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Obesity is a global health problem and a major risk factor for several metabolic conditions
including dyslipidemia, diabetes, insulin resistance and cardiovascular diseases. Obesity
develops from chronic imbalance between energy intake and energy expenditure.
Stimulation of cellular energy burning process has the potential to dissipate excess
calories in the form of heat via the activation of uncoupling protein-1 (UCP1) in white and
brown adipose tissues. Recent studies have shown that activation of transforming growth
factor-b (TGF-b) signaling pathway significantly contributes to the development of obesity,
and blockade or inhibition is reported to protect from obesity by promoting white adipose
browning and increasing mitochondrial biogenesis. Identification of novel compounds that
activate beige/brown adipose characteristics to burn surplus calories and reduce excess
storage of fat are actively sought in the fight against obesity. In this review, we present
recent developments in our understanding of key modulators of TGF-b signaling
pathways including follistatin (FST) and myostatin (MST) in regulating adipose browning
and brown adipose mass and activity. While MST is a key ligand for TGF-b family, FST can
bind and regulate biological activity of several TGF-b superfamily members including
activins, bone morphogenic proteins (BMP) and inhibins. Here, we review the literature
supporting the critical roles for FST, MST and other proteins in modulating TGF-b signaling
to influence beige and brown adipose characteristics. We further review the potential
therapeutic utility of FST for the treatment of obesity and related metabolic disorders.
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INTRODUCTION

The obesity epidemic significantly affects every region and
demographical group worldwide with no signs of abatement.
Obesity substantially increases the risk for several chronic
diseases including cardiovascular diseases, fatty liver, diabetes,
insulin resistance and cancer. It has been estimated that by 2030
approximately 2.16 billion individuals will be overweight and
1.12 billion individuals will be obese as defined by body mass
index (BMI) of 30 or higher (1). The economic impact of obesity
and its related complications on United States has been
estimated between 4-8% of gross domestic product and
comparable to 2018 defense budget ($643 billion) and
Medicare ($588 billion) (2), and significantly impacts low-
income and economically disadvantaged populations. The
strategies, to date, to combat the obesity epidemic have not
been successful and there is an unmet need for the development
of novel therapies to prevent and treat obesity and related
metabolic complications. As obesity develops from surplus
energy stored in adipose tissues, therapeutic approaches to
reduce energy intake, increase energy expenditure, or both
would provide attractive avenues for the fight against obesity
and related diseases. Although thermogenic adipocytes and their
precursors are composed of various distinct cell populations (3,
4), adipose tissue mass is composed mostly of white adipose
tissue (WAT) and brown adipose tissue (BAT), which
metabolically play opposing roles in regulating energy balance.

Recent clinical cross-sectional studies using [18F] FDG-PET/
CT, suggest a clear decline in BAT activity and mass during aging
that coincides with the development of obesity and insulin
resistance. Several laboratories have presented evidence for
expression of the thermogenic molecule UCP1 as well as its
energy dissipating capacity in human BAT and contribute
towards improved metabolic profiles (5–7). WAT, which is
specialized for storage of energy could be manipulated via
genetic or pharmacological means to promote browning. Such
browning, also called as “beige” or “brite” (brown in white), is
associated with increased expression of mitochondrial
uncoupling protein-1 (UCP1) expression in response to
external stimuli including chronic cold exposure, treatment
with b-adrenergic agonists CL 316,243, exercise, and endocrine
factors (8, 9). This type of adipose browning is also associated
with increased thermogenic capacity of the cells since activation
of UCP1 that uncouples mitochondrial respiration from ATP
production provides significant metabolic benefits that are
comparable to BAT (8, 9). Experimental mice with selective
ablation of beige adipose cells are prone to obesity and metabolic
dysfunction probably by reducing lipogenic capacity and energy
expenditure as well as by modulating the inflammatory
environment inside the WAT (10). Overexpression of Prdm16
(PR-domain containing 16) resulted in abundant beige
adipocytes in subcutaneous adipose depots, associated with
significantly increased energy expenditure and were resistant to
weight gain in response to a high fat diet (HFD) (11). Similarly,
CRISPR/CAS9-mediated reconstitution of UCP1 inWAT of pigs
led to significantly decreased fat mass and improved energy
expenditure (12), suggesting the therapeutic potential of
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modulating WAT phenotype by activation of key thermogenic
genes for fighting obesity and metabolic syndrome. While
implementation of findings from animal studies remains
challenging to apply in humans, such studies have yielded
novel insights into the molecular mechanisms underlying
thermogenic regulation of brown and beige adipocytes and
highlight their ability to reduce obesity and related metabolic
disorders. Thus, further studies directed to translate the proofs of
concept generated in animal models are crucial.

Transforming growth factor-beta (TGF-b) signaling has been
shown to regulate glucose and energy homeostasis (13). TGF-b
levels are reported to increase with adiposity in overweight (BMI
between 25-29.9 kg/m2) and obese (BMI ≥ 30 kg/m2) subjects
compared to the normal subjects with BMI less than 24.9 kg/m2),
and systemic blockade of TGF-b/SMAD3 signaling resulted in
protection against diet-induced obesity in experimental mice
(13). This effect was associated with acquisition of energy
dissipating brown adipocyte phenotype in WAT. In this
review, we will discuss the evidence for the novel role of FST,
MST and other related proteins in modulating TGF-b signaling
and adipocyte browning to explore possible therapeutic avenues
for the treatment of obesity and associated metabolic disorders.
BEIGE AND BROWN ADIPOCYTE
DEVELOPMENTAL ORIGIN AND
MOLECULAR SIGNATURES

White, beige and brown adipocytes are three major types of
adipocytes that have distinctly different fat morphology and
differ in their developmental origin as well as function. During
embryogenesis, BAT development precedes the formation of
WAT, where it primarily contributes to non-shivering
thermogenesis and maintain body temperature in newborns.
Interscapular BAT mainly contributes to the temperature
regulation during early stages of life and its levels slowly
regress with age (14–16). Lineage-tracing studies demonstrated
that classical brown adipocytes present in BAT depots originate
from a sub-population of dermomyotome expressing specific
transcription factors, including Pax7, engrailed 1, and Myf5 (17–
20). Previously, these Myf5-expressing (Myf5+) precursors were
assumed to be present exclusively in skeletal muscle precursors
and absent in both in WAT and beige adipocytes (20, 21). Beige
adipocytes present in the inguinal white adipose depots are
reported to be derived from Myf5 negative (Myf5-) precursor
pool (22). However, more recent lineage tracing studies have
identified subsets of white adipocytes that are derived from both
Myf5+ and Myf5- precursors (23–25), and beige adipocytes are
derived from progenitor populations expressing Sma, Myh11 (a
selective marker for smooth muscle cells), platelet-derived
growth factor receptor (PDGFR)-a, or PDGFR-b in mice (26–
29). Retinoic acid (RA)-induced adipose browning in endothelial
cells and capillaries has also been reported via the activation of
vascular endothelial growth factor (VEGF) A/VEGFR2 signaling
that facilitate PDGFR-a-expressing adipocyte precursors (18).
Beige cells could also appear as a result of trans-differentiation of
April 2021 | Volume 12 | Article 653179
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mature white adipocytes (15). Trans-differentiation of beige
adipocytes to WAT has been reported during warm
adaptations and aging (30, 31). Collectively, the above studies
strongly suggest that beige adipocytes that emerge in WAT
depots appear to have multiple origins compared to the
brown adipocytes.

PGC-1a is a master regulator of adaptive thermogenesis that
binds to PPAR-g and coactivates PPAR-g to stimulate the
transcription of genes involved in the brown adipocyte
differentiation process and acquisition of morphological and
molecular features of brown and beige fat (32). PGC-1a
expression is rapidly induced by cold exposure that turns on
several key components of the adaptive thermogenic program
including fatty acid oxidation, mitochondrial biogenesis, and
increased oxygen consumption (33). The transcriptional factor
PR domain zinc finger 16 (PRDM16) is selectively expressed in
brown/beige compared to the visceral white fat cells and plays an
important role in controlling the differentiation-linked brown
adipose/skeletal muscle fate determination and gene expression
program (34). Gain and loss-of-function studies of PRDM16 in
various cell systems have clearly established its major role in
brown adipose/skeletal muscle cell fate determination (35).
Using analysis of clonal cell lines, Wu et al. also suggested that
beige and brown adipose cells express related but distinctly
different gene expression profiles (36). Beige cells are
selectively enriched in Tmem26, Tbx1, and CD137 expression
(36). The same study identified additional beige selective genes
including Ear2, CD40, Sp100, Klh113, and Slc27a from
interscapular BAT and inguinal fat. Wang et al. identified early
B-cell factor 2 (Ebf2) as one of the most selective markers for
brown and beige adipogenic precursor cells (37). More beige-
selective genes including HoxC8, HoxC9, Cited1, and Shox2 were
identified using molecular profiling of human BAT (38, 39). On
the other hand, epithelial V-like antigen (Eva1), Lhx1, Zic1, and
Epsti1 are selectively expressed in classical brown adipocytes
(36–41). Additionally, Ebf3, Pdk4, Fbxo31, Oplah, and Hsbp7
were also found to be highly enriched in interscapular BAT of
129SVE mice (36). Ussar et al. have reported few selective cell
surface markers for white, beige and brown adipocytes that could
provide unique tools to identify various adipocyte populations in
both humans and rodents and potentially target them for
therapy in vivo (42). The authors identified amino acid
transporter Asc1, encoded by the SLC7A10 gene as a white
adipocyte-specific cell surface protein, which was barely
expressed in brown adipocytes (42). Expression level of
purigenic receptor P2RX5, part of a seven-member family of
ATP gated ion channels, was highest in brown adipocytes.
Proton coupled amino acid transporter PAT2, another cell
surface protein, show highest specificity for adipose tissue
among all three markers identified in this study with
significantly higher expression in brown fat compared to white
fat. Better understanding of the gene expression pattern of such
adipose-specific cell surface markers should provide novel tools
to selectively mark and access intact white and brown adipocytes
and could be used for diagnostic and therapeutic purposes.
Analysis of microRNA (miRNA) between beige and brown fat
Frontiers in Endocrinology | www.frontiersin.org 3
have provided clear differences in their expression profile. Several
miRNAs including miRNA-30, miRNA-182, and miRNA-203
are reported to positively regulate both beige and brown
adipocytes (43, 44). On the other hand, miRNA-27 and
miRNA-34a negatively regulator beige and brown adipogenesis
(45, 46). Recent studies have also highlighted some specific
miRNAs including miRNA-196b and miRNA-26 that
positively and negatively regulate beige adipogenesis
respectively (47, 48).
TRANSFORMING GROWTH FACTOR-
BETA (TGF-b), ADIPOSE BROWNING
AND OBESITY

The TGF-b superfamily consists of several members including
TGFb1, TGFb2, and TGFb3, bone morphogenetic proteins
(BMPs), growth differentiation factors (GDFs), and activins
tha t regu la te d iver se b io log ica l processes dur ing
embryogenesis, adult tissue homeostasis, and function of
several cell types including adipocytes (49, 50). The pleiotropic
effects of TGF-b/Smad3 signaling on cell metabolism and energy
homeostasis plays an important part in the progression of
obesity-linked diabetes; these include adipocyte differentiation,
adipose browning, inflammation and regulation of insulin
signaling amongst others. Members of TGF-b superfamily
transmit their signals via dual serine/threonine kinase
receptors and transcription factors called Smads. Recent
studies have clearly established an essential role of TGF-b/
Smad3 signaling in the pathogenesis of obesity and type 2
diabetes. Elevated levels of TGF-b has been reported in mice
and human adipose tissue during hypertension and other
cardiovascular diseases as well as in morbid obesity and
diabetic neuropathy (51–53). Increased TGF-b levels have also
been associated with a higher risk for type 2 diabetes in a
prospective case-cohort study (54). Perry et al. identified
Samd3 gene in a type2 diabetes genome-wide association study
(55). Smad3 is known to bind to the PGC-1a promoter to repress
its transcription (13). As PGC-1a is an important transcriptional
coactivator for UCP1 gene induction, mitochondrial biogenesis,
and fatty acid oxidation, it is not surprising that TGF-b/Smad3
signaling would inhibit beige/brown adipocyte differentiation
and their thermogenic action. The discovery of TGF-b/Smad3
signaling as novel modifiers of beige adipocyte phenotype and
metabolic characteristics by Yadav et al. has opened therapeutic
avenues for identifying potent inhibitors of this signaling
pathway for the treatment of obesity related complications
(13). The authors observed significant positive correlation
between TGF-b1 levels and adiposity in both rodents and
human subjects. Smad3−/− mice displayed protection against
diet-induced obesity and related metabolic syndromes. These
effects were associated with significant induction of white to
brown phenotype and increased mitochondrial biogenesis.
Examination of a group of nondiabetic human subjects from
diverse ethnic groups, the authors found direct relationship
April 2021 | Volume 12 | Article 653179
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between circulating TGF-b1 levels and BMI, fat mass, and
oxygen consumption. The same group assessed the effect of
blocking TGF-b/Smad3 signaling in two well-characterized
mouse models of obesity and type 2 diabetes. Treatment with
anti-TGF-b neutralizing antibody 1D11 resulted in significantly
reduced body weight, improved glucose and insulin tolerance, as
well as fasting glucose and insulin levels. These beneficial effects
were associated with elevated expression of BAT and
mitochondria-specific proteins including UCP1, COX-1 and
PGC-1a as well as decreased phosphorylation of Smad3 in
white adipose tissues. Such links between TGF-b signaling and
mitochondrial energy metabolism pathway have also been
reported by other laboratories (56). In addition, several studies
have demonstrated extensive interaction between TGF-b and key
energy sensors including adenosine monophosphate protein
kinase (AMPK) and sirtuin family members (57, 58).
Inhibition of activin receptor IIB (ActRIIB) responsible for
integrating actions of TGF-b ligands promotes differentiation
of primary brown adipocytes in-vitro and increases brown fat
mass, but not white fat mass in mouse (59). Furthermore,
inhibition of ActRIIB via a decoy receptor containing
extracellular domain of ActRIIB fused with human Fc
(ActRIIB-Fc) resulted in suppression of diet-induced obesity
and related metabolic complications in mice (60). This
blockade of ActRIIB was associated with increased browning
and robust upregulation of UCP1 and PGC-1a expression in the
epididymal white adipose fat and led to increased energy
expenditure under ambient or cold temperature. Gene
signature induced as result of ActRIIB inhibition, displayed an
interesting similarity with PGC-1a overexpression in-vivo.
Combined together, these studies provide significant insights
into the role of TGF-b signaling in suppressing adipose browning
program within white fat tissues in both mouse models and
human subjects, suggesting that blockade of TGF-b activity
could serve as an effective treatment strategy for obesity
and diabetes.

Since bone morphogenic proteins (BMPs) belong to the same
superfamily of growth factors as TGF-b, and regulate various
aspects of white and brown adipocyte differentiation, we
discussed below briefly their biological functions in modulating
adipose tissue functions (61–66). BMP4 has been shown to
promote differentiation of human adipose stem cells into beige
adipocytes (61, 62). BMP4 overexpressing transgenic mice
display reduced adiposity, improved insulin sensitivity, and
induction of brown adipocytes within inguinal subcutaneous
fat depots (63, 64). Interestingly, these transgenic mice display
decreased expression of brown adipocyte markers including
UCP1 and PGC-1a in the BAT (62). In spite of reduced BAT
activity, these BMP4 overexpressing mice are protected from
diet-induced obesity and insulin resistance perhaps due to
increased WAT browning (63). It, therefore, appears that
BMP4 may have opposite effects on the development of brown
adipocytes in BAT and beige adipocytes in WAT in-vivo. BMP7
promotes the commitment of mesenchymal progenitor cells to a
brown adipocyte lineage while it prevents osteogenesis by
inhibiting the expression of runt-related transcription factor 2
Frontiers in Endocrinology | www.frontiersin.org 4
(Runx2) (67). In C3H/10T1/2 cells, pretreatment with BMP7
results in brown adipogenesis with lipid accrual and expression
of Ucp1 (67). Tail vein injection of adenovirus expressing BMP7
increases BAT, without affecting the mass of WAT (67).
Although BMP7 increases Prdm16 and Ucp1 expression in
brown adipose, there are no changes in the expression of genes
involved in energy metabolism in white adipose, muscle, or liver.
The increase in BAT mass results in increased energy
expenditure, higher basal body temperature, and decreased
body weight attributes that clearly link BMP7 signaling to
energy balance. BMP7 knockout mice show significant
reduction of brown fat mass (67). Conversely, adenoviral-
mediated expression of BMP7 in mice results in significant
increase in brown fat mass, increased energy expenditure and
reduction in weight gain and subcutaneous implantation of
BMP7-treated MSCs into athymic nude mice results in ectopic
brown adipose tissue formation (67). BMP8b promotes brown
adipose tissue thermogenesis through both central and
peripheral actions (65). This thermogenic effect of BMP8a is
observed only in female mice and is thought to be mediated by
estrogens (66). The molecular mechanisms responsible for such
differential regulation of WAT, beige and BAT by various BMP
members remains largely unknown.
MYOSTATIN, IRISIN, ADIPOSE
BROWNING AND ENERGY METABOLISM

Myostatin (MST), also referred to as growth and differentiation
factor 8 (GDF8), is a member of TGF-b superfamily. MST is
synthesized as a precursor protein, which consists of a N-
terminal propeptide domain that contains the signal sequence
and a C-terminal domain that forms a disulfide-linked dimer and
functions as the active ligand (68). MST requires release from the
propeptide to be biologically active (69). MST binding to
ActRIIB leads to the phosphorylation of Smad3 (70).
Phosphorylated Smad3 can bind other Smad proteins and
these complexes translocate into the nucleus, where they
regulate the transcription of target genes (70). It is mainly
expressed in skeletal muscle but is also detectable in cardiac
muscle, blood, and to a limited extent in adipose cells. MST is
known as the potent negative regulator of muscle mass as
inactivation of Mst gene significantly accelerates muscle growth
in cattle, sheep, fish and humans (71–75).

Recent studies from several laboratories have provided
conclusive evidence that the effect of MST extends beyond its
role in skeletal muscle, and it plays a significant role in the
regulation of body fat and overall energy metabolism. Mst-
knockout (Mst-KO) mice show significantly increased muscle
mass, decreased fat mass, improved insulin sensitivity and
resistance to diet-induced obesity (76, 77). On the other hand,
overexpression of MST in mice has been shown to promote
catabolic conditions and result in muscle wasting and cause
insulin resistance (78). Since MST is expressed in very low
amounts in fat tissues, it is not clear how lack of MST can
April 2021 | Volume 12 | Article 653179
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suppress fat accumulation in Mst-KO mice. Significantly
increased energy expenditure and leptin sensitivity was
observed in Mst-KO mice that could potentially explain
reduced fat mass in these mice when compared to the WT
mice (79). In primary cultures of mouse preadipocyte cells, Kim
et al. reported decreased expression of key thermogenic genes
Ucp1, Prdm16, and Pgc-1a and significant inhibition of brown
adipogenic differentiation following treatment of the cells with
recombinant MST protein (80). Using differentiating primary
cultures of mouse embryonic fibroblast (MEF) isolated from
Mst-KO and WT embryos, Braga et al. reported significant
upregulation of key thermogenic markers in differentiating
cultures of Mst-KO group compared to the WT group (81). In
the same study, treatment with recombinant MST protein led to
a significant decrease in Oil-Red O stained adipocytes and
expression of key thermogenic genes in both WT and Mst-KO
groups. Comparative analyses of epididymal (Epi) and
subcutaneous (SC) adipose tissues isolated from WT and Mst-
KOmice show clear induction of thermogenic proteins including
UCP1, and PRDM16 along with C/EBPa. Gene expression
analyses further confirmed significant upregulation of key
adipogenic differentiation markers Cebpa and Pparg, as well as
key thermogenic genes including Prdm16, Ucp1, Bmp7, PGC-1a/
b and Cidea, suggesting that loss of MST significantly promotes
brown adipose-related markers in two main adipose depots in
Mst-KO mice (81). Similar comparative analyses of muscle
tissues from androgen-dependent (levator ani, LA) and
independent (gastrocnemius, Gas) muscle tissues show
upregulation of UCP1 and PRDM16 protein and several genes
involved in the regulation of overall thermogenic program. These
combined in-vitro and in-vivo approaches using differentiating
MEF cultures, as well as Mst-KO and their WT littermates show
that MST inhibition could not only promote white adipocyte
browning in adipose depots but could also promote the
conversion of inter-muscular white adipocytes into beige/
brown adipocytes. Furthermore, protein expression analysis of
energy-sensing adenosine monophosphate (AMP)-activated
protein kinase (AMPK), a critical regulator of mitochondrial
biogenesis that controls energy metabolism by acting in co-
ordination with NAD+-dependent type III deacetylase sirtuin1
(Sirt1) was found to be significantly upregulated in
differentiating Mst-KO MEF primary cultures compared to the
WT group (81). Protein expression of adiponectin, a key protein
secreted from adipocytes and regulator of adipocyte energy
metabolism was also found to be upregulated in differentiating
MEF cultures isolated from Mst-KO group compared to the WT
(81). Adiponectin is reported to limit triglyceride (TG)
accumulation in liver (82), increase glucose clearance and
improve hepatic insulin action in adiponectin transgenic mice
(82, 83). Zhang et al. also reported that inhibition of MST leads
to increased skeletal muscle mass, slows down fat accumulation,
lowers body weight and circulating levels of triacylglycerol in
mice on high-fat diet (84). The authors reported that white
adipose tissue of Mst-KO mouse express significantly higher
levels of genes involved in lipid transport, synthesis, oxidation
and hydrolysis. In addition, adipose tissues isolated from
Frontiers in Endocrinology | www.frontiersin.org 5
Mst-KO mice show increased expression of UCP1 and
upregulation of AMPK signaling pathway when compared to
the WT mice (84). Histological analysis of WAT isolated from
Mst-KO revealed BAT-like cells filled with multilocular smaller
lipid droplets and immunopositive for UCP1 (81), suggesting
that MST deletion induced brown-like phenotype. Genetic loss
of MST has also been reported to promote white adipose
browning and improve insulin sensitivity by several other
laboratories (85, 86). Shan et al. performed a thorough analysis
of various muscle-derived circulatory factors to identify possible
mediators of adipose browning phenotype in these Mst-KO mice
(86). The authors reported that skeletal muscle derived irisin
(encoded by Fndc5 gene) plays a central role in promoting
adipose browning in Mst-KO mice by activating AMPK-PGC-
1a-Fndc5 signaling, providing an interesting involvement of
muscle-adipose cross talk during adipose browning (86). Dong
et al. also reported the involvement of Fndc5/irisin-mediated
white adipose browning and improvement in insulin signaling in
Mst-KO mice (87). Mst-KO Meishan pigs with functional
deletion of Mst show increased insulin sensitivity, adipose
browning and upregulation of several browning-like gene
signature including Ucp1, Prdm16, Pgc-1a, Cidea, Cd137 and
Tmem26 (85). Protein expression analysis of skeletal muscle in
these Mst-KO pigs shows significantly increased levels of insulin
receptor (IR) and insulin receptor substrate (IRS). Skeletal
muscle protein expression of irisin precursor protein Fndc5 as
well the serum irisin levels were significantly higher in Meishan
Mst-KO pigs compared to the WT pigs. Activation of insulin
signaling pathway could not be blocked via inhibition of irisin in
this study, suggesting possible irisin independent activation of
insulin signaling in MST deficient skeletal muscle (85).
Reduction of interferon regulatory factor 4 (IRF4) leads to
significantly reduced exercise capacity, mitochondrial function
and ribosomal protein synthesis in brown fat, an effect that was
associated with induction of MST levels (88). On the other hand,
overexpression of IRF4 led to significantly reduced levels of
serum MST and increased exercise capacity in muscle. IRF4
was shown to physically interact with PGC-1a and promote the
thermogenic program by upregulating the transcription of UCP1
gene and driving mitochondrial biogenesis in BAT. In addition,
IRF4 levels in BAT was found to be significantly induced
following cold exposure and b3-adrenergic receptor (AR)
agonist (88). These findings, therefore, suggest that IRF4 is a
novel inducer of overall thermogenic program with the potential
to inactivate MST bioactivity. Guo et al. reported additional role
of MST regulation in the development of proatherogenic
dyslipidemia, insulin-mediated glucose disposal as well as
protection against hepatic steatosis (89). The authors show that
administration of adeno-associated virus 9 (AAV9)-mediated
MST pro-peptide significantly blocked the progression of
atherosclerosis and development of hepatosteatosis in LDLR-/-

mice on western diet. In this study, the beneficial effects of both
Mst genetic ablation as well as its inactivation by MST pro-
peptide were attributed to result from the enlarged muscle mass
although the authors did not study its effect on adipose browning
and brown fat activation. Several laboratories provided
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compelling evidence to support the notion that brown fat
activation could reduce hypercholesterolemia and elicit
protection form atherosclerosis development (90–92). Most
recently, Pydi et al. demonstrated that increased plasma MST
levels in mice lacking b-arrestin 1 (barr1) (adipo-baar1-KO) led
to impaired insulin signaling in multiple peripheral tissues (93).
On the other hand, overexpression of baar1 in adipo-baar1-OE
mice on high fat diet displayed pronounced improvements in
glucose tolerance, insulin sensitivity, and displayed significant
reduction in MST levels, suggesting that overexpression of baar1
in adipocytes protects mice from obesity-associated metabolic
disorders. Collectively, these data provide strong evidence that
inhibition of MST could provide justification not only for
increased muscle mass but could also be beneficial for the
treatment of obesity and associated metabolic disorders
through activation of adipose browning.

Irisin is a key myokine and adipokine that is secreted
following the proteolytic cleavage of its precursor fibronectin
type III domain containing protein 5 (FNDC5). Secreted irisin
exerts its major action by upregulating the expression of UCP1
and promoting browning of WAT (94). Circulating levels of
irisin are regulated by various factors including diet, exercise,
obesity and pharmacological agents (95). Bostrom et al. first
isolated irisin from muscle tissues and performed its chemical
characterization (96). Following exercise stimulation and
activation of transcriptional co-activator PGC-1a, FNDC5
expression levels are increased in muscle, resulting in the
secretion of irisin to induce adipose browning through
activation of thermogenic genes (96). These findings provided
strong evidence for the beneficial role of irisin in cardiovascular,
obesity, diabetes, skeletal and other diseases. Cold activation and
physical activity among several other factors are known to alter
the level of circulating irisin (97, 98). Plasma irisin levels are
reported to increase by 65% after 3 weeks of freewheel running,
while in healthy humans irisin levels double after 10 weeks of
endurance exercise (96). Several studies demonstrated that irisin
improves glucose homeostasis, and its circulating levels are
inversely associated with liver fat content (99–101). Based on
these findings, irisin was revealed as a potential new target for the
treatment of metabolic diseases. However, in contrast with the
above reports, several other studies question the beneficial role of
irisin and in some cases even its existence (101–104). There is
also a disagreement regarding the induction of FNDC5/irisin by
exercise (105, 106), and its association with markers of glucose
and lipid homeostasis disturbance in obesity and metabolic
syndrome (107–110). Such controversies could be explained by
the fact that irisin levels increase only when muscle ATP
concentration decreased in absence of physical activity during
sedentary lifestyle (105). Perez-Sotelo et al. reported decreased
browning capacity and increased adipogenesis of differentiating
adipocytes by blocking adipose endogenous expression of
FNDC5 (111). The authors reported that incubation of normal
adipocytes with secreted factors from the WAT of obese patients
resulted in significant reduction of FNDC5, PGC-1a and UCP1
expression. Irisin is also reported to influences glucose
metabolism in skeletal muscle (112) and myocytes in-vitro via
Frontiers in Endocrinology | www.frontiersin.org 6
increased oxidative phosphorylation, mitochondrial biogenesis
and upregulation of various genes involved in glucose transport
as well as in mitochondrial uncoupling (113). Furthermore,
exogenous FNDC5 induces UCP1 expression in subcutaneous
white adipocytes in animal models, and FNDC5 overexpression
in the liver prevented diet-induced weight gain, metabolic
disturbances, and stimulation of oxygen consumption (114).
Irisin administration was also found to increase the secretion
of glycerol and decrease lipid accumulation via regulating the
expression of hormone-sensitive lipase (HSL), adipose
triglyceride lipase (ATGL) and fatty acid-binding protein 4
(FABP4) (115). Moreover, irisin was found to inhibit hepatic
cholesterol synthesis through AMPK-SREBP2 signaling (116) in
addition to its ability to lower plasma glucose levels and altered
food intake in streptozotocin-induced diabetes mellitus model
(117). Subcutaneous perfusion of irisin resulted in significantly
increased energy expenditure, reduced hyperlipidemia and
hyperglycemia, and improved insulin resistance (118). These
beneficial effects of irisin were mediated via upregulation of
cAMP/PKA/HSL-perilipin pathway (118). In a recent report, Li
et al. provided supporting evidence for a critical role of irisin in
mediating Fst-induced browning (119). They reported that Fst
injection promoted increased secretion of irisin from the
subcutaneous fat depots via AMPK-PGC1-a-irisin mediated
signaling during adipose browning. In cardiomyocyte H9C2
cells, recombinant irisin (r-irisin) activated PI3K/AKT
pathway, induced intracellular Ca2+ signaling, and increased
cellular oxygen consumption (120). In primary adipocytes and
3T3-L1 cells, r-irisin significantly increased the expression levels
of key thermogenic genes including Ucp-1, Pgc-1a, Cox7a,
Ebf3, and Elovl3 and phosphorylated forms of p38 MAPK
and ERK1/2. Pharmacological inhibition of p38 MAPK and
ERK1/2 phosphorylation significantly lowered irisin-induced
UCP-1 expression (94). Collectively, these studies provide
novel beneficial role of irisin in regulating key metabolic
parameters associated with perturbed lipid, cholesterol and
energy metabolism.
FOLLISTATIN

Follistatin and Follistatin-Like Proteins
Follistatin (FST) was initially identified as component of the
follicular fluid capable of inhibiting follicle-stimulating hormone
(FSH) (121). FST is a monomeric glycosylated protein that binds
and neutralizes activins with high affinity and neutralizes their
bioactivity (121). FST also binds with lower affinity to several
other members of the TGF-b superfamily including MST and
BMPs 2, 5, 7, and 8 (122–125). These reports highlight the
potential for FST to modulate the biological activities of several
TGFb superfamily, particularly at higher concentrations. Two
variants of FST are generated through alternate splicing at the C-
terminus of the common precursor gene (126). A third isoform
of approximately 300-303 amino acids (FST300 or FST303) is
also reported to be produced by proteolytic cleavage of the C-
terminus of FST315 (127). The shorter isoform FST288 is
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capable of binding heparin-sulfated proteoglycans on the cell
surface with high affinity. The longer isoform FST315 is localized
primarily in the circulation and has reduced affinity for heparin
as a result of masking of the heparin-binding site at the C-
terminal (121). Another molecule related to FST, called
follistatin-like 3 (FSTL3) has been identified (128). This
protein lacks the heparin-binding sequence, but similar to Fst,
it binds activin A with high affinity and activin B with relatively
lower affinity (129). FSTL3 is relatively less effective in blocking
endogenous activin A in various cells (130). It is, therefore,
possible that the ability of FST to bind to the proteoglycan cell
surface could be important for potent inhibition of activin A
action. While Fst is expressed in several tissues including ovary,
pituitary, muscle and adipose tissues, FSTL3 is distributed
predominantly in testis, placenta, heart and pancreas (131).
Moreover, unlike Fst, FSTL3 is located in the nucleus, though
it is also secreted at a relatively slower rate (131). Based on the
tissue distribution, subcellular localization and intracellular
transport pattern of FST and FSTL3, it is evident that they are
not functionally redundant. Glycosylation of these core
proteins produces a number of protein variants ranging in size
from 31 to 42 kDa in size. Human FST is glycosylated at two
specific sites, but point mutation of these sites does not change
the affinity of FS315 for activin A (132). It is important to note
that FSTL3 along with GASP1 and MST-propeptide binds with
MST in circulation, suggesting that FST might not be the sole
physiological regulator of MST in-vivo (133–135).

Follistatin and Muscle Mass
Matzuk et al. elegantly assessed the role of FST in regulating
muscle mass and reported that FST loss-of-function mutant (Fst-
KO) mice show decreased diaphragm and intercostal muscles
and die within hours of birth (136). Based on the role of MST in
being the most potent negative regulator of muscle mass to date
and its inhibition by FST, Amthor et al. explored the role of
possible interaction between FST and MST during chick
development using yeast and mammalian two-hybrid system
(123). The authors demonstrated that FST and MST interact
directly with a high affinity of 5.84 × 10−10 M, and are expressed
in the overlapping domains during muscle development.
Moreover, MST-induced decrease in the expression levels of
key myogenic proteins Pax3 and MyoD was significantly blocked
in the presence of FST, suggesting an important role of FST in
antagonizing the inhibitory effect on muscle development.
Subsequently, it was reported that FST-induced muscle
hypertrophy was associated inhibition of both MST and activin
A and induction of satellite cell proliferation (137). Fst gene
delivery of AAV1-FST344 in normal and dystrophic mice as well
as in non-human primates led to significant increase in muscle
mass and strength (138, 139). Transgenic expression of Fst in
mdx mice, a popular model for Duchenne muscular dystrophy
(DMD), showed amelioration of dystrophic pathology and
increase in skeletal muscle mass (140). Interestingly, in a gene
therapy trial Mendell et al. demonstrated beneficial effects of
FST344 direct delivery into intramuscular quadriceps in patients
suffering from Becker Muscular Dystrophy without any apparent
side effects (141). Initially, FST was identified as a direct
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downstream target of testosterone action during its pro-
myogenic action in both mouse models (142) and cell-culture
studies (143). Protein and gene expression of FST was
significantly upregulated in mouse mesenchymal pluripotent
C3H 10T1/2 cells following testosterone treatment (142). This
upregulation of FST was associated with a parallel increase in key
myogenic markers MyoD and myosin heavy chain (MHC) II
proteins, and co-treatment of the testosterone treated C3H 10T1/
2 cells with anti-FST antibody abolished the myogenic action of
testosterone. Furthermore, castration-induced decrease in FST
expression was normalized to basal levels following testosterone
supplementation, suggesting an intermediate role of FST in
mediating testosterone’s promyogenic action on muscle mass
(142). Subsequently, Braga et al. reported for the first time that
FST is expressed in primary cultures of muscle satellite cells and
respond to the myogenic action of testosterone (143). FST
significantly antagonized the TGF-b-induced inhibition of
MHC II expression and phosphorylation of Smad2/3 in
satellite cells (143). Combined together, these findings provide
conclusive support for a central role of FST in promoting muscle
mass and function, and its potential therapeutic use for the
treatment of muscle wasting cachexic conditions often associated
with aging, HIV, and cancer.

Follistatin and Adipose Browning
Although the role of FST in regulating skeletal muscle mass has
been supported by abundant literature, its potential role in lipid
metabolism has not been thoroughly investigated. Based on the
established role of FST in inhibiting TGF-b/MST signaling
pathway known to inhibit adipose browning and thermogenic
program, it is logical to hypothesize that FST may promote
brown adipose characteristics and favorably alter overall lipid
and energy metabolism (144). Since both skeletal muscle and
brown adipose tissue share common Myf5+ precursor
population, there is a possibility that severe musculoskeletal
defects and death of Fst-KO newborn pups could also be
complicated by their concomitant decrease of BAT mass and
activity, resulting in their inability to maintain proper body
temperature especially during the early neonatal life. Braga
et al. provided the first evidence for a potential role of FST in
regulating brown adipose metabolic characteristics and
thermogenesis (144). First insight regarding a direct role for
FST in adipose tissues was obtained from analysis of Fst gene
expression of a tissue panel from C57BL6/J mice that included
WAT (inguinal subcutaneous and epididymal) and BAT depots,
as well as several other metabolic tissues including brain, heart,
intestine, liver, skeletal muscle, and testis (144). Interestingly, Fst
gene expression was highest in BAT and skeletal muscle, and at
substantial levels in inguinal WAT and liver compared to other
tissues where its expression was significantly low. This finding,
therefore, suggested a possible novel role of FST in regulating
WAT and BAT metabolic characteristics. Differentiated mouse
brown preadipocyte primary cultures show significant
upregulation of FST expression along with key thermogenic
markers UCP1 and PRDM16, compared to the undifferentiated
cells. Interestingly, Fst gene expression dramatically increased in
mouse BAT following cold-exposure, suggesting a possible
April 2021 | Volume 12 | Article 653179
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functional role of FST during brown adipocyte differentiation
and regulation of thermogenesis. Comparative analysis of mouse
embryonic fibroblast (MEF) primary cultures isolated from WT
and Fst-KO embryos, Braga et al. demonstrated significant
inhibition of key brown adipogenic markers including
PRDM16, UCP1 and PGC-1a in Fst-KO differentiating MEF
cultures compared to the WT group (144). Treatment of these
cells with recombinant FST protein (rFST) resulted in significant
upregulation of BAT-related genes and proteins in both WT and
Fst-KO MEF differentiated cultures. Comprehensive analysis of
global gene expression profile revealed lipid metabolism
pathways as the most significantly altered pathways between
WT and Fst-KO groups. Furthermore, Fst-KO differentiating
cultures displayed significantly compromised basal
mitochondrial respiration compared to the WT group.
Addition of exogenous rFST protein to the Fst-KO cultures
rescued this respiration impairment by increasing the cellular
respiration. In addition, expression level of phosphorylated
adenosine monophosphate (pAMPK), a key energy sensor
implicated in the regulation of cellular energy balance, was
significantly down regulated in Fst-KO compared to the WT
MEFs. More recently, Li et al. further confirmed FST-induced
adipose browning in high fat diet (HFD)-fed obese mice (119).
The authors demonstrated that intraperitoneal injection of FST
increased thermogenesis, energy expenditure and browning of
subcutaneous adipose fat in mice on HFD. FST injected mice had
significantly higher body temperature 37.50C compared to the
control group. This FST-induced thermogenesis was further
confirmed by infrared imaging that demonstrated high-
temperature areas in the FST injected group compared to the
control group (119). In agreement with previous reports, a recent
study reported that a single injection of AAV-mediated FST
administration after several weeks of HFD feeding induced
browning of subcutaneous WAT by upregulation of PGC-1a,
PRDM16, UCP1 and beige-specific CD137, and decreased
obesity-associated metabolic inflammation (145). Collectively,
these data provided interesting novel insight regarding the
importance of FST in modulating lipid and energy metabolism
and suggest that overexpression of FST in-vivo may promote
both beige and brown adipose tissue mass and activity.

Molecular Targets of FST During Adipose
Browning
Using follistatin transgenic (Fst-Tg) mice (146), Singh et al.
systematically analyzed the effect of FST in both WAT and
interscapular classical BAT (147). These Fst-Tg mice express
Fst under a muscle-specific promoter and have significantly
elevated (1.5 fold) circulating levels of FST as well as
interscapular BAT mass (70% higher) compared to age-
matched WT control mice (147). Analysis of BAT signature
genes important for differentiation (Ucp1, Prdm16, Zic1, Myf5,
Lhx8), fatty acid oxidation (Ascl1, Fabp3, Cidea) and
mitochondrial biogenesis and function (Pgc1a, Cox7a1, Cox8)
as well key thermogenic proteins (UCP1, PRDM16, PGC1a)
were significantly upregulated in the interscapular BAT of the
Fst-Tg mice compared to the WT mice (147). Comparative
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analysis of epididymal and subcutaneous WAT between Fst-Tg
and WT mice displayed similar upregulation of key BAT-related
markers. These changes observed in both WAT obtained from
Fst-Tg mice was associated with distinct adipose browning
characteristics including increased UCP1 immunostating, and
upregulation of key beige-specific Cd137 gene in both WAT
depots, with greater changes observed in subcutaneous WAT
compared to the epididymal WAT. These findings provided the
first line of evidence that Fst promotes adipose browning in both
WAT depots and increase BAT mass in-vivo.

Analysis of molecular targets of FST in these two adipose
depots identified two distinctly different mechanisms. While FST
increased phosphorylation of p38 MAPK and ERK1/2 in both
WAT depots, it increased Myf5 expression in BAT of Fst-Tg mice
(147). The authors also utilized in- vitro model of differentiating
3T3-L1 cultures to confirm that recombinant FST (rFST)
treatment led to significant upregulation of UCP1 and beige-
specific CD137 protein and beige-selective genes Cd137, Tbx1, and
Tmem26. This rFST-induced increase in beige-selective markers in
3T3-L1 cells was also associated with concomitant increase in
p38MAPK and ERK1/2 phosphorylation. Furthermore,
pharmacological inhibition of their phosphorylation in these
cells by either SB023580 or PD98059 resulted in abrogation of
rFst-induced upregulation of UCP1 protein expression, suggesting
that FST stimulates adipose browning via p38MAPK/ERK1/2
pathway. Since FST overexpression in Fst-Tg mice displayed
distinctly different targets in WAT and BAT tissues, Singh et al.
analyzed differential expression of key TGF-b signaling
components Smad3/pSmad3 and activin receptor type IIB (Act
RIIB) in adipose tissues obtained from WT and Fst-Tg mice. FST
overexpression in these Fst-Tg mice led to significant inhibition of
Smad3/pSmad3 as well as Act RIIB expression in both SC and Epi
WAT as well as in BAT (147), suggesting that inhibition of Smad3
signaling may be the common upstream target of FST action that
precedes phosphorylation of p38MAPK/ERK1/2 and activation of
Myf5. FST-induced inhibition of TGF-b/Smad3 signaling has also
been reported previously in satellite cells and muscle tissues (142,
143). In order to further test the effect of FST overexpression on
adipocyte browning in differentiating 3T3-L1 cells, Singh et al.
cloned full-length mouse Fst gene in Piggyback Transposon cargo
plasmid vector to perform systematic beige/brown adipose gene
expression analysis following Fst overexpression (148).
Comparative gene expression analysis of Fst-overexpressing
3T3-L1 Fst cells with the parental 3T3-L1 cells displayed
significantly higher levels of follistatin protein and gene in the
cells and in the cell supernatant compared to the 3T3-L1 cells
(148). Expression levels of key thermogenic and several adipose
browning markers including CD137, Tbx1, and Tmem26 were
significantly upregulated following Fst overexpression in
differentiating 3T3-L1 cells (148). Table 1 and Table 2
summarizes a comprehensive list of proteins and genes
respectively that are influenced by increased levels of FST in
various cell culture and Fst transgenic (Fst-Tg) mouse model.
Fst overexpression also led to significant induction of p38 MAPK
and ERK1/2 phosphorylation in-vitro in 3T3-L1 confirming
previous findings of induced phosphorylation of these proteins
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in both WAT depots of Fst-Tg mice. Previous reports have
suggested an essential role for p38MAPK in promoting cyclic-
AMP-dependent activation of protein kinase A (PKA) and
activation of UCP1 transcription (149, 150). Phosphorylation of
p38 MAPK following stimulation of beta-adrenergic receptor (b-
AR) results in phosphorylation and recruitment of ATF2 and
PGC-1a to PPRE and CRF2 motifs within the UCP1 enhancer
following their interactions with PPARg and RXRa to activate the
brown adipose thermogenic program (151). Phosphorylation of
p38MAPK has also been shown to stimulate adipose browning via
induction of irisin, a key myokine that can be significantly induced
by exercise and PGC1-a (117). Recent data suggest that Fndc5 is
also secreted fromWAT (152). Since FST is known to induce irisin
encoded Fndc5 gene in mouse muscle cells (86), it is possible that
induced levels of irisin/Fndc5 will have contributed to increased
browning via phosphorylation of p38 MAPK and ERK1/2 in Fst-
Tg mice. Robust activation of FGF21/adiponectin/pAMPK
signaling pathway was found in both adipose depots of Fst-Tg
mice suggest a possible link between Fst overexpression and
FGF21 activation (147). In order to test the possible
intermediate role of b3-AR signaling during FST-induced
browning, Singh et al. also tested whether treatment of b3
agonist CL316, 243 would promote BAT activation and adipose
browning in Fst-Tg compared to the WT mice. The authors were
able to show heightened response to b3-AR activation on UCP1
expression in both WAT depots and BAT tissues obtained from
Fst-Tg mice compared to the WT mice (147).

In order to identify the molecular targets of FST in classical
brown fat, Singh et al. also analyzed the effects of exogenous rFST
on differentiating mouse brown preadipocyte BAT cultures
(147). rFST treatment led to significant increase in BAT-
selective UCP1, Eva1, and Myf5 protein and gene expression.
They also showed that siRNA-mediated knockdown of mouse
Myf5 expression led to significant blockade of FST-induced
UCP1 protein and gene expression and two key BAT-selective
genes Lhx8 and Zic1. Furthermore, Fst-KO embryo sections
show decreased Myf5 immunostating compared to the WT,
and treatment of differentiating MEF cultures derived from
Fst-KO embryo with rFST was able to rescue Myf5 protein
expression (147). Collectively, these findings obtained from
differentiating BAT cells and Fst KO primary cultures provide
strong evidence that Myf5 acts as an obligatory target of FST in
promoting brown adipose characteristics. It appears however,
that major action of FST on adipose browning is primarily due to
the blocking of TGF-b ligands to inhibit Smad3 signaling as
shown in Figure 1. A comprehensive list of proteins and genes
targeted by FST during adipose browning are also summarized in
Tables 1 and 2 respectively.
Genetic Manipulation of Follistatin
Expression and its Relevance to Obesity
Related Metabolic Diseases
As adipose tissues are the primary site of energy storage and its
mobilization, activation of adipose browning has the potential
to positively regulate overall systemic metabolism (153, 154).
Adipose browning-induced biochemical changes are implicated
TABLE 1 | List of proteins targeted by follistatin.

Model System Protein Change Reference

Mouse embryonic fibroblast (MEF) cultures in
adipogenic differentiation medium;
WT vs. Fst KO

UCP1 ↓ (144)

PRDM16 ↓ (144)
aP2 ↓ (144)
PPARg ↓ (144)
PGC-1a ↓ (144)
Cyt C ↓ (144)

Interscapular brown adipose tissue (BAT); WT
vs. Fst-Tg

UCP1 ↑ (147)

UCP2 ↑ (147)
UCP3 ↑ (147)
PRDM16 ↑ (147)
PGC-1a ↑ (147)
AdipoQ ↑ (147)
Myf5 ↑ (147)
pSmad3 ↓ (147)
Smad3 ↓ (147)
ActRIIB ↓ (147)

Epididymal and subcutaneous adipose tissue;
WT vs. Fst-Tg

UCP1 ↑ (147)

UCP2 ↑ (147)
UCP3 ↑ (147)
PRDM16 ↑ (147)
PGC1a ↑ (147)
BMP7 ↑ (147)
Glut4 ↑ (147)
CD137 ↑ (147)
pp38
MAPK

↑ (147)

pERK1/2 ↑ (147)
pSmad3 ↓ (147)
Smad3 ↓ (147)
ActRIIB ↓ (147)
AdipoQ ↑ (148)
FGF21 ↑ (148)
pAMPK ↑ (148)

Differentiating 3T3-L1 cells treated with
recombinant FST (rFST); Control vs. rFST

UCP1 ↑ (147)

CD137 ↑ (147)
pp38
MAPK

↑ (147)

pERK1/2 ↑ (147)
AdipoQ ↑ (148)
AdipoR1 ↑ (148)
FGF21 ↑ (148)
pAMPK ↑ (148)
PGC-1a ↑ (148)
SirT1 ↑ (148)

Mouse brown adipose tissue (BAT) cells
treated with rFST: Con vs. rFST

UCP1 ↑ (147)

Eva1 ↑ (147)
Myf5 ↑ (147)

Fst overexpressing stable 3T3-L1 (3T3-L1 Fst)
cells; 3T3-L1-Fst vs. 3T3-L1

UCP1 ↑ (148)

CD137 ↑ (148)
p38
MAPK

↑ (148)

pERK1/2 ↑ (148)
COX-IV ↑ (148)
SirT1 ↑ (148)
SirT3 ↑ (148)
AdipoQ ↑ (148)
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in alterations of several key metabolic pathways that regulate
plasma glucose levels and triglyceride metabolism in mice.
Beige and brown adipose tissues consume and metabolize
nutrients in a specialized way to facilitate weight loss,
amelioration of insulin resistance and protection from
hyperlipidemia and obesity related metabolic syndromes (155,
156). In order to assess the metabolic consequences of FST-
induced adipose browning, Singh et al. performed quantitative
analysis of abdominal fat volume, glucose clearance and
comprehensive analysis of serum lipid profiles of Fst-Tg mice
(148). Computerized tomography (CT) scan analysis of Fst-Tg
mice revealed significantly lower percentage of abdominal fat
mass and increased glucose disposal rate compared to the WT
mice (148). Also, serum levels of triglycerides (TG), free fatty
acid (FFA), and glucose levels were significantly lower in Fst-Tg
mice compared to the WT mice without any significant changes
in total cholesterol (TC) and high-density lipoprotein (HDL)
levels. Major urinary protein 1 (Mup1), a key regulator of
glucose and lipid metabolism (157), and energy expenditure
(158) was significantly upregulated in liver and both WAT
depots of Fst-Tg mice compared to the WT (148). Braga et al.
previously reported a significant decrease in Mup1 gene
expression in Fst-KO MEF differentiating cultures compared
to the WT (144). In another recent study, Davey et al. reported
that intravascular gene delivery via rAAV6-FST 317 to
prediabetic db/db mice ameliorates progression of
hyperglycemia, maintains insulinemia, promote abundance
of insulin producing beta cell population, and reduced
number of a‐like cells (159). The authors also reported
that Fst gene delivery to older mice with hyperglycemia
and declining insulinemia led to significant restoration of
TABLE 2 | List of genes targeted by follistatin.

Model System Gene Change Reference

Mouse brown preadipocyte cells treated with
rFST; WT vs. rFST

Ucp1 ↑ (144)

Prdm16 ↑ (144)
Pgc1a ↑ (144)
Fabp3 ↑ (144)

Differentiating Mouse embryonic fibroblast
(MEF) cultures; WT vs. Fst KO

Ucp1 ↓ (144)

Prdm16 ↓ (144)
Pgc1a ↓ (144)
Bmp7 ↓ (144)
Pgc1b ↓ (144)
Cidea ↓ (144)
Acsl1 ↓ (144)
AdipoQ ↓ (144)
Agpat9 ↓ (144)
Cd36 ↓ (144)
Fabp4 ↓ (144)
Mup1 ↓ (144)
Thrsp ↓ (144)
Apoa2 ↓ (144)
F13a1 ↓ (144)
G2e3 ↓ (144)
Gas5 ↓ (144)
Ifi203 ↓ (144)
Titin ↑ (144)
Vtn ↓ (144)
Hp ↓ (144)
Plg ↓ (144)
Atpla2 ↓ (144)
Saa1 ↓ (144)
Cps1 ↓ (144)
Serpine
1

↓ (144)

Interscapular brown adipose tissue (BAT); WT
vs. Fst-Tg

Ucp1 ↑ (147)

Prdm16 ↑ (147)
Zic1 ↑ (147)
Myf5 ↑ (147)
Lhx8 ↑ (147)
Acsl1 ↑ (147)
Fabp3 ↑ (147)
Cidea ↑ (147)
Pgc1a ↑ (147)
Cox7a1 ↑ (147)
Cox8 ↑ (147)
Glut4 ↑ (147)

Epididymal and Subcutaneous adipose tissue;
WT vs. Fst-Tg

Ucp1 ↑ (147)

Prdm16 ↑ (147)
Pgc1a ↑ (147)
Acsl1 ↑ (147)
Fabp3 ↑ (147)
Cidea ↑ (147)
Elov3 ↑ (147)
Cox7a1 ↑ (147)
Cox8 ↑ (147)
Cd137 ↑ (147)
Fgf21 ↑ (Epi

+SC)
(148)

Egr1 ↑ (Epi
+SC)

(148)

c-Fos ↑ (Epi
+SC)

(148)

(Continued)
TABLE 2 | Continued

Model System Gene Change Reference

Fgfr1 ↑ (Epi) (148)
Fgfr2 ↑ (SC) (148)
Fgfr3 ↑ (SC) (148)
Klb ↑ (SC) (148)

Differentiating 3T3-L1 cells treated with
recombinant FST: Control vs. rFST

Ucp1 ↑ (147)

Cd137 ↑ (147)
Tbx1 ↑ (147)
Tmem26 ↑ (147)

Fst overexpressing stable 3T3-L1 (3T3-L1-Fst)
cells; 3T3-L1-Fst vs. 3T3-L1

Ucp1 ↑ (148)

Cd137 ↑ (148)
Pgc1a ↑ (148)
Fgf21 ↑ (148)
Tbx1 ↑ (148)
Tmem26 ↑ (148)
Ppara ↑ (148)
Fasn ↓ (148)
Th ↑ (148)
Bmp7 ↑ (148)
Ptgs2 ↑ (148)
Cox7a1 ↑ (148)
Cox8b ↑ (148)
Cpta ↑ (148)
Mst ↓ (148)
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serum insulin concentration. Diabetic db/db mice display
compromised b-cell function and reduced insulin content.
Overexpression of FST in pancreatic-b cells has previously
been reported to counter insulin insufficiency and extend the
life span of db/db mice mainly by inhibition of SMAD pathway
and activation of the PI3-kinase/Akt pathway (160). Most
recently, Tang et al. also reported significant decrease in body
fat percentage in mice on normal diet, and ameliorated the
increase in body fat after HFD following AAV-Fst mediated
gene delivery (145). In this study, Fst gene delivery in the HFD
group significantly decreased serum levels of insulin, leptin,
resistin, and C-peptide as well as serum glucose, triglycerides,
cholesterol, and free FFAs as compared to control group. AAV-
Fst gene delivery also significantly increased circulating levels of
vascular endothelial growth factor (VEGF) and lowered serum
levels of inflammatory cytokine IL-1a. In addition, reduced
levels of mitochondrial oxidative phosphorylation (OXPHOS)
complex subunits in subcutaneous WAT of mice on HFD was
normalized following Fst overexpression via increased
expression of PGC-1a. Although Fst has been reported to
promote PGC-1a expression in previous studies (144, 147),
the precise mechanism responsible for Fst- induced
upregulation of PGC-1a remains unknown. Collectively, these
findings provide exciting supporting evidence that Fst gene
therapy could elicit beneficial metabolic effects and mitigate
HFD-induced obesity. In order to test the effect of FST
overexpression on overall lipidomic profiles in differentiating
Frontiers in Endocrinology | www.frontiersin.org 11
3T3-L1 cells, Singh et al. performed comparative metabolic
profiling of basal 3T3-L1 and Fst overexpressing 3T3-L1 Fst
cells (148). Increased mitochondrial biogenesis in differentiated
3T3-L1 Fst cultureswas also confirmed by significantly increased
maximal oxygen consumption rate (OCR) (148). Analysis of
endogenous lipid metabolites displayed a general reduction in
diglycerides (DG), triglycerides (TG), ceramide, FA,
phosphatidylcholine (PC), phosphatidylethanolamine (PE),
and ly sophospha t idy l e thano l amine (LPE) in FST
overexpressing 3T3-L1 Fst cells compared to the basal 3T3-L1
ce l l s ( 148) . On the o ther hand , l eve l s o f s evera l
lyosophosphatidylcholines (LPL) such as LPC (16.0), LPC
(18.0), and LPC (18.1) were significantly increased in 3T3-L1
Fst cells in comparison with the 3T3-L1 cells (148). These in-
vitro data, thus, provide supporting evidence that genetic
manipulation of FST could favorably alter overall lipid
metabolites known to be associated with fat mass and promote
obesity and associated metabolic conditions (161, 162). In-vivo
analysis of adipose tissues from Fst-Tgmice also show significant
differences in several amino acids including leucine, isoleucine,
and valine also collectively referred to as branched-chain amino
acids (BCAA), key components of urea cycle and arginine
metabolism, and components of the Kreb’s cycle including
citrate, succinylcarnitine, and fumarate were significantly
lower compared to the WT tissues. FST overexpression in Fst-
Tg mice was associated with significant upregulation of two key
BCAA catabolic proteins BCAT2 and BCKDHA in epididymal
FIGURE 1 | Schematic diagram showing FST modulation of TGF-b/Samd 3 signaling pathway during adipose browning. MST, Myostatin; BMPs, Bone
morphogenic proteins; GDF11, Growth and differentiation factor 11; TGF-b, Transforming growth factor beta.
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WAT (148). Several recent studies have provided convincing
evidence in support of a positive association between BCAA
levels and insulin resistance and type 2 diabetes as their levels are
significantly induced in obese subjects compared to the lean
humans (163, 164). Levels of w-3 polyunsaturated fatty acids
(PUFAs), reported to improve obesity-associated chronic
inflammation, insulin resistance and dyslipidemia (165), and
regulate several aspects of energy and lipid metabolism (166)
were significantly increased in the subcutaneousWAT of Fst-Tg
mice. Levels of key lysolipids, known metabolic regulators of
childhood obesity (167) were significantly elevated in the Epi
WAT of Fst-Tg compared to the WT mice. Combined together,
these findings obtained from comprehensive metabolomic
profiling of Fst transgenic mice provide compelling evidence
that geneticmanipulation of Fst in-vivo favorably alters the levels
of key metabolites known to influence various aspects of
metabolic conditions, and warrant future studies for the use of
FST based therapeutic interventions to combat obesity and
related diseases (168).
CONCLUSION

Obesity and associated comorbidities resulting from
accumulation of dysfunctional white adipose tissues and
chronic imbalance between energy intake and energy
expenditure represent a growing worldwide problem.
Activation of adipose browning characteristics leads to the
dissipation of excess stored energy and provide metabolic
benefits to combat the burden of obesity and related
abnormalities including insulin resistance, hyperlipidemia, type
2 diabetes and cardiovascular diseases. Adipose browning
phenomenon in humans has been confirmed based on both
morphological, and functional studies (5, 6, 16). Accordingly,
new strategies are being explored to identify novel compounds
that can promote adipose browning and reduce the development
of obesity and associated conditions. Recent reports from several
laboratories provide convincing evidence that inhibition of TGF-
b signaling pathway provides metabolic protection from obesity
and diabetes by regulating glucose and energy homeostasis via
activation of white adipose browning (13, 59). Genetic
inactivation of MST, a key member of TGF-b superfamily not
only results in increased muscle mass but also promotes
activation of adipose browning and favorably alters several
metabolic parameters implicated in the development of
metabolic complications (86, 87). Since Fst is a known
inhibitor of MST and reported to antagonize overall TGF-b
signaling, it is logical to explore the therapeutic potential of FST
in regulating key metabolic functions in both adipose depots
besides its established role in promoting muscle mass. Recent
findings by Braga et al. provided the first evidence that FST
e nh an c e s t h e a c q u i s i t i o n o f b e i g e a n d b r own
adipose characteristics by directly targeting Myf5- and
Myf5+ populations to promote beige and brown adipose
characteristics respectively (142). Since Myf5+ precursor
population gives rise to both skeletal muscle and brown fat
(20), it is not surprising that FST could selectively target these
Frontiers in Endocrinology | www.frontiersin.org 12
populations to promote both muscle and BAT mass (147, 169).
Additionally, identification of key molecular and cellular targets
responsible for FST-induced adipose browning is necessary to
develop therapeutic strategies for the treatment of obesity and
related diseases. