

of fixation shifts on the (absolute) subjective value differences. We reasoned that this might be

attributable to the fact that both predictors are insensitive to increasingly higher value differ-

ences: in the softmax model, these are mapped to a conflict of 0, whereas in the DDM these are

mapped to a maximum drift rate of vmax. As we observed a magnitude effect for grip force

amplitude, we carried out a further exploratory analysis to test whether the total value (sum

across options) would likewise show an association with response vigour. To this end, we

regressed grip force and the number of fixation shifts onto the sum of the LL and SS option

amounts (see Section 5 and Fig F in S1 Text of the supplementary material) and onto the sum

of the subjective LL and SS option values, based on the discount rates estimated from the drift

diffusion model. These models were not preregistered.

The estimated grip force parameters a, b, and c, and the number of fixation shifts were

within-subjects z-standardised before entering the regression. The parameter d corresponds to

the absolute number of fixation shifts between the options. Since we excluded each partici-

pant’s slowest and fastest 2.5% of trials within the scope of the drift diffusion model (see sec-

tion Drift diffusion model), the respective trials were likewise removed from the grip force and

gaze data.

We report Bayes factors (BFs) for directional effects [38] for the β—hyperparameters, via

kernel density estimation in MATLAB (The MathWorks, Inc., version R2019a). The Bayes fac-

tors are defined as the ratio of the integral of the posterior distribution from—1 to 0 versus

the integral from 0 to1. We consider BFs between 1 and 3 as anecdotal evidence, BFs between

3 and 10 as moderate evidence, BFs between 10 and 30 as strong evidence, BFs between 30 and

100 as very strong evidence, and BFs above 100 as extreme evidence for the H1. The inverse of

these values reflect the corresponding evidence for the H0 [39, 40]. We further report the pos-

terior highest density intervals (HDI) along with the regions of practical equivalence (ROPE,

limits for β = ±0.05 as for standardised variables) [41] for the posterior distributions of the

regression coefficients.

Parameter estimation and model comparison. The parameter distributions of the soft-

max, drift diffusion and regression models were estimated through Markov chain Monte
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Carlo (MCMC) simulation as implemented in JAGS [42, version 4.3.0], using MATLAB (The

MathWorks, Inc., version R2019a) and the MATJAGS inferface for JAGS (Steyvers, 2018, ver-

sion 1.3.2). We implemented a hierarchical Bayesian framework, in which the parameters for

each subject are drawn from group-level gaussian distributions. We ran two chains with a

burn-in period of 50,000 samples and thinning of two. We determined chain convergence of

the chains such that R̂ � 1:01 [43]. For comparing the variants of the drift diffusion models,

we ranked them according to the deviance information criterion [44, DIC].

Posterior predictive response time distributions. To ensure that the best-fitting model

reflects and reproduces the observed data, we simulated 10,000 datasets based on the posterior

distributions of the respective hierarchical model. For each individual participant, the model-

predicted RT distributions were smoothed with a kernel smoothing function using density

estimation (using MATLAB’s ksdensity function) and overlaid onto the observed RT

distributions.

Results

Model-free analyses

The participants made significantly more LL selections in the high (M = 63.00, SD = 19.28) as

compared to the low (M = 53.30, SD = 21.09) magnitude condition (t(39) = -10.12, p< .001,

one-tailed), reflecting the predicted magnitude effect. However, such a magnitude effect was

not present in the response time patterns. The mean RTs were not significantly different

between the low (M = 3.03, SD = 0.69) and high (M = 3.03, SD = 0.67) condition (t(39) = -0.01,

p = .498, one-tailed).

Softmax choice rule

We modelled the choices using the softmax choice rule, using both the absolute and normal-

ised reward values. As hypothesised, we found a magnitude effect for temporal discounting,

indicated by the negative shift parameter slog(k), which models the change in log(k) from the

low to the high condition (see Table 1). We observed a close correspondence of the parameter

estimates from the softmax model based on absolute vs. normalised values, except for β (see

Fig 1), which scales with the value differences (see Eq 2).

Drift diffusion modelling

Model comparison. We compared the fit of different variants of the DDM, including

models with a linear (DDMlin) and non-linear scaling (DDMsig, and DDMsig-shift) of the drift

rate by the subjective value differences, and a model including parameters to model changes in

the parameter distributions from the low to high condition (DDMsig-shift). As a baseline

Table 1. Group-level mean estimates and 95% HDIs of log(k), slog(k) and β using the softmax choice rule.

SMabs SMnorm

log(k) -4.44 (-5.07 to -3.79) -4.44 (-5.04 to -3.82)

slog(k) -0.80 (-0.90 to -0.70) -0.74 (-0.86 to -0.64)

β 0.43 (0.05 to 0.72) 27.23 (14.80 to 38.54)

HDI: highest density interval; SMabs: softmax model using absolute values; SMnorm: softmax model using normalised

values; log(k): discount rate (in logarithmic space); slog(k): shift parameter for the changes in log(k) value from the low
to high magnitude condition; β: inverse temperature parameter.

https://doi.org/10.1371/journal.pcbi.1010096.t001
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comparison, we formulated a model comprising no value modulation (constant drift rate,

DDM0). Further, we assessed the fit of all models using absolute vs. normalised values (see sec-

tion Computational modelling of behaviour). The models implementing a non-linear scaling

of the drift rate provided a superior fit to the data compared to models with a linear scaling.

This was true for models operating on absolute and normalised values. Also, both the linear

and non-linear models provided a superior fit compared to the DDM0, see Tables 2 and 3.

Comparing the models based on absolute vs. normalised values, we observed a good corre-

spondence of all model parameters, with the exception of vcoeff and sucoeff , which of course scale

directly with value differences.

Posterior predictive response time distributions. To verify that the best-fitting model

can reproduce the observed RT distributions, we examined the posterior predictive RT distri-

butions per participan. The posterior predictive RT distributions of the DDMsig-shift (using

normalised values), along with the observed response time distributions, are depicted in Fig 2

(see Fig A in S1 Text of the supplementary material for the posterior predictive response time

Fig 1. Posterior distributions of the group-level parameter means from the softmax models based on absolute (SMabs) and normalised (SMnorm)

values. log(k): discounting parameter, s: shift in log(k), β: inverse temperature parameter. Horizontal solid lines indicate the 85% and 95% highest

density interval.

https://doi.org/10.1371/journal.pcbi.1010096.g001

Table 2. Model comparison of the variants of the drift diffusion models of temporal discounting using absolute values.

Value scaling Value function DIC Rank

DDM0 - - 26830 4

DDMlin Linear Hyperbolic 24769 3

DDMsig Sigmoid Hyperbolic 22213 2

DDMsig-shift Sigmoid Hyperbolic + shift 22179 1

DIC = deviance information criterion; 0: no value scaling of the drift rate; lin: linear value scaling of the drift rate; sig: sigmoid value scaling of the drift rate. The

DDMsig-shift includes additional shift parameters for α, τ, z, υ, υcoeff, and υmax to models changes from the low to high condition.

https://doi.org/10.1371/journal.pcbi.1010096.t002

Table 3. Model comparison of the variants of the drift diffusion models of temporal discounting using normalised values.

Value scaling Value function DIC Rank

DDM0 - - 26830 4

DDMlin Linear Hyperbolic 24286 3

DDMsig Sigmoid Hyperbolic 22210 2

DDMsig-shift Sigmoid Hyperbolic + shift 22170 1

DIC = deviance information criterion; 0: no value scaling of the drift rate; lin: linear value scaling of the drift rate; sig: sigmoid value scaling of the drift rate. The

DDMsig-shift includes additional shift parameters for α, τ, z, υ, υcoeff, and υmax to models changes from the low to high condition.

https://doi.org/10.1371/journal.pcbi.1010096.t003
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distributions of the DDMsig-shift using absolute values). The comparison showed that the

model captures the characteristics of the response time distributions well.

Analysis of model parameters. We observed a positive association between the value dif-

ferences and trial-wise drift rates, as indicated by the consistently positive drift rate coefficient

parameter vcoeff (see Tables 4 and 5).

Fig 2. Posterior predictive response time distributions (in blue) of the DDMsig-shift (using normalised values) for each participant, overlaid on the

histograms of the observed RT distributions. The negative response times arise from the boundary definitions of the DDM. We defined the lower

boundary as choosing the SS reward, and the upper boundary as choosing the LL reward. For this purpose, choices towards the lower boundary were

multiplied by -1. Negative response times indicate SS choices, positive response times indicate LL choices.

https://doi.org/10.1371/journal.pcbi.1010096.g002
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Magnitude effects on model parameters. For all models with value modulation of the drift

rate, we observed an effect of reward magnitude on slog(k) (see Table 4), reflecting reduced dis-

counting in the high compared to the low magnitude condition. This was also true for the

models operating on normalised values (see Table 5). The starting point parameter z was close

to 0.5, indicating no strong bias towards either decision boundary, (SS rewards), with a rather

small shift towards the upper boundary in the high magnitude condition. The effects of reward

magnitude on the other parameters were negligible.

Table 4. Parameter group means and 95% HDIs of the posterior distributions of the drift diffusion models using absolute values.

DDM0 DDMlin DDMsig DDMsig-shift

α 2.72 (2.59 to 2.86) 2.90 (2.76 to 3.04) 3.27 (3.09 to 3.43) 3.23 (3.05 to 3.41)

sα - - - 0.09 (-0.01 to 0.19)

τ 1.30 (1.22 to 1.39) 1.30 (1.23 to 1.39) 1.23 (1.15 to 1.31) 1.23 (1.15 to 1.31)

sτ - - - 0.01 (-0.01 to 0.04)

z 0.53 (0.52 to 0.55) 0.53 (0.51 to 0.56) 0.51 (0.49 to 0.52) 0.50 (0.49 to 0.52)

sz - - - 0.02 (0.00 to 0.03)

υ 0.18 (0.04 to 0.31) - - -

υcoeff - 0.05 (0.04 to 0.05) 0.77 (0.61 to 0.94) 0.78 (0.62 to 0.95)

sucoeff - - - -0.08 (-0.17 to 0.01)

υmax - - 1.07 (0.98 to 1.16) 1.10 (1.01 to 1.19)

sumax - - - -0.04 (-0.11 to 0.03)

log(k) - -4.42 (-5.08 to -3.78) -4.45 (-5.07 to -3.83) -4.47 (-5.07 to -3.85)

slog(k) - -0.52 (-0.71 to -0.34) -0.82 (-0.93 to -0.71) -0.77 (-0.89 to -0.65)

HDI: highest density interval; 0: no value scaling of the drift rate; lin: linear value scaling of the drift rate; sig: sigmoid value scaling of the drift rate; α: boundary

separation; τ: non-decision time; z: starting-point bias; υ: drift rate; υcoeff: value difference to drift rate mapping; υmax: asymptote for υ; log(k): discount rate (in

logarithmic space); s: shift parameter for the changes in parameter value from the low to high magnitude condition.

https://doi.org/10.1371/journal.pcbi.1010096.t004

Table 5. Parameter group means and 95% HDIs of the posterior distributions of the drift diffusion models using normalised values.

DDM0 DDMlin DDMsig DDMsig-shift

α 2.72 (2.59 to 2.86) 2.95 (2.81 to 3.09) 3.27 (3.10 to 3.45) 3.24 (3.05 to 3.41)

sα - - - 0.07 (-0.03 to 0.18)

τ 1.30 (1.22 to 1.39) 1.30 (1.22 to 1.38) 1.23 (1.15 to 1.31) 1.23 (1.15 to 1.31)

sτ - - - 0.02 (-0.01 to 0.04)

z 0.53 (0.52 to 0.55) 0.53 (0.51 to 0.56) 0.51 (0.50 to 0.52) 0.50 (0.49 to 0.52)

sz - - - 0.02 (0.00 to 0.03)

υ 0.18 (0.04 to 0.31) - - -

υcoeff - 3.00 (2.68 to 3.32) 39.44 (31.68 to 47.92) 38.11 (30.11 to 46.90)

sucoeff - - - 2.58 (-0.24 to 4.40)

υmax - - 1.07 (0.99 to 1.16) 1.05 (0.96 to 1.14)

sumax - - - 0.04 (-0.02 to 0.10)

log(k) - -4.19 (-4.78 to -3.60) -4.48 (-5.13 to -3.87) -4.49 (-5.14 to -3.88)

slog(k) - -0.75 (-0.90 to -0.60) -0.79 (-0.92 to -0.68) -0.76 (-0.89 to -0.64)

HDI: highest density interval; 0: no value scaling of the drift rate; lin: linear value scaling of the drift rate; sig: sigmoid value scaling of the drift rate; α: boundary

separation; τ: non-decision time; z: starting-point bias; υ: drift rate; υcoeff: value difference to drift rate mapping; υmax: asymptote for υ; log(k): discount rate (in

logarithmic space); s: shift parameter for the changes in parameter value from the low to high magnitude condition.

https://doi.org/10.1371/journal.pcbi.1010096.t005
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Effects of value normalisation. Comparing the models based on absolute vs. normalised

values, we observed a good correspondence of all model parameters, with the exception of vcoeff
and sucoeff , which of course scale directly with value differences.

Motor response vigour (grip force)

The time between visual preselection of an option and choice registration with the grip force

transducer was on average 0.03 seconds (SD = 0.11). The grip force responses were modelled

with a Gaussian function (see Fig 3, 1 term plus constant, mean (range) goodness-of-fit across

all trials and participants: R-squared = 0.98 (0.29–1.00), adjusted R-squared = 0.98 (0.29–1.00),

root-mean-square error = 0.004 (0.0002–0.16). The parameter means (amplitude, centroid

and width) per condition (low, high) are listed in Table 6, for mean values per participant and

condition, and within-subject differences see Figs B and C in S1 Text of the supplementary

material.

Since the data were non-normal (as assessed with Lilliefors tests yielding p< .001 for all

tests), we performed Wilcoxon signed-rank tests to check for parameter differences between

the low and high condition. In line with our preregistered hypothesis, the amplitude was signif-

icantly higher for the high compared to the low condition (z = 1.90, p = .029, one-tailed). In

contrast to our preregistered hypothesis, the centroid, and also the width, did not differ

between conditions (z = 0.73, p = .768, one-tailed, and z = 1.75, p = .081, two-tailed).

Decision conflict effects. Conflict based on choice probability (softmax model). Our

first operationalisation of response conflict was based on the softmax choice probabilities.

Fig 3. Grip response and grip response model of three trials from a single participant. The grip responses were modelled with a Gaussian function

with parameters for amplitude, centroid, width, and a constant. A: trial 14, b: trial 152, c: trial 180. R-squared = 0.983, 0.998 and 0.997, respectively.

Blue: preprocessed (baseline-corrected, normalised to maximal voluntary contraction [MVC], and smoothed) grip response data, black: modelled grip

response. The unit of the x-axis and centroid parameter has been converted to seconds (sampling frequency: 2000 Hz, 1 s = 2000 samples).

https://doi.org/10.1371/journal.pcbi.1010096.g003

Table 6. Parameters of the gaussian-modelled grip force responses (means and standard deviations).

Low condition High condition

Amplitude 0.2142 (0.1414) 0.2179 (0.1448)

Centroid 3.15 (1.54) 3.15 (1.52)

Width 0.13 (0.05) 0.13 (0.05)

Amplitude has been normalised to MVC (maximal voluntary contraction). Centroid and width are reported in

seconds.

https://doi.org/10.1371/journal.pcbi.1010096.t006
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Because condition effects are more straightforward to interpret in the normalised model (see

section Softmax choice rule), the following analyses are based on this model. The mean values

for amplitude, centroid and number of fixation shifts for trials of a given response conflict

(binned from 1 to 5) are depicted participant-wise in Fig 4 and listed in Table 7. The Bayesian

regression is based on a continuous conflict measure (probabilities > 0.5 are ‘flipped’ to pro-

vide a common scaling from low to high conflict, whereby .5 represents the maximum con-

flict). The posterior distributions of the group-level parameter means for the regression

coefficients are depicted in Fig 5 (medians: α = 0.12 [intercept] β1 = -0.01 [amplitude],

β2 = 0.02 [centroid], β3 = -0.004 [width], β4 = 0.001 [N fixation shifts]).

The Bayes factors for the regression coefficients for amplitude, centroid, and width of the

grip response, and for the numbers of fixation shifts provide only anecdotal evidence for values

greater than zero vs. smaller than zero (BF for β1: 0.95, BF for β2: 1.25, BF for β3: 0.97, BF for

β4: 1.09). Since the 95% HDIs of all the posterior distributions fall neither completely inside

nor outside the ROPE, we remain undecided for all three β regression coefficients.

