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Abstract: The investigation of plant organisms by means of data-derived systems biology
approaches based on network modeling is mainly characterized by genomic data, while the
potential of proteomics is largely unexplored. This delay is mainly caused by the paucity of plant
genomic/proteomic sequences and annotations which are fundamental to perform mass-spectrometry
(MS) data interpretation. However, Next Generation Sequencing (NGS) techniques are contributing
to filling this gap and an increasing number of studies are focusing on plant proteome profiling and
protein-protein interactions (PPIs) identification. Interesting results were obtained by evaluating
the topology of PPI networks in the context of organ-associated biological processes as well as
plant-pathogen relationships. These examples foreshadow well the benefits that these approaches may
provide to plant research. Thus, in addition to providing an overview of the main-omic technologies
recently used on plant organisms, we will focus on studies that rely on concepts of module, hub and
shortest path, and how they can contribute to the plant discovery processes. In this scenario, we will
also consider gene co-expression networks, and some examples of integration with metabolomic data
and genome-wide association studies (GWAS) to select candidate genes will be mentioned.
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1. Introduction

During the 20th century, biological research was characterized by Reductionism [1]. By assuming
that “the whole is no more than the sum of its parts”, Reductionism states that every biological theory
can be deduced by studying the simplest components of biological systems. This dissection has allowed
for a listing of the molecules most present in a cell and reveal the complexity of biological systems as
well as the limitations of Reductionism itself. In fact, the mathematician and theoretical physicist Jules
Henri Poincaré stated that “science is built up with facts, as a house is with stones. But a collection
of facts is no more a science than a heap of stones is a house”. In other words, biological systems
have emergent properties that cannot be explained or predicted without taking into consideration the
molecular interactions that characterize them [2].

Starting from the 21st century, a new concept of investigation called Systems Biology has been
adopted to evaluate biological systems from a holistic point of view, by assuming they are made up of
molecular networks integrated and communicating on multiple levels [3] (Figure 1). The development of
systems biology-oriented approaches is the result of the combination of many scientific disciplines,
including biology, mathematics and bioinformatics. In this scenario, important players are the
-omic technologies that allow the collection of massive amounts of data faster, efficiently and at
reasonable costs [4–6]. Mathematical models have been developed to integrate -omic data at a multiscale
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level [7], while computational tools and algorithms assist biologists in data processing to extract the
most relevant information in an objective way [8].
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Figure 1. Holistic view of plant organisms. (A) Like each living organism, it is assumed that plants
are made up of networks integrated and communicating on a multiple scale. They include molecular
networks, where genes, transcripts, proteins and metabolites interact to carry out biological functions
and processes, and social networks, where plants interact with other organisms/factors and are
subjected to abiotic and biotic stresses; (B) Steps and main components to perform data-derived
systems biology approaches.

The most popular approaches to investigate -omic data at the system level are based on
network modeling [9]. While they are already widespread in biomedical [10] and pharmaceutical
research [11], their potential to elucidate plant organisms remains, to date, largely unexplored (Figure 2).
However, plant biologists are demonstrating their interest and a growing number of studies are
addressing the investigation of plant issues, including biotic and abiotic stress, from molecular to
systems biology perspectives [12,13]. This landscape of applications is dominated by the use of
transcriptomic data usually visualized and analyzed by means of gene co-expression networks [14].
It is noteworthy that some studies based on integrative strategies combined transcript and metabolic
profiles with genome-wide association studies (GWAS) [15–17] and quantitative trait loci (QTLs)
data [18,19]. On the contrary, fewer studies relied on the combination of high-throughput proteomic
data and protein-protein interaction (PPI) network models [20–22]. However, in the last few years
an increasing number of authors focused their activity on the high-throughput profiling of plant
proteomes [23–30] as well as on the experimental [31–33] and computational detection of PPIs [34–37].

Based on these premises, our review aims to explore the state of the art and the perspective of
-omic technologies and systems biology-based approaches in contributing to elucidate the biological
mechanisms underlying plant traits. Special attention will be given to the potential that may derive
from the topological analysis of co-expression and PPI network models [38]. Although to date
few studies of this type have been carried out in the context of plant biology, some examples
well foreshadow the benefits that these approaches may provide to plant research and they will
be mentioned in greater detail.
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Figure 2. Publications retrieved by interrogating the free search engine PubMED (Data updated in
February 2018). Red bars: publications found following the search “Co-expression OR RNA-seq OR
microarray [Title/Abstract] AND Organism name”; Orange bars: “Co-expression [Title/Abstract]
AND Organism name”; Yellow bars: “Protein-protein interaction [Title/Abstract] AND Organism
name”; Green bars: “Metabolome [Title/Abstract] AND Organism name”; Blue bars: “Genome-wide
association study [Title/Abstract] AND Organism name”; (A) Publications concerning a set of plant
organisms; (B) Publications concerning a set of model organisms.

2. Omic Technologies in the Plant World: From Genomics to Metabolomics by Way of Proteomics

A system-wide understanding of the molecular mechanisms underlying biological phenotypes
has been achieved by the increasing surge of -omic data, both new and already available in public
repositories. Data-derived systems biology approaches aim to use these data to infer new models or to
integrate them into existing ones, with the purpose of formulating new hypotheses to be tested [39].
They may be basically clustered in those that formulate models starting from experimental data, e.g.,
co-expression network [40], gene regulatory networks [41], protein-DNA network [42], and those that
integrate experimental-omic data on existing models, e.g., pathways [43], protein-protein interaction
(PPI) network [44]. Ideally, multi-omic approaches have the advantage of revealing different domains
of gene function. At the same time, the hypotheses formulated by multiple independent data sources
are more likely to be robust and true. Thus, the outcome of data-derived systems biology approaches
is closely related to the availability of molecular profiles listing genes, transcripts, proteins and
metabolites (Figure 3).

An overview of the main analytical technologies will be provided in the following subsections and
special attention will be given to proteome and PPIs profiling. Although this scenario is characterized
by bioinformatic procedures whose role is not marginal for the performance of these approaches,
a detailed description of tools and algorithms to assist researchers in -omics data processing is not
the focus of this review. However, a representative list reporting some tools mentioned in the text is
provided (Table S1).
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Figure 3. Omics data and analytical technologies. (A) Example of Arabidopsis thaliana genes, transcripts,
proteins and metabolites available in specialized databases; (B) Main analytical technologies for
profiling genes, transcripts, proteins and metabolites. Data complexity increase from genome
toward metabolome. To date about 39,179 (more than 23,000 are unreviewed) Arabidopsis thaliana
proteins are stored in the UNIPROT database, while it is estimated that plant kingdom metabolome
counts more than 200,000 metabolites with a vast range of functional and structural diversity;
(C) Main steps for handling-omics data from storage to biological interpretation. NGS: Next Generation
Sequencing; LC: Liquid Chromatography; CE: Capillary Electrophoresis; GC: Gas Chromatograpgy;
FT: Fourier Transform; MS: Mass Spectrometry.

2.1. Genomics

Despite the plant’s genome size and their complex ploidy, Next Generation Sequencing
(NGS) techniques are having an impact on plant research and more and more genomes are
decoded (Figure 4A). Although microarrays are still widely used, especially in meta-expression
analysis studies, these technologies are revolutionizing genomic and transcriptomic studies. In fact,
NGS allows the sequencing of a whole genome rapidly and at relatively low cost, also providing
measurement of different RNA populations (siRNA, miRNA, mRNA), unknown sequences, alternative
splicing and mutations [45]. These improvements are having a strong impact on the analysis
of non-model organisms, including plant ones. In fact, in addition to technical issues related to
chemical hybridization, e.g., cross-hybridization, non-specific hybridization, and limited detection
range of expression, the use of microarrays is limited to organisms with available genome
sequences [46].
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Figure 4. Genomic and transcriptomic data. (A) Snapshot from Plabi database (http://www.plabipd.
de) showing an interactive display of all plants which have had their genomes sequenced to date.
Additional data such as publication data, genome size and a link to the paper is provided for all
genomes; (B) GWAS are observational studies that correlate a set of specific variants (single-nucleotide
polymorphisms, SNPs) in a population with phenotypic traits. In the case of QTL studies, specific
genome positions are put in relationship with quantitative traits; (C) Matrices of transcriptomic data
are processed by statistics that measure the dependence between variables e.g., Pearson’s correlation,
Spearman’s correlation, and Mutual information, to model them in the form of co-expression network
which is subsequently evaluated at a functional and topological level; (D) Integration of results obtained
by the topological evaluation of the co-expression networks with the genetic architecture of genes
provided by GWAS and QTL studies.

