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Abstract 

The sirtuins family is well known by its unique nicotinamide adenine dinucleotide (NAD+)-dependent 
deacetylase function. The most-investigated member of the family, Sirtuin 1 (SIRT1), accounts for 
deacetylating a broad range of transcription factors and coregulators, such as p53, the Forkhead box O 
(FOXO), and so on. It serves as a pivotal regulator in various intracellular biological processes, including 
energy metabolism, DNA damage response, genome stability maintenance and tumorigenesis. Although 
the most attention has been focused on its intracellular functions, the regulatory effect on extracellular 
microenvironment remodeling of SIRT1 has been recognized by researchers recently. SIRT1 can regulate 
cell secretion process and participate in glucose metabolism, neuroendocrine function, inflammation and 
tumorigenesis. Here, we review the advances in the understanding of SIRT1 on remodeling the 
extracellular microenvironment, which may provide new ideas for pathogenesis investigation and 
guidance for clinical treatment. 
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Introduction 
Extracellular microenvironment has been 

considered as a crucial element that influences cellular 
proliferation and metabolism [1, 2]. It mediates the 
communication and interaction between neighboring 
cells, different tissue cells, and even distinct organs for 
the insurance of normal functions [3, 4]. Meanwhile, 
the extracellular microenvironment can be reformed 
by intracellular proteins through regulating the 
processes and cargos of cell secretion [5]. As the 
significant nicotinamide adenine dinucleotide- 
dependent protein deacetylase, sirtuin 1 (SIRT1) is 
extensively involved in various cellular processes and 
metabolism [6, 7]. Our previous work revealed that 
SIRT1 played important roles in genome stability 
maintenance [8], DNA damage response [9] and 

autophagy [10]. We further realize that SIRT1 not only 
affects intracellular homeostasis, but also participates 
in the extracellular microenvironment remodeling. In 
this study, we review the related literatures focusing 
on SIRT1 function as a cell secretion regulator, hoping 
to find new ways and targets for future research and 
clinical treatment. 

SIRT1 modulates glucose metabolism 
through cell secretion 

SIRT1 has got long-term attention and well 
known for playing a pivotal role in glucose 
homeostasis and Type 2 Diabetes [11, 12]. One of its 
functions is to regulate insulin secretion. In pancreatic 
beta cells, SIRT1 promotes insulin secretion in 
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response to glucose stress by suppressing the 
expression of uncoupling protein 2 (UCP2) [13-15] 
(Fig. 1A). As a negative regulator of insulin, increased 
expression of UCP2 in the pancreatic β-cells results in 
the decrease of glucose-stimulated insulin secretion 
(GSIS) leading to pancreatic β-cell dysfunction and 
development of type-II diabetes [16, 17]. UCP2 is 
shown to regulate glucose metabolism and insulin 
secretion through many biological activities, 
including reducing NADH levels, decreasing ATP 
production, weakening mitochondrial membrane 
potential and suppressing generation of superoxide 
[18-20]. SIRT1 can also enhance insulin secretion of 
pancreatic β-cells through the hydrolase 
dimethylarginine dimethylaminohydrolase 2 
(DDAH2)/secretagogin pathway [21] (Fig. 1B). SIRT1 
boosts DDAH2 expression on the transcriptional level 
by activating promoter of 5’ deletion constructs. The 
overexpression of DDAH2 induces the upregulation 
of secretagogin, an EF-hand Ca2+-binding protein 
which is involved in vesicle secretion [22]. Besides, 
DDAH2 was reported to have directly interaction 
with secretagogin [23]. 

Furthermore, SIRT1 itself can be regulated by in 
the process of insulin secretion [24]. MicroRNA mir-9 
targets and reduces SIRT1 protein level during 
glucose-dependent insulin secretion. Some protein 
and compounds can also influence insulin secretion 
through regulating SIRT1 activity. For instance, 
Wallerian degeneration slow (WldS), a fusion protein 
with NAD biosynthesis activity, can increase NAD 

level, which leads to the enhanced SIRT1 activity to 
downregulate UCP2 [25, 26]. Resveratrol, currently a 
most potent natural compound SIRT1 activator, 
enhances insulin secretion in human islets in response 
to both glucose and high fat diet [27, 28]. 
Additionally, resveratrol improves insulin induced 
NO secretion partly through activating SIRT1 in 
endothelial cells [29]. This effect might be related to 
improvement of endothelial cell function in animal 
models and in humans [30-32]. 

In mouse models, β-cell specific SIRT1-overex-
pression transgenic mice have presented enhanced 
glucose-stimulated insulin secretion and improved 
glucose tolerance at age of 3 and 8 months [13]. 
However, the phenotype completely vanishes when 
the transgenic mice reach 18 to 24 months [33]. 
Meanwhile, in these mouse models, decreased SIRT1 
expression impairs glucose sensing as well as insulin 
secretion [34, 35]. 

In mature adipocytes, SIRT1 negatively regulates 
adiponectin secretion through inhibiting peroxisome 
proliferator activated receptor γ (PPARγ) activity [36] 
(Fig. 1D). Suppression of SIRT1 or activation of 
PPARγ upregulates the protein level of endoplasmic 
reticulum oxidoreductase 1 α (Ero1-L α) and 
stimulates secretion of high-molecular-weight 
adiponectin. The secreted complexes of adiponectin 
was reported to sensitize liver and muscle cells to 
insulin in response to various metabolic states [37, 38]. 
Secretion of fatty acid binding protein 4 (FABP4), a 
lipid carrier protein, from white adipose tissue is 

 

 
Figure 1. SIRT1 modulates glucose metabolism through regulating cell secretion. (A) SIRT1 suppresses UCP2 expression to upregulate insulin secretion. (B) SIRT1 enhances 
insulin secretion through DDAH2/secretagogin pathway. (C) SIRT1 increases FABP4 secretion to regulate hepatic glucose production and glucose-stimulated insulin secretion. 
(D) SIRT1 inhibits PPARγ activity to downregulate Ero1-L α expression, and suppresses adiponectin secretion. 
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dependent on SIRT1 in response to lipolytic 
stimulation [39]. The secretion process also requires 
early components of autophagy such as beclin-1. The 
secreted FABP4 in circulating system is a signal 
molecule transmitted from adipose tissue to liver to 
augment the production of hepatic glucose [40] (Fig. 
1C). Circulating FABP4 level is positively correlated 
with glucose-stimulated insulin secretion [41]. 

SIRT1 regulates lipid metabolism 
through cell secretion 

Various researches have proved that SIRT1 plays 
a role in regulating lipid metabolism [42]. Among 
those reports, SIRT1 was found to be a protective 
factor in the development of atherosclerosis [43-45]. 
SIRT1 inhibits secretion of thrombosis promoting 
factors, von Willebrand factor (vWF) and P-selectin, 
from vascular endothelial cells, thus preventing 
thrombosis formation [46]. This effect is probably 
relevant to the regulation of autophagy through 
SIRT1/FOXO1 pathway. According to Miranda’s 
work, SIRT1 activation reduces hepatic secretion of a 
serine protease, proprotein convertase subtilisin/ 
kexin type 9 (PCSK9). The secreted mediates 
lysosomal degradation of hepatic low-density 
lipoprotein receptor (LDLR) and prevents its 
internalizing recycle to cell surface [47]. PCSK9 
accumulation increases LDLR protein degradation 
and then enhances LDL-cholesterol plasma clearance, 
leading to decreased plaque formation [48, 49]. These 
results are consistent with reduced levels of blood 

cholesterol and adipokines in SIRT1 transgenic mice 
[50-52]. 