Conflict based on subjective value differences (DDM). The second operationalisation of

response conflict was based on the trial-wise drift rate calculated based on the estimated

Fig 4. Mean amplitude, centroid and width of the Gaussian-modelled grip force response and mean number of fixation shifts (from SS to LL, and

vice versa) for trials of a given (binned) response conflict for each participant. Thick lines depict the mean values across participants. Conflict is

defined from 1 (low conflict) to 5 (high conflict), with a probability of .5 of choosing the LL reward as maximum conflict. Amplitude has been

normalised to MVC (maximal voluntary contraction). Centroid and width are reported in seconds.

https://doi.org/10.1371/journal.pcbi.1010096.g004

Table 7. Mean amplitude, centroid, width and number of fixation shifts per conflict bin.

1 2 3 4 5

Amplitude 0.2188 0.2128 0.2102 0.2135 0.2137

Centroid 2.9427 3.2680 3.2063 3.2789 3.3160

Width 0.1328 0.1340 0.1336 0.1317 0.1330

Fixation shifts 2.79 3.52 3.05 3.17 3.42

Conflict is defined from 1 (low conflict) to 5 (high conflict), with a probability of .5 of choosing the LL reward as maximum conflict. Amplitude has been normalised to

MVC (maximal voluntary contraction). Centroid and width are reported in seconds.

https://doi.org/10.1371/journal.pcbi.1010096.t007
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parameters of the highest-ranked DDM using normalised values (DDMsig-shift). Since we

found no evidence that any of the regression coefficients for motor response vigour and num-

ber of fixation shifts were greater than vs. smaller than zero (or vice versa), we refer the reader

to Section 3 and Fig D in S1 Text of the supplementary material.

Finally, we regressed the estimated grip force parameters amplitude, centroid and width,

and the number of fixation shifts onto the subjective value differences between the (dis-

counted) LL and SS rewards, based on the subject-specific k parameters of the highest-ranked

model using absolute values (DDMsig-shift). Recall that the analysis of the magnitude effect

yielded an effect of condition, i.e. higher grip force amplitudes in the high compared to the low
condition. Because condition differences in reward magnitudes are eliminated in the DDM

based on normalised values (see Section 4 and Fig E in S1 Text of the supplementary material),

the regression on subjective value differences is based on the DDM using absolute values.

The mean values for amplitude, centroid and number of fixation shifts for trials of a given

value difference bin are depicted participant-wise in Fig 6. The posterior distributions of the

group-level parameter means for the regression coefficients are depicted in Fig 7. The medians

of the group-level posterior distributions were as follows: α = 3.33 (intercept) β1 = 0.46 (ampli-

tude), β2 = -1.20 (centroid), β3 = 0.19 (width), β4 = -0.48 (N fixation shifts).

The Bayes factors provide very strong evidence that the coefficient for amplitude is greater

than zero vs. smaller than zero (BF for β1: 79.50), extreme evidence that the coefficient for cen-

troid is below zero vs. above zero (BF for β2: > 10308), moderate evidence that the regression

coefficient for grip force width is greater than zero vs. smaller than zero (BF for β3: 5.06), and

very strong evidence that the coefficient for number of fixation shifts is smaller vs. greater than

zero (BF for β4: 69.61). For β3 we remain undecided, since the 95% HDI of the posterior distri-

bution is neither completely inside nor outside the ROPE. For β2 we reject the null value (95%

HDI of posterior distribution entirely outside ROPE). For β1 and β4 we also reject the null

value, since the 95% HDIs do not include zero and only 0.23% and 1.41%, respectively, of the

95% HDI overlap with the ROPE. This indicates higher grip force amplitudes, faster response

times and a lower number of fixation shifts for trials with higher subjective value differences

between the options.

Value sum effects. To analyse the association between motor response vigour, fixation

shifts and total value, we regressed the parameters of the Gaussian grip force model and the

number of fixation shifts onto the sum of the subjective LL and SS option values (based on the

drift diffusion model using absolute subjective values). The medians of the group-level poste-

rior distributions were as follows: α = 0.59 (intercept), β1 = 0.62 (amplitude), β2 = -0.47

Fig 5. Hierarchical Bayesian regression results. Regression of the parameters of the Gaussian-modelled grip force response and number of

fixation shifts onto the trial-wise response conflict based on the choice probabilities (softmax model). Posterior distributions of the group-level

parameter means. α: intercept, β1: coefficient for amplitude, β2: coefficient for centroid, β3: coefficient for width, β4: coefficient for fixation shift.

Horizontal solid lines indicate the 85% and 95% highest density interval. Vertical solid lines indicate x = 0, and vertical dashed lines indicate the lower

and upper bounds of the region of practical equivalence (ROPE).

https://doi.org/10.1371/journal.pcbi.1010096.g005
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(centroid), β3 = 0.01 (width), β4 = -1.11 (N fixation shifts) (see Fig 8). The Bayes factor for the

regression coefficient for amplitude provides extreme evidence for values greater than zero vs.

smaller than zero (BF for β1: 111.18). For the centroid coefficient, the Bayes factor provides

strong evidence for values smaller than zero vs. larger than zero (BF for β2: 16.37). For the

width coefficient, the Bayes factor provides only anecdotal evidence for values greater than

zero vs. smaller than zero (BF for β3: 1.04). The regression coefficient for fixation shifts pro-

vides extreme evidence for values smaller than zero vs. larger than zero (BF for β4: 10933.53).

For β1 and β4 we reject the null value (95% HDI of posterior distribution entirely outside

ROPE). For β2 and β3 we remain undecided, since the 95% HDI of the posterior distribution is

neither completely inside nor outside the ROPE. Accordingly, this analysis shows higher grip

force amplitudes and fewer fixation shifts for trials with high value sums across the options.