In addition to positively affecting the feasibility of the high-throughput proteomic analysis for
organisms poorly sequenced at the proteomic level, the availability of NGS techniques gives the
opportunity to perform genome-wide association (GWAS) [47] and quantitative trait locus (QTL)
studies [48] (Figure 4B). These approaches are widely used in plant biology and a particular interest
lies in investigating crop species [47]. For example, recent studies characterized genetic networks
underlying agronomical traits in soybean [49], while others adopted these approaches to identify
functional associations between genes and metabolism in Arabidopsis thaliana [15–17].

http://www.plabipd.de
http://www.plabipd.de


Proteomes 2018, 6, 27 6 of 34

In comparison to proteomic and metabolomic technologies, genomics development remains
surely ahead. In fact, thanks to technologies like microarrays, data-derived systems biology was first
conceived to evaluate transcriptomic data [9]. A popular approach widely used relies on statistics
that measure the dependence between variables [50], modeling the experimental data in the form of
co-expression networks that are topologically evaluated (Figure 4C). Of note, some authors combined
the topological evaluation of co-expression networks with the genetic architecture of genes and
signatures provided by GWAS and QTL studies [19,51,52]. The integrative approaches used in these
studies allow a more robust formulation of hypotheses as well as the possibility to improve the
discovery of new candidate genes (Figure 4D). At the same time, the availability of multi-omic data
allows for the elucidation of different aspects of the gene function.

2.2. Proteomics

Plant proteome analysis has been historically performed by two-dimensional gel electrophoresis
(2DE) or 2-D Fluorescence Difference Gel Electrophoresis (2D-DIGE) which carry a series of
drawbacks, ranging from the laborious protocols to the poor resolution of underrepresented proteins,
with extreme pI, MW or highly hydrophobic [53]. Many of these limitations were improved over the
years and many laboratories still use these methodologies. However, the evolution of proteomic
technologies based on the combination of liquid chromatography (LC) and mass spectrometry
(MS) [54] is strongly attracting the attention of plant biologists, and some topics, including tissue
profiling [27,55], stages of development [30,56] and proteome modulation between physiological and
stress conditions [23,24], have been already addressed.

Current high-throughput proteomic methodologies based on LC-MS can be grouped into shotgun
and targeted proteomics, or based on their data acquisition mode e.g., Data Dependent Acquisition
(DDA) and the more recent Data Independent Acquisition (DIA ) (Figure 5). The advances in LC
separation and MS instrumentation are providing more and more high analytical reproducibility,
speed in acquisition, high-resolution and sensitivity up to femtomoles [57–59]. The improvement of
these aspects, coupled with sample preparation protocols [60] and advanced bioinformatic tools [61],
may be translated into higher plant proteome coverage, including post-translational modifications
(PTMs) and PPIs [62]; PTMs identification often requires specific enrichment steps, like in the case
of phosphorylation or glycosylation, which complexify sample preparation procedure as well as
protein quantitation [63]. To reach these purposes, a key factor is the massive application of the
high-throughput genomic technologies in order to increase the number of sequenced genomes,
including that of the crop species [64]. The availability of genomic sequences is fundamental in the
application of high-throughput proteomic technologies for the investigation of non-model plants [65].
In fact, they enable the use of algorithms and software to process and interpret the huge amount
of experimental tandem mass spectra (MS/MS) produced per experiment [66]. Of note, spectra
interpretation can now be performed by De Novo sequencing algorithms that do not require the
availability of reference sequences [67]. They provide the opportunity to improve the proteomic
analysis of non-model plant organism [68] and open new perspectives in profiling and validating gene
expression at the protein level [69].
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DDA DIA

Figure 5. Proteomic methodologies to analyse plant proteomes. (A) 2DE (2-Dimensional
Electrophoresis) and 2D-DIGE (2 Dimensional Fluorescence Difference Gel Electrophoresis) are the
most popular approaches to resolve and quantify plant proteins, respectively; (B) After spot-cutting,
protein identification is usually performed by LC-MS; (C) Data Dependent Acquisition (DDA) and Data
Independent Acquisition (DIA) approaches are demonstrating a great capability to identify thousands
of proteins per sample, without any limitation in pI, MW or hydrophobicity; the green box shows the
limits of 2DE resolution; (D) At the same time, the DDA and DIA approaches allow the quantification of
hundreds of proteins simultaneously by label- and label-free approaches; (E) SRM/MRM is the elective
method to validate protein quantitations by MS and it is often applied to confirm the differential
expression discovered by 2D-DIGE or shotgun proteomics. Selection of the parent ion occurs in the
first mass analyzing quadrupole (Q1), which is set to a narrow mass window according to the masses
of the ion(s) of interest. Collision induced disassociation in the second quadrupole (Q2) yields the
fragmentation of the parent ion in product ions which are detected in the third quadrupole (Q3) which
is set to an appropriate narrow mass window. When Q3 is replaced by Q-Orbitrap we refer to parallel
reaction monitoring (PRM).

2.2.1. Shotgun Proteomics

Shotgun proteomics aim to identify proteins by analyzing a mixture of peptides through a
combination of high performance LC and tandem mass spectrometry (MS/MS) [70]. When peptides
are separated through on-line two dimensional HPLC, prior to MS/MS analysis, we refer to
Multidimensional Protein Identification Technology (MudPIT) [26,71]. Recent studies on plants
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confirmed that the MudPIT approach is an excellent tool for both qualitative and quantitative
proteomic analyses. Thousands of proteins and hundreds of differentially expressed proteins were
identified in leaves [23,25], calli [55] and calli’s secretome [72] from rice. Large scale profiling
was also performed on the Arabidopsis thaliana floral proteome [73]. As for the application of the
MudPIT approach to non-model organisms, Patel et al. identified 2358 proteins by analyzing the
eukaryotic microalga Chlamydomonas reinhardtii in response to a nitrogen source [74], while Islam et al.
identified a total of 4178 proteins by investigating the nitrogen remobilization in poplar [27].
In our laboratory experience we adopted the MudPIT approach to examine dynamic changes
in the protein composition during salt-stress adaptation in microsomes from Mesembryanthemum
crystallinum leaves [71], while more recently we investigated the early physiological, ionomic and
biochemical changes occurring in Cucumis sativus roots and leaves under single or combined Mo
and Fe starvation [26]. As for Mesembryanthemum crystallinum we contributed in investigating the
majority of the subunits of V-ATPase during the salt-induced transition from C3 to crassulacean
acid metabolism (CAM). In addition to identify and quantify these membrane proteins, usually
difficultly characterized by means of 2DE, we found some glycolytic enzymes, such as enolase
and phosphoenolpyruvate carboxylase 1, assuming their membrane association with subunits of
the vacuolar H(+)-ATPase V-ATPase as previously suggested [75]. In the case of Cucumis sativus the
identification of thousands proteins (>1400) and hundreds proteins differentially expressed highlighted
the central role of mitochondria in the coordination of Fe and Mo homeostasis and allowed us to
propose the first model of the molecular interactions between these elements. Moreover, it represents
one of the first studies concerning the large scale protein profiling of mitochondria purified from roots
of Cucumis sativus, and the simultaneous identification and quantification of hundreds of proteins was
a plus over previous similar works conducted with 2DE [76].