SIRT1 contributes to neuroendocrine 
secretion 

In clinical work, Diabetes mellitus is often found 
to be coexisted with hypothyroidism [53]. This might 
be partially related to the upregulation of advanced 
glycation end products (AGEs), high glucose induce 
advanced glycation end products receptor (RAGE) 
and the inactivation of SIRT1/nuclear factor erythroid 
2-related factor (NRF2) pathway [54-56] (Fig. 2B). 
High glucose and AGEs induce upregulation of 
RAGE, downregulation of SIRT1 and NRF2, and 
decrease of proteins related to thyroid hormone (TH) 
secretion, thus finally resulting in decreased TH 
secretion and circulating TH deficiency (Fig. 2C). 
Sayaka et al reveals that in pituitary gland, SIRT1 
multiples exocytosis of thyroid stimulating hormone 
(TSH) containing granules by deacetylating 
phosphatidylinositol-4-phosphate 5-kinase γ (PIP5Kγ) 
[57], which mainly mediates the large dense-core 
vesicle fusion [58] (Fig. 2C). Consistently, high 
acetylated PIP5Kγ and decreased thyroid hormone in 
the plasma were observed in SIRT1 knock out mice 
[57, 59]. Hormone disorder displayed in 
neuron-specific SIRT1 knock out mice showed that 
more work still needs to be done to address how 
SIRT1 modulates neural cell secretion and 
somatotropic signaling [60]. 

 

 
Figure 2. SIRT1 regulates neuroendocrine secretion. (A) SIRT1 upregulates S100β release. (B) AGEs bind to RAGE and inactivates SIRT1/NRF2 pathway, and decreases TH 
secretion. (C) SIRT1 deacetylates PIP5Kγ to increase TSH release, and stimulates TH secretion. 
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Figure 3. SIRT1 mediates inflammatory microenvironment remodeling by deacetylating HMGB1 to reduce its secretion. Released HMGB1 forms complex with CXCL12 and 
CXCR4 to induce the recruitment of mononuclear cells. HMGB1 also binds to TLR2, TLR4 and RAGE to mediate cytokines or chemokines secretion of immune cells.  

 
In previous studies, SIRT1 was found to be 

predominantly expressed in neurons and highly 
involved in neurodegenerative diseases [61, 62]. 
SIRT1 is revealed to be neuroprotective in 
amyloid-β-induced ROS production, DNA damage 
and oxidative modifications [63, 64]. Qin et al identify 
in C6 rat glioma cells that enhanced expression of 
SIRT1 can upregulate the release of a calcium-binding 
protein S100β [65]. The extracellular S100β functions 
as cytokines with both neurotrophic and neurotoxic 
effects and affects the activity of several cell types, 
such as neurons [66-68], astrocytes [69, 70], and 
microglia [71, 72], through the surface receptor RAGE 
[73-76] (Fig. 2A). 

Moreover, SIRT1 positively affects the NAD 
biosynthesis in the hypothalamus by distinctly 
regulating the release of Nicotinamide 
phosphoribosyl transferase (NAMPT) in adipose 
tissue. In this process, SIRT1 predisposes NAMPT to 
be secreted to the extracellular enzyme pool by 
deacetylating it at lysine 53 [77]. 

SIRT1 and inflammatory 
microenvironment 

High mobility group box 1 (HMGB1) was 
identified as a structural protein of chromatin which 
functioning in transcription [78, 79]. But when 
secreted into the extracellular microenvironment, it 
induces acute and chronic inflammation as a 
proinflammatory cytokine [80-83]. HMGB1 mediates 
the recruitment of mononuclear cells [84], the release 
of cytokines or chemokines [85-87], and the activation 
of effector T cells and suppression of regulatory T 
cells[88, 89] (Fig. 3). The exocytosis of HMGB1 is 
highly dependent on its level of acetylation [90]. 

SIRT1 attenuates the exocytosis of HMGB1 through 
deacetylation [91-93]. The secretion of HMGB1 into 
the extracellular microenvironment can be 
downregulated by upregulating the activity or 
expression of SIRT1 [91, 94]. This SIRT1-mediated 
mechanism has been described in Zeng’s research and 
can prevent non-alcoholic fatty liver disease induced 
by high fat diet [95]. In response to the stimulation of 
H2O2, suppression of SIRT1 leads to the upregulation 
of HMGB1 released from hepatocytes [96]. 
Intriguingly, secretion of HMGB1 from kidney cells 
increases in early stage of hemorrhagic shock by 
downregulation of SIRT1 expression level [97]. In 
turn, downregulation of circulating HMGB1 by SIRT1 
protects liver from ischemic injury [98]. This 
phenomenon portends that the secretion of HMGB1 
changes in different organs and extracellular 
microenvironment dependent on SIRT1 activity. 