Running separate regressions on value sums of the low and high magnitude condition revealed

Fig 6. Mean amplitude and centroid of the Gaussian-modelled grip force response and mean number of fixation shifts (from SS to LL, and vice

versa) for trials of a given value difference bin. The (absolute) value differences were z-standardised and binned participant-wise into 3 groups of

equal size (based on quantile ranks of the values, 1: lower value differences, 3: higher value differences). Thick lines depict the mean values across

participants.

https://doi.org/10.1371/journal.pcbi.1010096.g006

Fig 7. Hierarchical Bayesian regression results. Regression of the parameters of the Gaussian-modelled grip force response and number of

fixation shifts onto the subjective value differences (DDM). Posterior distributions of the group-level parameter means. α: intercept, β1: coefficient

for grip force amplitude, β2: coefficient for grip force centroid, β3: coefficient for grip force width, β4: coefficient for fixation shift. Horizontal solid lines

indicate the 85% and 95% highest density interval. Vertical solid lines indicate x = 0, and vertical dashed lines indicate the lower and upper bounds of

the region of practical equivalence (ROPE).

https://doi.org/10.1371/journal.pcbi.1010096.g007
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that this effect was driven by the high magnitude condition (see Section 6, Figs G and H in S1

Text of the supplementary material).

Discussion

We explored whether value computation and response conflicts during intertemporal choice

are reflected in motor response vigour and visual fixation patterns. For this purpose, we mea-

sured the handgrip force applied during choice, and the concurrent fixation shift patterns

between the choice options. Assuming hyperbolic discounting, we compared variants of the

softmax and drift diffusion model and assessed the relationship between the estimated model

parameters, motor response vigour and fixation shifts. The intertemporal choice task com-

prised two conditions, a low and high magnitude condition (low vs. high SS reward), which

allowed us to directly assess the impact of overall smaller vs. larger reward magnitudes on

response vigour. To represent both conditions in a single model, we included shift parameters

to model the changes in parameter values from the low to the high magnitude condition.

We compared models with a linear and non-linear (sigmoid) modulation of the drift rate

by the subjective value differences, and, since the drift rate parameter is dependent on the

absolute magnitude of the options’ values, models using absolute vs. normalised option values.

We then analysed the relationship between decision conflict and response vigour, in particular

the trial-wise amplitude, centroid and width of the Gaussian-modelled grip force response and

the number of fixation shifts between the options. Further, we investigated if the magnitude

effect, which describes reduced discounting for higher amounts [22, 23], is also reflected in the

grip force strength.

As hypothesised, participants discounted rewards as a function of delay. The choice and

response time (RT) data were best accounted for by a DDM including a non-linear modulation

of the drift rate by the subjective value differences. As in previous studies, [23, 29], and in

accordance with our hypothesis, we found a magnitude effect for temporal discounting, indi-

cating that higher rewards were discounted less. This effect was also evident in motor response

vigour: higher forces were applied in the high vs. the low magnitude condition. In addition, tri-

als with higher subjective value differences between the options were associated with higher

grip forces, faster response times and a lower number of fixation shifts.

In general, the estimated non-decision times τ were longer than in typical laboratory exper-

imental setups (> 1000 ms) [19, 29]. The non-decision time parameter τ models time that is

not related to the decision process, such as stimulus encoding and motor response execution.

Our estimated non-decision times were comparable to the estimated non-decision times from

Fig 8. Hierarchical Bayesian regression results. Regression of the parameters of the Gaussian-modelled grip force response and number of

fixation shifts onto the total sum of the subjective option values from the drift diffusion model (DDM). Posterior distributions of the group-level

parameter means. α: intercept, β1: coefficient for grip force amplitude, β2: coefficient for grip force centroid, β3: coefficient for grip force width, β4:

coefficient for fixation shift. Horizontal solid lines indicate the 85% and 95% highest density interval. Vertical solid lines indicate x = 0, and vertical

dashed lines indicate the lower and upper bounds of the region of practical equivalence (ROPE).

https://doi.org/10.1371/journal.pcbi.1010096.g008
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a recent study using a VR environment, where the participants logged their responses using

VR-compatible controllers, as opposed to simple response keys [45]. This is likely due to the

task’s requirement of first preselecting an option through visual fixation before finally selecting

it using the hand dynamometer. However, since τ reflects both motor and non-motor compo-

nents, which of these processes is affected cannot be inferred from τ alone. There is prelimi-

nary work on the decomposition of the non-decision time of drift diffusion models using

electro-myographical activity [46]. The authors conclude that stimulus encoding does not nec-

essarily end when evidence accumulation begins, and that the onset of the motor response

does not necessarily denote the end of the deliberation process. Further, the non-decision time

may be influenced by participants’ adjustments in response to task instructions. Therefore, a

meaningful comparison of non-decision times across experiments with different response

schemes may only be made if all other experimental parameters are kept constant. Still, apply-

ing the DDM works well in settings with different task demands and response modes.

Model comparison

The choice and RT data were best accounted for by a drift diffusion model specifying a non-

linear mapping between the subjective value differences and trial-wise drift rates. Following

the DIC criterion, the variants of the DDMs implementing a transformation of the scaled

value differences using a sigmoid function [26] provided a superior fit to the data compared to

both the DDM using a linear modulation and the DDM involving no value modulation. We

found a close correspondence between the observed response time distributions and the

response time distributions simulated using the estimated posterior parameter distributions,

demonstrating that the best-fitting model captured the characteristics of the response time dis-

tributions reasonably well.

Magnitude effect

Replicating previous findings [22, 23, 29], and in accordance with our hypothesis, we found a

magnitude effect for temporal discounting, such that higher rewards were discounted less.

While the model-free analysis revealed more LL choices in the high compared to the low mag-

nitude condition, the magnitude effect was further reflected in the log(k)shift parameter, which

was consistently negative in all variants of the softmax and drift diffusion models. Importantly,

as predicted, this magnitude effect was also reflected in motor response vigour: Looking at the

amplitude parameter of the Gaussian-modelled grip force response, we found that stronger

forces were exerted in the high compared to the low magnitude condition. Contrary to our

hypothesis, the RTs were not significantly different between the two conditions. The effect of

reward magnitude on the discount rate (reduced discounting for higher rewards) appears to

be a consistent effect [22, 23, 29], and our data reveal that this effect is reflected in both choice

behaviour and motor response vigour (grip force amplitude) during response selection.

Based on this finding, we carried out a further exploratory analysis, replacing subjective

value differences with total value. In line with the idea that subjective (rather than objective)

option dimensions shape behaviour [7], the associations with amplitude and centroid were

more pronounced for the model that used subjective (DDM-based) rather than objective

(absolute magnitude) values for the computation of total value (see section Value sum effects

and Section 5 and Fig F in S1 Text of the supplementary material). Further, comparing the

results for conflict and subjective value differences and total value, respectively, it appears that

total value was most strongly associated with grip force amplitude and number of fixation

shifts. These effects share some similarity with other modulatory effects of pavlovian cues,

such as pavlovian instrumental transfer, where conditioned stimuli affect the vigour with
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which an action is executed [47, 48]. However, the present effects of value sum on motor

response vigour were not instrumental, as grip force was decoupled from outcome.

Decision conflict effects

First, we carried out a model-based analysis of the trial-wise grip force time courses. A gauss-

ian model, decomposing grip force time courses into amplitude, centroid and width parame-

ters for each trial provided an excellent fit to the single-trial grip force trajectories (mean R-

squared = .98). We then analysed the relationship between decision conflict, the grip force

parameters and fixation shifts, operationalising decision conflict based on the choice probabil-

ity as derived from the softmax choice rule, and based on the trial-wise drift rate, as derived

from the best-fitting DDM. Contrary to our hypothesis, however, we found no relationship

between decision conflict and motor response vigour, response times, or fixation shifts. How-

ever, regressing motor response vigour and fixation shifts directly on the subjective value dif-

ferences (based on the estimated parameters of the best-fitting DDM, we found that the

amplitude and centroid of the grip response, as well as the number of fixation shifts were sig-

nificantly related to these. As predicted, grip force amplitudes increased, and response times

(centroids) decreased with increasing subjective value differences between options. In addi-

tion, the number of fixation shifts decreased with increasing subjective value differences. Look-

ing at the models regressing motor response vigour and fixation shifts onto subjective value

differences and value sum, respectively, the negative relationship with the centroid parameter

appeared to be most pronounced for value difference. In the model with objective value sum

(model-free, see Section 5 and Fig F in S1 Text of the supplementary material) the effect was

not visible at all. Hence, the centroid (response time) effect appeared to be relatively specific

for response conflict, whereas the grip force amplitude effect was observed in both models,

albeit more pronounced for the value sum model.

The null effects for the conflict measure based on the softmax model likely arise because for

large value differences, the conflict predictor approaches zero. The second regression was

based on the drift diffusion model using a non-linear (sigmoid) scaling of the drift rate by the

subjective value differences, so we speculate that the null effects for conflict based on the drift

rate arise because the drift rate does not scale linearly with the value differences (as the value

difference exceeds an individual threshold, the corresponding drift rate is mapped to vmax).
We therefore assume that the effects we found when regressing motor response vigour and fix-

ation shifts directly on the subjective value differences are driven by trials with large absolute

value differences. Taken together, these results suggest that the observed associations between

value differences, grip force parameters and fixation patterns are driven by absolute value dif-

ferences, rather than decision conflict.

This suggests that valuation or implicit motivation could be reflected in these measures. In

contrast to Pessiglione and colleagues [15], where the force produced was related to the payout

(reward height magnitude was presented subliminally), we kept the force produced unrelated

to the payout. Therefore, even when the force produced is unrelated to the payout (and the

participants are unaware that force production is being measured), it is nonetheless related to

the subjective value difference and even more so, the value sum. [49, 50] In the present study,

the participants applied more force in trials with higher value differences, and in particular a

higher subjective value sum of the options. This suggests that motivational processes are also

reflected in motor response vigour.

Summarising the findings with respect to our hypotheses, as expected, participants dis-

counted rewards as a function of delay (hypothesis i). In accordance with our predictions, we

further found evidence that differences in subjective utility modulated response times and grip
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forces, such that response times decreased and grip forces increased with increasing subjective

value differences between options (hypothesis ii). Unlike what we thought, we found no rela-

tionship between decision conflict and grip force, response time or fixation shifts (hypothesis

iii). Yet, in line with our hypothesis, higher rewards were discounted less and elicited stronger

effort (magnitude effect). Contrary to our hypothesis, however, the response times were not

significantly different between the two magnitude conditions (hypothesis iv).

Dopamine and response vigour

Although dopamine neurotransmission was not measured in the present study, the observed

effects might be mediated by dopamine. A number of studies suggest that the anterior cingu-

late cortex and its dopaminergic pathways are involved in the integration of effort and reward

[51–54]. Pharmacological enhancement of dopamine transmission increases the willingness of

animals to accept delays and to expend effort to obtain rewards (for a review, see [55]). Three

studies with human subjects also reported higher force production in states with augmented

dopamine transmission [12–14]. In a rewarded odd-ball discrimination task, Beierholm and

colleagues [56] demonstrated that L-DOPA modulated reward-related response vigour (reac-

tion times). The results suggest that the influence of reward rate on response vigour is medi-

ated by dopamine transmission. Further, augmented dopamine transmission increased

response vigour (reduced reaction times) in a temporal discounting and reinforcement learn-

ing task [29, 57, 58]. In addition to dopamine, noradrenaline is also involved in force produc-

tion [59] and conflict resolution [60, 61]. However, manipulating noradrenaline levels does

not appear to affect reward sensitivity [62].

Relevance

Our results suggest that in addition to choices and response times, measures of response vig-

our may provide information regarding valuation during intertemporal choice. Other tasks

involving subjective evaluation of options may also conceivable. Since several maladaptive

behaviours and psychiatric conditions, including impulsivity, substance use disorders and

behavioural addictions, have been linked to increased discount rates (see, e.g. [4, 5, 63, 64]),

this task is particularly interesting from a clinical perspective.

Using response vigour as an implicit measure of utility may open up the possibility to assess

utility in cases where explicit reports are not possible, i.e. in different patient groups. In the

area of statistical learning, patients with hippocampal damage show impairments in certain

processes when the patients are required to explicitly report regularities or patterns [65, 66].

When testing for implicit knowledge in a motion discrimination task, patients with hippocam-

pus damage showed a similar performance to controls [67]. Experimental approaches such as

those employed in the present study might be informative in such patient populations.

Limitations

Finally, there are some limitations to our study. For the present task, it would have been inter-

esting to also include pupillometry and more comprehensive analyses of e.g. saccade reaction

times and velocities [17, 68]. Since the usage of a force transducer functions as a single key,

some method of preselecting one of two options was necessary. Choice selection was thus

implemented such that an option was preselected by visual fixation and selected by subse-

quently pressing the force transducer. Hence, an option could only be chosen if it was concur-

rently fixated, which may have restricted the fixation patterns. Therefore, we limited the

analyses to the shifts of fixation. Further, since we did not specifically construct isoluminant
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stimuli, the analysis of pupil dilation would be confounded by differences in luminance

between the stimuli and conditions.

Although, based on the literature, an involvement of dopamine in the effects examined here

is likely, dopamine neurotransmission was neither measured nor manipulated. Future studies

would benefit from examining this in greater detail.

Conclusion

In the present work, we investigated motor response vigour, specifically grip force applied dur-

ing response selection, and fixation patterns as an implicit measures of subjective utility during

intertemporal choice. Comparing variants of the drift diffusion model, we found that the

choices and response times were best accounted for by a drift diffusion model that included a

non-linear scaling of the drift rate by the subjective value differences. A magnitude effect for

temporal discounting was apparent in both choice and motor response vigour, such that

higher rewards were discounted less and selected with higher grip force. The magnitude effect

was evident not only between conditions, but also in the form of an association between total

value (sum of discounted values across conditions) and response vigour. Further, the peak

forces (grip force amplitudes), response times (grip force centroids) and the number of fixa-

tion shifts were related to the subjective value differences between the options. Normalising

the options’ values across conditions eliminated these effects. We conclude that the effects

were likely driven by large absolute (discounted) value differences between the options. A fur-

ther exploratory analysis revealed that the subjective value sum across options showed an even

more pronounced association with the trial-wise grip force amplitudes and number of fixation

shifts. The force applied was unrelated to the payout and the participants were not informed

that force production was measured. Nonetheless, it was related to the subjective value differ-

ences between the options, suggesting that valuation or implicit motivation is reflected in

motor response vigour. Future studies might explore the extent to which neuropsychiatric dis-

orders associated with impairments in decision-making and effort are likewise associated with

changes in such implicit measures of motivation.

Supporting information

S1 Text. Fig A: Posterior predictive response time distributions of the DDMsig-shift (using

absolute values) for each participant, overlaid on the histograms of the observed RT distribu-

tions. Fig B: Parameters of the modelled grip response (mean values per participant and mag-

nitude condition). Fig C: Within-subject differences of the parameters of the modelled grip

response between the low and high magnitude condition. Fig D: Hierarchical Bayesian regres-

sion of the parameters of the Gaussian-modelled grip force response and number of fixation

shifts onto the trial-wise response conflict based on the drift rate (DDM). Fig E: Hierarchical

Bayesian regression of the parameters of the Gaussian-modelled grip force response and num-

ber of fixation shifts onto the subjective value differences (DDM). Fig F: Hierarchical Bayesian

regression of the parameters of the Gaussian-modelled grip force response and number of fixa-

tion shifts onto the total sum of the option amounts (model-free). Fig G: Hierarchical Bayesian

regression of the parameters of the Gaussian-modelled grip force response and number of fixa-

tion shifts onto the total sum of the subjective option values from the drift diffusion model

(DDM) for the low magnitude condition. Fig H: Hierarchical Bayesian regression of the

parameters of the Gaussian-modelled grip force response and number of fixation shifts onto

the total sum of the subjective option values from the drift diffusion model (DDM) for the high
magnitude condition. Section 3: Conflict based on trial-wise drift rate (DDM). Section 4: Con-

flict based on subjective value differences (DDM using normalised values). Section 5: Sum of
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larger-later (LL) and smaller-sooner (SS) amounts (model-free). Section 6: Sum of the subjec-

tive larger-later (LL) and smaller-sooner (SS) option values (DDM) per magnitude condition.
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2. Peters J, Büchel C. Overlapping and distinct neural systems code for subjective value during intertem-

poral and risky decision making. Journal of Neuroscience. 2009; 29(50):15727–15734. https://doi.org/

10.1523/JNEUROSCI.3489-09.2009 PMID: 20016088

3. Moreira D, Barbosa F. Delay discounting in impulsive behavior: A systematic review. European Psy-

chologist. 2019; 24(4):312–321. https://doi.org/10.1027/1016-9040/a000360

4. Karakula SL, Weiss RD, Griffin ML, Borges AM, Bailey AJ, McHugh RK. Delay discounting in opioid use

disorder: differences between heroin and prescription opioid users. Drug and alcohol dependence.

2016; 169:68–72. https://doi.org/10.1016/j.drugalcdep.2016.10.009 PMID: 27776247

5. Yi R, Mitchell SH, Bickel W. Delay discounting and substance abuse-dependence. In: Madden GJ

Bickel WK, editor. Impulsivity: The behavioral and neurological science of discounting. American Psy-

chological Association; 2010. p. 191–211.