All studies mentioned in this section highlight the great capability of the MudPIT approach to
provide a good snapshot of the analyzed proteome in terms of proteins identified and differentially
expressed. In the case of non-model organisms, these profiles represent an important starting point to
verify thousands of predicted proteins as well as their PTMs. Unfortunately, it implies also that the
functional evaluation of these huge amounts of data is often limited due to the lack of well-defined
annotations, including PPIs. For example, only 124 out of 24,835 Cucumis sativus proteins stored
in UNIPROT database are at the moment manually annotated by means of a critical review of
experimentally proven or computer-predicted data, while this procedure, to date, has been applied to
less than 40% of Arabidopsis thaliana proteins (Figure 3).

2.2.2. Selected- and Multiple-Reaction Monitoring (SRM/MRM)

Since shotgun proteomics preferably fragment high-abundant precursor ions, dynamic range
and under-sampling issues represent their main limitations. In fact, although these phenomena
could be attenuated by performing biological and technical replicate analyses, they introduce a
certain element of randomness into peptide detection, impacting both protein identification and
quantification [77]. A more accurate protein quantitation is assured by targeted proteomic approaches,
e.g., selected- or multiple-reaction monitoring (SRM/MRM) mass spectrometry (MS) [78]. A triple
quadrupole mass spectrometer is usually used to monitor, fast, quantitatively and cheaply, a set of
predefined peptides in a complex mixture resulting from the enzymatic digestion of a protein sample.
The need to know a priori the so-called “transition” to specifically monitor those peptides, and thus
the related parent proteins, represents a limitation of these approaches and may explain their poor
use to quantify plant proteins. Nevertheless, due to the increasing application of shotgun proteomic
approaches we expect that an increasing number of MS spectra concerning plant proteins will be
stored in specialized databases to be computationally processed for assisting in the design of best
transitions [79]. Differently, a variant of this approach, called parallel reaction monitoring (PRM), is
based on Q-Orbitrap as the representative quadrupole-high resolution mass spectrum platform [80].
It is most suitable for quantification of multiple proteins with an attomole-level detection as well as
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in assay development for absolute quantification. In fact, by means of PRM the linear range increase
to 5–6 orders of magnitude and the mass accuracy can reach to ppm level. In addition, since a full
MS/MS spectra acquisition is performed, the selection of the ion pair and the optimization of the
fragmentation energy are not necessary [81]. However, although the MS/MS spectra from PRM can
be searched directly with traditional database search engines, a spectral library with high quality
reference MS/MS spectra is essential for targeting and quantifying peptides, thus for the success of
PRM [82].

Recent applications of SRM/MRM to quantify plant proteins concern the proteome variation
in strawberry fruit at different ripening stages [83] and in tomato during the formation of tomato
fruit cuticles [84], while it was used to monitor phosphorylation targets in relation to symbiotic
signaling in Medicago truncatula [85]. Some authors adopted SRM/MRM to quantify food allergens
and contaminants highlighting the effectiveness of this approach in this field of application [86,87].
On the other hand, the limited number of transitions that may be followed per experiment make
SRM/MRM a method to validate candidate markers rather than to identify differentially expressed
proteins at a large scale level (Figure 5). As a consequence, its use in plant biology may be more
relevant in providing an alternative to validate protein quantitation avoiding costs due to antibody
development [78], an aspect particularly helpful for non-model plant species that most suffer from the
lack of specific immunoreagents.

2.2.3. DIA/SWATH

Sequential window acquisition of all theoretical fragment ion spectra (SWATH) is a new approach,
based on DIA, introduced to extend the proteome coverage of shotgun proteomics, based on DDA,
and the degree of multiplexing achieved by SRM/MRM. It relies on isolation and fragmentation of
all the precursor ions within a defined “mass window”, called SWATH. Thus, it should allow the
monitoring of all peptides present in a complex biological sample improving the proteome coverage
and its quantitation [88].

Similarly to SRM/MRM, a library containing experimental acquired spectra is necessary for
the bioinformatic analysis of DIA/SWATH data [82]. Since most tools and databases yielded are
limited to the most popular model organisms, e.g., human, yeast and mouse, it represents a drawback
in investigating plant proteomes by DIA/SWATH. To overcome this limitation, Fan et al. used a
web-application called MRMaid that exploits millions of identified peptide spectra held in PRIDE
database [79]. By means of MRMaid, the authors designed optimal transitions for 25 Arabidopsis
thaliana proteins, and 23 of them were correctly quantified and validated. A spectral library of more
than 5000 proteins was experimentally built for Solanum lycopersicum and optimized to be best suited
in processing of DIA/SWATH data acquired on TripleTOF instruments [89]. A prior generation of
a spectral library based on DDA data was also performed by Zhu et al. to investigate inferior and
superior rice spikelets during grain filling [90] and to understand the mechanisms underlying the
molecular response of Arabidopsis thaliana to lead pollution [29]. In Arabidopsis thaliana they identified
and quantified the expression of 1719 proteins in water- and Pb-treated plants, and 231 proteins
showed significant abundance changes upon Pb exposure. This study is one of the first examples of
the application of DIA/SWATH analysis in Arabidopsis thaliana. The potential for this approach to
investigate plant organisms has yet to be fully exploited. Moreover, the great fitness in identifying
and quantifying thousands of proteins per experiment makes DIA/SWATH data ideal to be used
in strategies of investigation based on data-derived systems biology. Thus, in the next few years,
we expect a growing number of plant proteomic studies based on this approach.

2.2.4. MS-Based Quantification Strategies

It is well established that biological functions are rarely attributed to individual molecules,
thus the characterization of single biomarkers could lead to incomplete representation of real models.
To quantify specific proteins, antibody-based methods, such as enzyme-linked immunosorbent
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assay (ELISA) and western blotting, have been used for decades. Unless arrays are adopted [91],
their fitness to quantify proteins at a large scale level is poor. Conversely, MS-based quantification
allows the identification of hundreds of proteins differentially expressed (DEPs) by both label [92] and
label-free [93] approaches. Thus making MS proteomic data a good source for data-derived systems
biology to investigate plants in a holistic way.

Label-Free Quantitation

The most common MS-based quantification strategies are classified in label-free and stable
isotope-labeling, and the latter may be further grouped into relative and absolute protein quantification
approaches [94] (Figure 6). Label-free quantitation is a simple and low-cost alternative to relatively
quantify proteins at a large scale level. Quantitation is done by comparing the chromatographic peak
area of extracted ions (XICs) or spectral count (SpC) values. Chromatographic peak area evaluation
requires high analytical reproducibility to correctly align the precursor ions and avoid quantitation
errors which are more frequent when MS signals to be compared derive from different experiments
or are from a different instrumental set up. However, dedicated bioinformatic algorithms have
been developed to minimize these experimental variations with the purpose of improving data
reproducibility [95].

In comparison to chromatographic peak integration, SpC based quantitation is most popular
because it uses a simpler procedure and it can be accommodated to any type of organism and most
workflows [96]. In fact, since it is based on the empirical observation that more peptides correspond
to more protein, the relative protein quantitation is simply obtained by counting and comparing the
total number of MS/MS spectra associated with all peptides detected for the corresponding parent
protein. The outcome derived from this procedure may be affected by the MS analytical reproducibility
especially when dealing with shotgun proteomics, due to the undersampling resulting from the
stochastic nature of the DDA method. Thus, prior to comparing SpC values, adjustment by data
normalization strategies may be necessary [97].

Label-free Isotopic-labeling

XIC SpC

ACQUA

QConCAT

PSAQ

Absolute SILAC

FlexiQuant

PrEST

PCS

Metabolic 

labeling

Chemical 

labeling

Enzyme-catalyzed 

labeling

ICAT, ICPL, iTRAQ, TMT 16O/18O SILAC

Relative quantitation

Absolute quantitation

A B

Figure 6. Mass spectrometry-based quantitative approaches. (A) Label-free approaches; (B) Isotopic
labeling approaches. XIC: Extracted-ion chromatogram, SpC: Spectral count, ICAT: Isotope-coded
affinity tag, ICP: Isotope-Coded Protein Label, iTRAQ: Isobaric tag for relative and absolute
quantitation, TMT: Tandem Mass Tags, 16O/18O: Oxygen isotope ratio, SILAC: Stable isotope labeling
by/with amino acids in cell culture, AQUA: Absolute quantification, QConCAT: Quantification
concatamer, PSAQ: Protein Standard Absolute Quantification, Flexiquant: Full-length expressed protein
quantification standard, PrEST: Protein Epitope Signature Tags, PCS: Peptide-Concatenated Standards.



