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INTRODUCTION

Microalgae have garnered extensive interest as renewable fuel feedstocks due to their high
production potential relative to terrestrial crops, and unique cultivation capacity on non-arable
lands (Wijffels and Barbosa, 2010; Davis et al., 2011). The oleaginous chlorophyte Chlorella vulgaris
represents a promisingmodel microalgal system and production host, due to its ability to synthesize
and accumulate large quantities of fuel intermediates in the form of storage lipids (Guarnieri et al.,
2011, 2012; Gerken et al., 2013; Griffiths et al., 2014; Zuñiga et al., 2016). Recent omic analyses
have identified transcriptional, post-transcriptional and -translational mechanisms governing lipid
accumulation in this alga (Guarnieri et al., 2011, 2013), including active protein nitrosylation
(Henard et al., 2017). Here we report the draft nuclear genome and annotation of C. vulgarisUTEX
395.

MATERIALS AND METHODS

Cultivation and Genomic DNA Isolation
For genomic DNA isolation C. vulgaris UTEX 395 was grown photoautotrophically to exponential
phase in Bold’s Basal Media, under constant illumination (200µEm−2 s−1 white fluorescent light),
and supplemented with 2%CO2/air, as described previously (Guarnieri et al., 2011, 2013). Genomic
DNA was extracted following the protocol adapted from Varela-Alvarez et al. (2006).

Genome Sequencing and Assembly
Sequencing was performed using Illumina HiSeq 2000 technology with 108 cycles. 171,758,456
paired-end (SIPES) reads were trimmed to an error rate of <1:100, then trimmed until no
ambiguous nucleotides remain; reads shorter than 20 nucleotides were discarded, retaining
168,611,711 reads, of which 165,874,962 remained as pairs. Resultant reads were assembled using
a DeBruijn method; 113 scaffolds were generated at ≥1,000x depth of coverage, 24 of which were
longer than 100 kb and 566 of which were 20–100 kb, ultimately generating a total assembly size of
37.34Mb, with a 61.5% GC content. This represents the smallest nuclear genome size and lowest
GC content reported to date for a sequenced Chlorella species (Supplemental Table 1).

Genome Annotation
Transcript prediction was conducted using Maker (Cantarel et al., 2008; Campbell et al., 2014).
Transcripts were six-frame translated into protein sequences and functionally annotated with EC,
GO and InterProScan identifiers using two approaches. First, a bidirectional BLASTp against
SwissProt sequences was carried out and paralogs were identified using BLASTclust. Secondly,
InterProScan and PRIAM analyses with gene and genome-specific profiles were conducted.

To facilitate refined annotation and comprehensive pathway mapping of C. vulgaris,
a draft nuclear genome sequence was generated and integrated with previously acquired
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de novo transcriptomic datasets (Guarnieri et al., 2011).
7,100 transcripts were predicted from the C. vulgaris
genome, resulting in 6,056 annotated gene models. Genomic
queries identified complete gene sets encoding fatty acid
and triacylglyceride biosynthetic pathways. The nitrogen
assimilation inventory includes genes for nitrate/nitrite
transporters and reductases. The genome also encodes
meiosis-associated DMC1 and Rad51 DNA recombinase
homologs (Fanning et al., 2006; Broderick et al., 2010),
offering a possibility that sexual mating may occur in
this microalga. Genes for the synthesis of the global
stress response alarmone, guanine tetraphosphate (ppGpp)
(Takahashi et al., 2004; Tozawa and Nomura, 2011), were
also identified. Combined, these genetic pathways will
enable potential markerless strain-engineering strategies
targeting lipid accumulation in the absence of stress
induction, ultimately facilitating the development of robust,
deployment-viable microalgae for cost-competitive biofuel
production.

DIRECT LINK TO DEPOSITED DATA AND

INFORMATION TO USERS

This whole-genome project has been deposited at
DDBJ/EMBL/GenBank under the accession LDKB00000000.
The version described in this paper is version LDKB01000000.
Additional details can be found at http://www.nrel.gov/
biomass/proj_microalgal_biofuels.html and http://chlorella.
genomeprojectsolutions-databases.com.
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