SIRT1 and tumor microenvironment 
SIRT1 is proved to be highly involved in cancer 

because of its underlying functions in tumorigenesis 
[99-101], senescence [102, 103], immunity [104, 105] 
and inflammation [106]. Chronic lymphocytic 
leukemia creates its suitable microenvironment for 
survival through the release of aforementioned 
protein, HMGB1 [107]. Besides, the extracellular 
S100β, which can be regulated by SIRT1, participates 
in the recruitment and activity modulation of 
monocytes in tumor microenvironment [65, 108, 109]. 
A recent study exhibits that inhibition of SIRT1 by 
caveolin-1 in senescent fibroblasts promotes the 
secretion of interleukin 6 (IL-6) and stimulates tumor 
growth [110].  
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Figure 4. SIRT1 increases the expression of ATP6V1A to maintain pH level of lysosomes. Down-regulation of SIRT1 promotes MVBs formation and enhancing protein cargos 
released by exosomes to dissolve the cell matrix of tumor microenvironment.  

 
The latest progress discovers that SIRT1 is 

responsible for the change of microenvironment by 
regulating the secretion of exosomes [111] (Fig. 4). In 
breast cancer, loss of SIRT1 enhances the secretion of 
pro-tumorigenic exosomes and promotes cancer 
invasion [112]. In triple-negative breast cancer, 
down-regulating SIRT1 levels decreases the 
expression of ATPase H+ transporting V1 subunit A 
(ATP6V1A), a particular subunit of the vacuolar-type 
H+ ATPase (V-ATPase).  It is responsible for 
acidification of lysosomes and degradation of protein. 
Disruption of the degradation process leads to the 
reduction of multi-vesicular bodies (MVBs) and the 
formation of larger MVBs. Finally, the imbalanced 
MVB formation promotes enhancing protein cargos 
released by exosomes [113, 114]. The released cargos 
dissolve the extracellular matrix of normal cells 
adjacent to tumor cells and destroy para cancer tissue 
structures. This SIRT1-dependent mechanism enables 
cancer cells to create the suitable extracellular 
microenvironment for the expansion of themselves. In 
senescent stromal cells, SIRT1-loss also causes 
impairment of lysosomes acidification and protein 
degradation. That is why senescent cells presumably 
prefer to release small extracellular vesicles into the 
tumor microenvironment, which enhances the 
aggressiveness and drug resistance of recipient cancer 
cells mediated by ATP binding cassette subfamily B 
member 4 (ABCB4) [115]. 

Conclusions 
Accumulating evidences suggest that SIRT1 has 

wide effects on regulating extracellular microenviron-

ment through cell secretion. Changes of expression or 
activity of SIRT1 can result in functional variations of 
the neuroendocrine system, inflammatory and tumor 
microenvironment through driving proteins, cargos 
in exocytosis vesicles and exosomes secreting into 
extracellular microenvironment. The released 
proteins functions as enzymes, cytokines, 
neuroendocrine factors and ligands of cell surface 
receptors. These molecules regulate downstream 
target cells bringing about different effects. These 
variations are involved in glucose metabolism, 
TH/TSH secretion, lipid metabolism, inflammation in 
thrombosis, tumorigenesis and metastasis. 

We should give more concern to the extracellular 
microenvironment remodeling function of SIRT1 in 
scientific researches and clinical treatment. Further 
research on new drug design may focus on its 
regulatory effect of extracellular mechanisms, 
targeting SIRT1 activity or the secreted downstream 
proteins [116, 117].  

  It is worth noting that the SIRT1 dependent 
HMGB1 secretion in kidney and liver shows different 
alterations in ischemic injury [97, 98]. This prompts 
that SIRT1-dependent extracellular microenviron-
ment regulation may be variant in different organs 
and cause opposite results. Thus, in using drugs 
targeted for SIRT1 in clinical treatment or assessing 
the medical effects, the specific extracellular effects 
should be taken into consideration. 
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