Proteomes 2018, 6, 27 11 of 34

To infer expression changes by means of SpC comparison, several methods have been
implemented in recent decades and the most popular include the statistical G-test [98],
the normalized spectral abundance factor (NSAF) [99] and the protein abundance index (emPAI) [100].
Their effectiveness in discovering reliable differentially expressed proteins was also confirmed in the
context of plant proteomics [26,71,101–105]. The robustness of the results shown in these studies was
assured by replicate analyses and by a careful planning of the samples analyzed in order to reduce
systematic and non-systematic instrumental variations. These needs are minimized when labeling
techniques are used and samples to be compared are pooled limiting technical variability.

Isotope-Labeling Quantitation

The most popular labeling approaches to quantify proteins include isotope-coded affinity tag
(ICAT), used by different authors to characterize S-nitrosylated proteins in Arabidopsis thaliana [106,107].
Although the ICAT method reduces sample complexity at the peptide level, sample preparation
makes it complex and demanding. In addition, only cysteine-containing peptides are analyzed,
impairing the quantification of those that do not contain this aminoacid. Many more studies to quantify
plant proteins have adopted isobaric tags for relative and absolute quantitation (iTRAQ) [108–110]
and tandem mass tags (TMT) [111]. In comparison to ICAT, or ICPL [112], TMT and iTRAQ
labeling takes place at the peptide level by means of amine specific reagents which assure a wider
peptide labeling without loss of PTM information. The power of iTRAQ was recently described by
Vélez-Bermúdez et al. who systematically quantified more than 12,000 Arabidopsis thaliana proteins by
adapting an experimental protocol for plants [113]. On the other hand, a drawback of these approaches
is related to the co-elution of peptides that, isolated within the same precursor ion window, may cause
systematic read-out errors. Therefore, TMT and iTRAQ quantitation benefit from high-resolution
precursor ion selection and extended protein and peptide fractionations.

In addition to chemical labeling, peptides may be tagged enzymatically, e.g., 16O/18O [114],
and metabolically, e.g., SILAC [115]. Although simple modifications in SILAC protocol enable in plants
similar quantitation accuracy, precision and reproducibility as in animal cells, the application of SILAC
to quantify plant proteins remain challenging. In fact, under their natural growth conditions, plants
could not be fully labeled with stable isotope-coded amino acids. An alternative metabolic labeling
strategy based on inorganic nitrogen isotopes was developed [116]. Although in terms of sample
preparation and costs this procedure remains demanding, it provides reproducible and accurate results.
Of note, this new protocol gives the possibility to grow plants in hydroponic solutions, which may
allow a tight control over nutrient uptake.

Absolute Quantitation

Procedures and strategies so far discussed, both label or label-free, usually refer to the relative
quantitation of proteins from different tissues, compartments or different functional cellular states.
In addition to proteins that change their expression between different conditions, it is often useful
to estimate their absolute quantification [117]. In recent years, several methods for absolute
quantitfication have been proposed. From our knowledge, only absolute quantification (AQUA) [118]
and quantification concatemer (QConCAT) have been used to absolutely quantify plant proteins.
However, other methods include absolute SILAC [119], FlexiQuant [120], protein epitope signature tag
(PrEST) [121] and peptide-concatenated standards (PCS) [122] (Figure 6).

All absolute quantification methods are a technical challenge, since they rely on the use of a
spiked-in reference standard and can only be performed on a small number of proteins per experiment.
Nevertheless, they provide relevant information for biomedical applications e.g., biomarkers in
body fluid, and to estimate the cellular protein copy number. For this purpose, knowledge of the
number of cells used for the analysis, spike-in reference and proteomic analysis are required [123];
alternatively, some authors proposed that MS-signal of histones can be used as an internal standard
since it is proportional to DNA, thus avoiding the need to use spike-in standards [124].
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In addition to being used for simulation processes in systems biology studies, absolute
quantification has been associated with network topology [125]. Heo et al. found that interaction
between two proteins depends not only on their binding affinity but also on their concentrations.
It is worth noting that the authors postulated that intracellular abundances of proteins evolve to
anticorrelate with node degrees in the network, thus suggesting that the control of protein abundances
may represent an important factor in the design and evolution of natural PPIs.

2.3. Metabolomics

As for plant research, genomic, transcriptomic and proteomic approaches may be considered
quite new, while those used to identify and quantify metabolites have a longer history. In fact, despite
the fact that plant metabolome remains largely to be explored due to its complexity, metabolomic
studies have contributed in understanding plant biology from the view of metabolites that, along with
proteins, reflect the endpoint of most biological activities and provide a functional screen of the cell
physiology [126].

To date, it is estimated that plant kingdom metabolome counts more than 200,000 metabolites
with a vast range of functional and structural diversity [127]. A major database containing plant
metabolites is the Plant Metabolomic Network Database (PMN) [128]; it collects data from 76 different
species showing pathways, enzymes and reactions. Organism-related projects have been developed
for tomato [129], soybean [130] and Arabidopsis thaliana mutants [131], while databases containing
plant metabolomic profiles obtained by specific analytical technologies have been built for NMR
data, e.g., MeRy-B [132]. Due to the plant metabolome complexity, its systematic analysis should be
addressed by means of the use of complementary methodologies of extraction, identification and
quantification [133,134]. However, metabolomic platforms offer coverage of just 10% of the small
molecule complement of the cell, thus further efforts will be necessary to obtain more comprehensive
metabolomic profiles [135]. In fact, in combination with genomic and proteomic data, a global view
of primary and secondary metabolites may help plant biologists to move toward a systems-level
understanding of plant physiology [136], impacting a broad range of topics including plant growth,
stress responses and crop quality improvement [137].

The field of plant metabolomic analysis was pioneered by Magnetic Resonance Nuclear (NMR).
It has greatly contributed to investigating primary and secondary metabolites in the context of topics
ranging from food traceability [138] to plant response to abiotic [139] and biotic stresses [140]. To date
other technologies e.g., matrix-assisted laser desorption/ionization (MALDI)–MS for metabolite
imaging [141], Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) [142]
and MS coupled with different systems of separation (LC, gas-chromatography (GC) and capillary
electrophoresis (CE )) [143], are available to perform plant metabolomic analysis at an advanced level.
The major advantage of MS is its high sensitivity. LC-MS was used in profiling both primary and
secondary metabolites [144,145]; hydrophilic interaction liquid chromatography (HILIC) coupled to
MS represents an attractive complementary tool to analyze highly polar/ionic plant metabolites [146].
The use of GC-MS is instead limited to thermally stable volatile compounds, making the analysis of high
molecular weight compounds difficult [147]. Nevertheless, it is a reproducible and sensitive approach
widespread in the context of plant metabolism [148,149]. High-resolution and high mass accuracy is
assured also by FT-MS, which facilitates structural characterization [150], and by CE-MS whose major
advantage is the possibility of analyzing almost any charged species by both cationic and anionic
methods [151]. Finally, more recently, targeted metabolomic approaches have begun to gain ground
pointing to the analysis of a pre-defined set of metabolites and their absolute quantification [152].
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3. Co-Expression and PPI Networks as Models to Investigate Plant Organisms

To objectively extract meaningful information from the huge amount of -omic data provided by
the advances in genomic, proteomic and metabolomic technologies, strategies based on graph theory
are demonstrating to be helpful and their use is rapidly increasing. The main adopted procedures
are basically divided into two groups: those that formulate models starting from experimental data,
e.g., co-expression network [14], gene regulation networks [153], protein-DNA network [154], and those
that integrate experimental -omic data on existing models, e.g., pathways [43], protein-protein
interaction (PPI) networks [20]. In this scenario, the most popular approaches to globally investigating
transcript and protein profiles rely on PPI and co-expression network models. These molecular profiles
are usually processed at a functional level through the gene ontology term enrichment, and several
tools have been developed for proteins, e.g PSEA [155], and genes e.g., GSEA [156], respectively. At the
same time, the topology of co-expression and PPI network models is analyzed by means of specific
algorithms to identify the most relevant topological molecules [38]. In fact, it is demonstrated that
network structure is informative and its evaluation may help biologists in understanding the biological
issues addressed [9].

3.1. Gene Co-Expression Networks

The strategies to evaluate biological systems in a holistic way ideally aim to understand their
emergent properties by integrating different kinds of -omic data and by taking into consideration
their functional and molecular relationships. A representative example taking into account all of these
aspects concerns the reverse engineering of gene regulatory networks (GRN), where pairs of genes are
considered in a systemic perspective of cooperation, including co-regulation, activation/suppression,
and indirect control through the action of siRNA, miRNA, proteins, metabolites or epigenetic
mechanisms [153]. The level of inference required by these approaches makes necessary the availability
of a wide range of information, as well as modeling techniques e.g., Boolean networks, Bayesian
networks or differential equations (ODEs), that increase the complexity of these methods and restrict
their application to sparsely connected networks of small sizes [50].

Co-expression networks are defined as undirected graphs where nodes correspond to transcripts
and edges indicate their meaningful dependence (Figure 4). They are part of the reverse
engineering approach, but unlike GRN the direction and type of co-expression relationships are
not determined [157]. Co-expression became popular to evaluate the surge of data provided by
microarray and RNA-Seq technologies. The idea behind this processing is based on the assumption
that co-expressed genes are controlled by the same transcriptional regulatory program, functionally
related, or members of the same pathway or protein complex. Thus, transcript profile of time series,
or following specific perturbations, may be indicative of dynamics and differences between transcripts,
implying their regulation [158].

Co-expression networks were recently used in plants to investigate the response to abiotic
stresses [159], tomato fruit ripening [160] and the response to concentrations of nitrogen in
maize [161]. To process trancriptomic data and reconstruct the co-expression network, the most used
statistics include Pearson’s correlation (PC), Spearman’s correlation, Kendall’s correlation and mutual
information. For major details about tools and strategies applied to perform such analyses in plants, we
refer to recent reviews [162]. To build and analyse gene co-expression networks, weighted correlation
network analysis (WGCNA) is among the most popular tools and it has also been recently adopted
to process plant transcript level [163,164]. Specifically, Qiao et al. re-analyzed sweet orange fruit
transcriptome data leading to the identification of 72 genes highly correlated with the fruit sugar/acid
ratio, while Tan et al. adopted an integrative approach to identify DEGs and network modules in
response to various cadmium stresses in rice root. The topological network analysis also exploited by
Zhaoming et al. to investigate soybean seed development [165]. By means of WGCNA, they uncovered
46 different modules of gene expression patterns and seven hub genes were identified as being involved
in soybean oil and seed storage protein accumulation processes. Similarly, a tool called SWIM [166] was
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recently developed and applied to investigate the transcriptional changes underlying berry formation
and ripening in 10 varieties of grapevine [167]. Massonnet at al. identified the core transcriptome
of berry development, the transcriptional differences between red and white berry as well as of
common transcriptomic traits. In addition to highlighting the propensity of co-expression network
based approaches in visualizing and analysing the large amount of data produced by microarray and
RNA-seq experiments, these studies confirmed the effectiveness of network topological analysis in
extracting relevant molecules and hub genes representing a foundation for further research.

Gene Co-Expression Network Combined with GWAS and QTL Data

Most studies based on transcriptomic data and gene co-expression share the topological
analysis of the reconstructed networks to identify modules and hubs related to the investigated
biological issues/phenotypes [163,164,167]. The selection of candidate genes or the identification
of phenotype-associated subnetworks and pathways is also driven by GWAS and QTL data that
are imposed as a starting point in network analysis (Figure 4). In addition to evaluating how
information is propagated through a network of interacting molecules, these strategies aim to integrate
information from population-based and molecular profiling studies to support the selection of true
phenotype-associated genes. In fact, genetic variants are often distributed across several genes and
this genetic hetereogeneity restricts the phenotype-associated variants to subpopulations reducing
the statistical power of association [168]. To overcome this limitation and to reduce the loss of
true phenotype-associated genes, a web application called araGWAB integrates GWAS data and
co-functional network information [52]. Similarly, Kobayashi et al. reconstructed a co-expression
network to independently verify if the genes selected by GWAS were correlated in contributing to
salt tolerance in Arabidopsis thaliana [51]. In this context of association between population-based
and molecular profiling data it is interesting to note the topological evaluation of the co-expression
network and its relationship with the genetic architecture of genes and signatures provided by
GWAS and QTL studies. For instance, Mahler et al. found that genes associated with QTLs were
underrepresented in the network module core, while there was a higher representation in the periphery
of the co-expression network [19]. In addition, high-connected genes (hubs) showed a lower level of
polimorphism suggesting they are buffered against a large expression modulation and that network
topology may influence gene expression and sequence evolution.

The integration of complementary approaches and data is a strategy that improves a reliable
identification of genes associated with a given phenotype. However, the quality of reconstructed
co-expression networks and the availability of complete annotations may strongly influence this
selection. It also concerns Arabidopsis thaliana which represents the ideal organism for GWAS studies
due to its inbreeding nature [169]. In fact, although ARANET is one of the most comprehensive
network databases of Arabidopsis thaliana, it still falls short in the complete reconstruction of biological
processes. Moreover, only about 40% of Arabidopsis thaliana protein-coding genes stored in UNIPROT
have manually-annotated records with information extracted from literature and curator-evaluated
computational analysis, while this percentage collapses for most non-model organisms and crop plants,
including Oryza sativa (8%), Zea mays (<1%) and Vitis vinifera (<1%), whose annotations are mainly
predicted or unknown [162].

3.2. Protein Co-Expression Networks

Measures of dependence between variables have recently been used to abstract high-dimensional
proteomic data in the form of protein co-expression networks [170]. Similarly to microarrays and
RNA-seq, MudPIT or DIA/SWATH data are multi-dimensional and may be formatted in a m × n
matrix with the result that they are processed by means of algorithms and strategies typically used for
analyzing genomic data [9] (Figure 4). When these strategies are applied to proteomic data they need
to be properly modified because proteomic datasets are often incomplete and a major issue concerns
the high rate of missing values that introduce loss of information and significant bias [171]. In addition,
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appropriate data preprocessing or proper thresholds of filtering are prerequisites to capture true
correlations [172].

The use of co-expression-based approaches to process high-dimensional proteomic data is yet
largely unrealized and to date few studies are published [9]. To our knowledge no studies of this type
have been conducted on plant organisms. However, protein co-expresson could allow the identification
of relevant molecules in a complementary way with respect to the most popular quantitative analysis
or network approaches based on the integration of experimental data and the PPI network model. Of
note, the opportunity to abstract and analyse at the network level non-model organisms should not be
underestimated, including plants, whose interactome is incomplete or more often not available.

3.3. PPIs Identification

Protein–protein interactions (PPIs) drive all biological systems at the cellular, subcellular and
extracellular level, and changes in the specificity and affinity of these interactions may be responsible for
cellular malfunctions. Thus, PPIs identification is a key factor for plant biologists to gain knowledge
about the relationships among proteins and how they affect biological functions. An important
contribution in solving PPIs has been provided by conventional structural techniques, such as X-ray
crystallography and NMR, and by yeast two-hybrid (Y2H) assays [173] (Figure 7). In addition to
Y2H [174], bimolecular fluorescence complementation (BiFC) and Förster resonance energy transfer
(FRET) have been used to establish PPIs in plant proteomes [175]. These approaches provide excellent
results but they are limited to small scale experiments. However, FRET-based methods have been also
used for high-throughput screening of PPIs using protein microarrays [176].