6. Chib VS, Rangel A, Shimojo S, O’Doherty JP. Evidence for a common representation of decision values

for dissimilar goods in human ventromedial prefrontal cortex. Journal of Neuroscience. 2009; 29

(39):12315–12320. https://doi.org/10.1523/JNEUROSCI.2575-09.2009 PMID: 19793990

7. Kable JW, Glimcher PW. The neural correlates of subjective value during intertemporal choice. Nature

neuroscience. 2007; 10(12):1625–1633. https://doi.org/10.1038/nn2007 PMID: 17982449

8. Levy DJ, Glimcher PW. Comparing apples and oranges: using reward-specific and reward-general sub-

jective value representation in the brain. Journal of Neuroscience. 2011; 31(41):14693–14707. https://

doi.org/10.1523/JNEUROSCI.2218-11.2011 PMID: 21994386

9. Chong TTJ, Apps M, Giehl K, Sillence A, Grima LL, Husain M. Neurocomputational mechanisms under-

lying subjective valuation of effort costs. PLoS biology. 2017; 15(2):e1002598. https://doi.org/10.1371/

journal.pbio.1002598 PMID: 28234892

10. Rogers RD. The roles of dopamine and serotonin in decision making: evidence from pharmacological

experiments in humans. Neuropsychopharmacology. 2011; 36(1):114–132. https://doi.org/10.1038/

npp.2010.165 PMID: 20881944

11. Schultz W. Dopamine signals for reward value and risk: basic and recent data. Behavioral and brain

functions. 2010; 6(24):1–9. https://doi.org/10.1186/1744-9081-6-24 PMID: 20416052

12. Chong TTJ, Bonnelle V, Manohar S, Veromann KR, Muhammed K, Tofaris GK, et al. Dopamine

enhances willingness to exert effort for reward in Parkinson’s disease. cortex. 2015; 69:40–46. https://

doi.org/10.1016/j.cortex.2015.04.003 PMID: 25967086

PLOS COMPUTATIONAL BIOLOGY Response vigour during intertemporal choice

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010096 June 10, 2022 22 / 25

https://doi.org/10.1901/jeab.2011.96-423
http://www.ncbi.nlm.nih.gov/pubmed/22084499
https://doi.org/10.1523/JNEUROSCI.3489-09.2009
https://doi.org/10.1523/JNEUROSCI.3489-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/20016088
https://doi.org/10.1027/1016-9040/a000360
https://doi.org/10.1016/j.drugalcdep.2016.10.009
http://www.ncbi.nlm.nih.gov/pubmed/27776247
https://doi.org/10.1523/JNEUROSCI.2575-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19793990
https://doi.org/10.1038/nn2007
http://www.ncbi.nlm.nih.gov/pubmed/17982449
https://doi.org/10.1523/JNEUROSCI.2218-11.2011
https://doi.org/10.1523/JNEUROSCI.2218-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21994386
https://doi.org/10.1371/journal.pbio.1002598
https://doi.org/10.1371/journal.pbio.1002598
http://www.ncbi.nlm.nih.gov/pubmed/28234892
https://doi.org/10.1038/npp.2010.165
https://doi.org/10.1038/npp.2010.165
http://www.ncbi.nlm.nih.gov/pubmed/20881944
https://doi.org/10.1186/1744-9081-6-24
http://www.ncbi.nlm.nih.gov/pubmed/20416052
https://doi.org/10.1016/j.cortex.2015.04.003
https://doi.org/10.1016/j.cortex.2015.04.003
http://www.ncbi.nlm.nih.gov/pubmed/25967086
https://doi.org/10.1371/journal.pcbi.1010096


13. Le Bouc R, Rigoux L, Schmidt L, Degos B, Welter ML, Vidailhet M, et al. Computational dissection of

dopamine motor and motivational functions in humans. Journal of Neuroscience. 2016; 36(25):6623–

6633. https://doi.org/10.1523/JNEUROSCI.3078-15.2016 PMID: 27335396

14. Michely J, Viswanathan S, Hauser TU, Delker L, Dolan RJ, Grefkes C. The role of dopamine in dynamic

effort-reward integration. Neuropsychopharmacology. 2020; 45(9):1448–1453. https://doi.org/10.1038/

s41386-020-0669-0 PMID: 32268344

15. Pessiglione M, Schmidt L, Draganski B, Kalisch R, Lau H, Dolan RJ, et al. How the brain translates

money into force: a neuroimaging study of subliminal motivation. Science. 2007; 316(5826):904–906.

https://doi.org/10.1126/science.1140459 PMID: 17431137

16. Le Bouc R, Pessiglione M. Imaging social motivation: distinct brain mechanisms drive effort production

during collaboration versus competition. Journal of Neuroscience. 2013; 33(40):15894–15902. https://

doi.org/10.1523/JNEUROSCI.0143-13.2013 PMID: 24089495

17. Shadmehr R, Reppert TR, Summerside EM, Yoon T, Ahmed AA. Movement vigor as a reflection of sub-

jective economic utility. Trends in neurosciences. 2019; 42(5):323–336. https://doi.org/10.1016/j.tins.

2019.02.003 PMID: 30878152

18. Reppert TR, Lempert KM, Glimcher PW, Shadmehr R. Modulation of saccade vigor during value-based

decision making. Journal of Neuroscience. 2015; 35(46):15369–15378. https://doi.org/10.1523/

JNEUROSCI.2621-15.2015 PMID: 26586823

19. Peters J, D’Esposito M. The drift diffusion model as the choice rule in inter-temporal and risky choice: a

case study in medial orbitofrontal cortex lesion patients and controls. PLOS Computational Biology.

2020; 16(4):e1007615. https://doi.org/10.1371/journal.pcbi.1007615 PMID: 32310962
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