A more comprehensive identification of PPIs is achieved by combining protein purification
strategies with MS-based proteomics [177]. PPIs identified by AP-MS studies are commonly
ranked and scored using both computational methods, that predict the most robust and important
interactions [178], and quantification approaches, that allow a measure of the importance of these
interactions determining the stoichiometry of all of the interactors [179]. Since AP-MS provides
also information about indirect protein-protein interactions, these data are especially valuable in
combination with results provided by metho ds that show physical PPI, including FRET or cross-linking
(XL) methodologies. In particular, advances in cross-linking chemistry and tools for data analysis
have promoted cross-linking (XL) in combination with MS as a powerful tool to comprehensively
identify PPIs [180]. In addition to the relative simplicity of implementation, the main strengths of
XL-MS concern its global character, the capacity to characterize protein complex stoichiometries and
topologies. Although XL-MS experiments may be performed near physiological conditions, in vivo
studies still suffer some technical difficulties including the limited diversity of cross-linkers, their
lower solubility and their cell penetration ability which can be further affected in the case of plants
due to their cell wall. Finally, a further general drawback is related to the computational challenges to
process XL-MS data; in fact, search engine algorithms have to consider all the possible peptide pair
combinations, making the database search engine step time-consuming.
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Figure 7. Protein-protein interactions (PPI) identification. (A) Methodologies to identify protein-protein
interactions (PPI); (B) Arabidopsis thaliana PPI network retrieved from STRING database by applying a
threshold of 0.7. The network contains 8857 nodes and 180,178 edges (Experimentally validated/Database);
(C) Example of graph undirected and unweighted and directed and weighted; (D) Adjacency matrices
describing a graph undirected and a graph unweighted and directed and weighted. PPI networks are
usually unweighted and undirected. K = node degree, Kin = node in-degree, Kout = node out-degree,
SEC: Size-exclusion chromatography, IEX: ion exchange chromatography, XL-MS: cross-linking mass
spectrometry, HDX-MS: Hydrogen Deuterium Exchange mass spectrometry, X-ray cryst.: X-ray
crystallography, NMR: Nuclear magnetic resonance, EPR: Electron paramagnetic resonance, Cryo-EM:
Cryo-electron microscopy, SAXS: Small-angle X-ray scattering,Y2H: yeast two-hybrid, BIF: Bimolecular
Fluorescence Complementation, FRET: Förster resonance energy transfer.

Cross-link enrichment and data analysis have been recently addressed by Zhu et al. to optimize
in vivo cross-linking in Arabidopsis thaliana [181]. The authors established a MudPIT procedure for the
enrichment of cross-linked peptides and developed a bioinformatic tool, called ECL, to an exhaustive
cross-linked peptides identification in plant chemical cross-linked peptides. A global investigation
of Arabidopsis thaliana PPIs was also performed by combining MS with biochemical fractionations
e.g., size-exclusion chromatography (SEC), which is suited to separate and identify hundreds of
putative complexes, including novel subunits [182]. On the contrary, it seems that to date no studies
have adopted perturbation experiments to investigate PPIs in plants. They are based on a variety
of assays that analyse the co-behavior of proteins. For instance, thermal proximity coaggregation is
based on the hypothesis that interacting proteins co-aggregate upon heat denaturation, leading to
similar solubility across different temperatures [183]. This methodology is interesting because it is
suitable to study membrane proteins and because it enables the intracellular study of the dynamics
of multiple protein complexes simultaneously in intact cell and tissues. However, these methods
are labor-intensive and the current inability to distinguish between physical and functional PPIs is
a limitation in protein interaction studies. In particular, it is difficult to classify proteins shared by
different protein complexes, while complexes that are biochemically similar but functionally distinct
are not separated.

As for plant interactome, PPIs are available for Zea mays, Oryza sativa, Solanum lycopersicum and
especially for the model plant Arabidopsis thaliana (Table 1). Most of these PPIs are computationally
predicted and different studies on plant organisms focused on this kind of approach to identify PPIs
at the large scale level [36,184–186]. Many of the networks computationally predicted have been
inferred by transferring the link from orthologs in reference plants. This approach may introduce false
positive identification because orthologs are often paralogs, and thus they are functionally divergent.



Proteomes 2018, 6, 27 17 of 34

For instance, no more than half of the Arabidopsis thaliana coding genes have orthologs in more than
20 of the 27 fully sequenced crop species, suggesting that the associalogs of Arabidopsis thaliana network
have limited coverage for most crop plants [47]. However, plant gene networks may also benefit
from the associalogs (conserved functional linkages transferred from other organisms by orthology) of
networks for non-plant species. In fact, many divergent phenotypes between animals and plants have
evolutionary conserved gene networks [187]. Thus, given that a limited amount of data derived from
plants are available in public databases, the associalogs of non plant gene networks are considered
an important resource for crop network inference. On the other hand, the lack on PPIs knowledge
about plant organisms is driving many biologists to reconstruct PPI networks experimentally (Table 2).
Of note, a number of studies and databases (Table 3) focus on host-pathogen PPI, suggesting that this
field of PPIs is of great interest to improve strategies oriented to manage destructive pathogens that
cause huge crop losses every year worldwide [35,184,185,188–190].

3.4. PPI Networks

Pathways, networks and macromolecular assemblies are commonly represented through PPI
networks. They refer to a graph G = (V , E), where a set of nodes V, stands for the proteins,
while a set of edges E, stands for their interactions [9], (Figure 7). PPI networks allow for the
evaluation of large scale proteomics data taking into consideration functional and physical relationships
among proteins. They are usually processed at a functional and topological level. The functional
evaluation of PPI or co-expression networks is usually performed by approaches based on the
GO term enrichment [155,156]. On the other hand, it is more and more established that network
structure is closely related to biological functions. Thus, starting from this point, many studies
concerning plants are facing biological questions by investigating network models in terms of
topology [44,174,189,191–194]. As a result, functional, topological and disease modules, as well as hubs,
bottleneck and dynamic network biomarkers are new concepts that are impacting the understanding
of the processes determining the pathophysiological states of plants (Figure 8).
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Table 1. Databases collecting predicted and experimentally validated PPIs in plant organisms. E: Experimentally validated, P: Computationally predicted.

Database db Link Proteins PPIs Organism

MIND http://biodb.lumc.edu/mind/index.php - 12,102 (E) A. thaliana
PAIR http://www.cls.zju.edu.cn/pair/home.pair - 329,044 (P) and 6257 (E) A. thaliana
AI1 http://signal.salk.edu/interactome/AI1.html 2774 6205 (P) A. thaliana

SUBA http://suba.live/ - 19,933 (P) A. thaliana
AraPPINet http://netbio.sjtu.edu.cn/arappinet/ 12,574 316,747 (P) A. thaliana

AtPID http://www.megabionet.org/atpid/webfile/index.php 5562 28,062 (P) A. thaliana
AtPIN http://bioinfo.esalq.usp.br/atpin - 96,000 (E/P) A. thaliana
PRIN http://bis.zju.edu.cn/prin/ 5049 76,585 (P) O. sativa

DIPOS http://comp-sysbio.org/dipos/ 27,746 14,614,067 (P) O. sativa
RicePPINet http://netbio.sjtu.edu.cn/riceppinet/ 16,895 708,819 (P) O. sativa

PPIM http://comp-sysbio.org/ppim/ 14,000 2,762,560 (P) Z. mays
PiZeaM 6004 49,026 (P) Z. mays

PTIR http://bdg.hfut.edu.cn/ptir/ 10,626 357,946 (P) S. lycopersicum
MauPIR http://14.139.59.222:8080/MauPIR/ 1812 6804 (P) Macrotyloma uniflorum
PlaNet http://bml.sbi.kmutt.ac.th/ppi/index.php 7209 90,173 (P) Manihot esculenta

Citrus sinensis Annotation project http://citrus.hzau.edu.cn/orange/index.php 8195 124,491 (P) Fruit crop
FPPI http://comp-sysbio.org/fppi/python/Default_PredictedPPIs.html 7406 223,166 (P) Gibberella zeae

http://biodb.lumc.edu/mind/index.php
 http://www.cls.zju.edu.cn/pair/home.pair
 http://signal.salk.edu/interactome/AI1.html
http://suba.live/
http://netbio.sjtu.edu.cn/arappinet/
http://www.megabionet.org/ atpid/webfile/index.php
http://bioinfo.esalq.usp.br/atpin
http://bis.zju.edu.cn/prin/
http://comp-sysbio.org/dipos/
http://netbio.sjtu.edu.cn/riceppinet/
http://comp-sysbio.org/ppim/
http://bdg.hfut.edu.cn/ptir/
http://14.139.59.222:8080/MauPIR/
http://bml.sbi.kmutt.ac.th/ppi/index.php
http://citrus.hzau.edu.cn/orange/index.php
http://comp-sysbio.org/fppi/python/Default_PredictedPPIs.html
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Table 2. Studies focused on PPIs detection, both experimentally validated (Exp. val.) computationally predicted (Comp. pred.), in plant organisms.

Organisms Proteins PPIs Topic Exp. Val. Comp. Pred. Ref.

A. thaliana 25,123 - Fruit development Yes - [185]

A. thaliana 5598 13,328 Immune response Yes - [195]

A. thaliana 3056 18,233 Immune response Yes - [196]

A. thaliana 2355 25,172 Network topology Yes - [197]

A. thaliana 393 857 Cell cycle Yes - [198]

A. thaliana 13,136 42,131 Network analysis/Methods - Yes [199]

A. thaliana 13,347 45,058 Cell-wall synthesis - Yes [200]

A. thaliana/Pseudomonas syringae -
14,043 (A. thaliana)

Host-pathogen interaction - Yes [35]1337 (Pseudomonas syringae)

A. thaliana/Ralstonia solanacearum
1442 (A. thaliana) 3074 Host-pathogen interaction - Yes [201]119 (Ralstonia solanacearum)

A. thaliana/Potyvirus
5127 (A. thaliana) 12,624 Host-pathogen interaction - - [189]11 (Potyvirus)

O. sativa 16,895 708,819 Network inference/Methods - Yes [186]

O. sativa 5049 76,585 Network inference/Methods - Yes [202]

O. sativa subsp. indica 454 4114 Abiotic stress response - Yes [203]

O. sativa/Ustilaginoidea virens 3305 20,217 Host-pathogen interaction - Yes [204]

O. sativa/Rhizoctonia solani 1773 6705 Host-pathogen interaction Yes - [184]

Macrotyloma uniflorum 1812 6804 Abiotic stress response - Yes [205]

Z. mays 14,000 2,762,560 Network inference/Methods - Yes [206]

Citrus sinensis 8195 124,491 Network inference/Methods - Yes [207]

Gleditsia sinensis 1897 7078 Network inference/Abiotic
stress response Yes - [208]

Tetraselmis subcordiformis 938 12,887 Network
inference/Metabolism Yes - [209]

Manihot esculenta 7209 90,173 Network inference/Methods - Yes [210]

Pinus taeda/Sirex noctilio 528 4363 Host-pathogen interaction Yes - [211]

apple, maize, pear, rice, strawberry
and tomato/Penicillium expansum 9911 439,904 Host-pathogen interaction - Yes [212]
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Table 3. Databases collecting host-pathogen PPIs, including plants.

Database db Link Proteins PPIs Organisms

PPIRA http://protein.cau.edu.cn/ppira/ - 3074 R. solanacearum and A. thaliana
PPIN-1 http://signal.salk.edu/interactome/PPIN1.html 926 3148 Pseudomonas syringae and A. thaliana

PathoPlant http://www.pathoplant.de/ - 350 Plants and plant-pathogen
PHI-base http://www.phi-base.org/ - 8046 Multispecies host-pathogen
HPIDB http://hpidb.igbb.msstate.edu/ - 62,653 Multispecies host-pathogen

VirHostnet http://virhostnet.prabi.fr/ - 28,000 Multispecies host-virus
VirusMentha http://virusmentha.uniroma2.it/ 4426 9876 Multispecies host-virus

EBI Intact https://www.ebi.ac.uk/intact/ 105,180 805,177 Multispecies host-pathogen
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Studies Combining PPIs and Network Topology

To our knowledge, the combination of large scale proteomic data and PPI networks in plant
models has been adopted in a very small number of studies, and one of them was conducted by
Duan et al. [194]. To investigate the dynamics of protein phosphorylation events due to changes
in nutrient conditions, the authors mapped the experimentally identified phosphoproteins on the
Arabidopsis thaliana PPI network. In addition to identifying the most topologically relevant proteins,
dynamic phosphorylation networks were reconstructed and proteins were grouped in “initiation”,
“processing” and “effector” layers based on their in- and out-degree level. Following the layering
based on network topology, the authors found specific phosphorylation motifs and layer-specific
kinases. It suggested that the topology of the inferred networks is highly indicative of an information
dissemination architecture in which signals pass through different and well defined layers.

Although PPI networks should be combined with experimentally identified proteins, when
protein profiles are unavailable they are often matched with transcript levels. This is the case for
Xie et al., who in their study investigated the floral pattern formation in Arabidopsis thaliana by using
public floral and non-floral gene expression data [192]. Through the combination of the weighted gene
co-expression network analysis (WGCNA) and Support Vector Machine (SVM) method, they analyzed
gene co-expression network and PPIs. The topological analysis allowed the identification of seven
modules and, inside them, the top hub proteins selected by eigengene-based connectivity (kME)
and gene significance (GS) parameters. In addition to identifying new genes putatively involved in
flower development, the authors elucidate the functions of the floral patterning genes by combining
evolutionary information and the Arabidopsis thaliana PPI network. In this way, they found that the
characterized modules corresponded to the regulation units of flower development.

PPI networks and topology analysis were also used by Zhu et al. to identify novel Arabidopsis
thaliana genes related to fruit-associated biological processes [44]. The authors applied a shortest-path
based method to analyze all shortest paths connecting any two of a set of validated genes. Since the
endpoints of these paths were Arabidopsis thaliana genes related to fruit biological processes, the authors
assumed that genes corresponding to the extracted shortest could also be related to these fruit
processes. The strength of this hypothesis was confirmed by the presence of the validated genes
in the extracted paths, indicating the effectiveness of the shortest-path based method to select genes
involved in the same processes. Of note, the authors took into account the topological structure of the
network as a potential factor that could influence their results. In fact, hub proteins can exhibit general
associations with many other proteins, so that they are more easily identified by the shortest-path
algorithms. As a consequence, since these proteins could have more or less association with the
investigated processes, the authors preferred to exclude them from further considerations.

An interesting use of PPI networks in the context of plant biology concerns the understanding
of host-pathogen molecular relationships and thus infection processes. This topic was addressed by
Bosque et al., who evaluated the effect of the Potyviridae virus family on Arabidopsis thaliana [189].
PPI networks were reconstructed for several species of potyvirus, and after their topological evaluation
(by clustering coefficient, closeness, betweenness and topological coefficient) they were integrated
with the complete Arabidopsis thaliana PPI network to reconstruct a Plant-Pathogen Interaction
Network (PPIN). Starting from each viral protein, and by using a shortest path based method,
the authors calculated how many steps were needed to reach each host proteins. In this way,
the authors obtained an indication of the anchor points used by the virus to affect the plant PPI
network. Interestingly, through the topological analysis it was found that some viral proteins act earlier
than others during the infection cycle. In addition, some of them act on host hubs, while others target
many proteins affecting the propagation of their effect. Similarly, the investigation of host-pathogen
molecular relationships was addressed by Li et al. [191]. Of note, the authors performed an integrative
network analysis by combining Arabidopsis thaliana.

PPI network, effectors of Pseudomonas syringae and Hyaloperonospora on Arabidopsidis thaliana
known targets and gene expression profiles. The topological analysis of the reconstructed networks
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suggested that the effectors tended to manipulate key network positions with higher betweenness
centrality. In addition, effector targets, especially those sharing an individual effector, tended to belong
to the same module. The higher betweenness centrality of effector targets partly explained how the
local impact due to effectors could have global influences upon the host cellular network. In fact, the
authors claimed that effectors employ potent local impact mode to interfere with key positions in the
host network and to quickly translocate their effect to all its targets. On the other hand, they found that
the plant organizes a defense by sequentially activating genes distal to the effector targets. Of note,
pathogen-susceptible mutants tended to have more DEGs surrounding the effector targets compared
with resistant mutants, and the distances between the effector targets and DEGs increased over time
during infection.

4. Discussion and Conclusions

Large scale molecular studies on plant organisms are mainly characterized by genomics and
metabolomics, while proteomics is still less widespread and its potential has to be largely explored. This
delay is mainly caused by the paucity of proper genomic and protein sequences which are a key factor
in performing the MS spectra interpretation by database searching algorithms [213]. In fact, in addition
to non-model organism, it is significant that the majority of sequenced crop species are not available in
the public databases, thus the number of studies addressing their proteome profiling, including PPIs,
are scarce. On the other hand, studies reporting proteome profiles counting thousands of proteins
are often limited in their functional evaluation due also to the lack of proper annotations, including
gene ontology terms. For these reasons, data-derived systems biology approaches to investigate plant
organisms are dominated by strategies that evaluate transcriptomic data in the form of co-expression
networks. These studies have in common the topological evaluation of the reconstructed network in
driving the identification of new candidate genes. It is interesting that to improve this procedure of
selection some authors combined molecular profiles and population-based data provided by GWAS
and QTL studies [19,51,52]. This strategy was also recently adopted to identify functional associations
between genes and metabolism in Arabidopsis thaliana [15–17], while no studies, to our knowledge,
have so far included high-throughput proteomic data. However, the integration of complementary
approaches and data is mandatory to improve the quality of plant research, and despite all the
limitations related to plant organisms, the results reported in the proteomic studies mentioned here are
promising and they are attracting the interest of a growing number of plant biologists. In fact, different
examples demonstrated the power of high-throughput proteomic technologies to address plant biology
questions by characterizing thousands of proteins per sample and multiple biomarkers [23,25–30].

Although the large amount of data produced by proteomic experiments well blend with
data-derived systems biology approaches, greater efforts must be made regarding the characterization
of the intra- and extra-cellular PPIs. While a very low number of studies combined large scale proteomic
data and PPI networks to investigate the molecular mechanisms underlying plant phenotypes, PPIs are
gaining great interest in investigating plant-pathogen relationships. Every year pathogenic attacks
cause billions of dollars’ worth of damage to crops and livestock, thus to reconstruct the PPI network
between host and pathogen may represent a plus in elucidating the molecular basis of the pathogenesis
and to improve defense strategies [13]. In this scenario, the above-mentioned studies highlighted the
great effectiveness of the network topological analysis in identifying the anchor points that pathogens
use to affect the plant network, as well as elucidating the mechanisms of plant response [189,191].
In addition to hub analysis, these studies have further emphasized the potential of other topological
measures, such as the shortest path, to find a correlation between topology and biological functions.
Of note, similar concepts were successfully proposed by Barabasi et al. to predict the therapeutic and
side effects of several drugs, the similarity of action between different drugs and the possibility to
repropose the use of existing drugs [11].

Globally, the results discussed in this review confirm the informative power that lurks inside
the network structure, both PPIs and co-expression. Thus, we expect to see in the next few
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years an exponential increase of studies combining the application of high-throughput proteomic
technologies and systems biology approaches to investigate plant organisms. However, in particular
for proteomic studies, a gap must be filled. The discovery and quantification power of shotgun and
targeted proteomic approaches will have to be combined to analyze in depth the proteome of plant
organs, cell types and subcellular compartments. At the same time, it will be crucial to increase
experimental studies to characterize PPIs and network models highly complete, reliable and specific.
In fact, although great efforts have been made to computationally predict PPIs, these approaches
unfortunately are associated with the risk of a high rate of false positive identification. These goals
surely represent the major challenges to be faced in the near future by plant biologists and their
achievement cannot be separated from their synergistic cooperation with other biologists, physicists,
mathematicians and bioinformatics.

Supplementary Materials: The following are available online at www.mdpi.com/2227-7382/6/2/27/s1,
Table S1: Representative list of bioinformatic tools to assist researchers in -omic data processing, from profiling
to networking.

Author Contributions: D.D.S. conceived and wrote the manuscript; P.M., A.B. and E.B. contributed to write
the manuscript.

Funding: This research was funded by Italian CNR InterOmics Project (Ministero dell’Istruzione dell’Università e
della Ricerca - MIUR) and Amanda Project (Regione Lombardia).

Acknowledgments: The authors thank the colleague Louise Benazzi, native English speaker, for the revision of
the manuscript’s language.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

2DE 2 Dimensional Gel Electrophoresis
2D-DIGE 2 Dimensional Fluorescence Difference Gel Electrophoresis
AP-MS Affinity Purification Mass Spectrometry
AQUA Absolute Quantification
BiFC Bimolecular Fluorescence Complementation
CAM Crassulacean Acid Metabolism
CE Capillary Electrophoresis
DDA Data Dependent Acquisition
DEGs Differentially Expressed Genes
DEPs Differentially Expressed Proteins
DIA Data Independent Acquisition
emPAI Exponentially Modified Protein Abundance Index
FlexiQuant Full-Length Expressed Stable Isotope-labeled Proteins for Quantification
FT-MS Fourier Transform-Mass Spectrometry
ELISA Enzyme-Linked Immunosorbent Assay
FRET Förster Resonance Energy Transfer
GC Gas Chromatography
GO Gene Ontology
GRN Gene Regulatory Network
GS Gene Significance
GWAS Genome Wide Association Study
HILIC Hydrophilic Interaction Liquid Chromatography
HMDB Human Metabolome Database
HPLC High Performance Liquid Chromatography
ICAT Isotope-Coded Affinity Tag
ICPL Isotope-Coded Protein Label
kME Eigengene-Based Connectivity
LC Liquid Chromatography
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MeRy-B Metabolomic Repository Bordeaux
miRNA microRNA
MRM Multiple-Reaction Monitoring
mRNA messenger RNA
MS Mass Spectrometry
MS/MS tandem mass spectra
MudPIT Multidimensional Protein Identification Technology
MW Molecular Weight
NGS Next Generation Sequencing
NMR Nuclear Magnetic Resonance
NSAF Normalized spectral abundance factor
ODEs Ordinary Differential Equations
PC Pearson’s Correlation
PCS Peptide-Concatenated Standards
pI Isoelectric point
PMN Plant Metabolic Network Database
PPI Protein-Protein Interaction
PPIN Plant-Pathogen Interaction Network
PRM Parallel Reaction Monitoring
PTMs Post Translational Modifications
PrEST Protein Epitope Signature Tag
QconCAT Quantification Concatemer
QTL Quantitative Trait Locus
RNA-Seq RNA Sequencing
siRNA small interference RNA
SpC Spectral Count
SEC Size-Exclusion Chromatography
SNP Single Nucleotide Polymorphism
SRM Selected Reaction Monitoring
SVM Support Vector Machine
SWATH Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra
SWIM SWItchMiner
TAP-MS Tandem Affinity Purification coupled with Mass Spectrometry
TMT Tandem Mass Tags
WGCNA Weighted Gene Co-expression Network Analysis
XICs Extracted Ion Chromatogram
XL Cross Linking
Y2H Yeast Two Hybrid
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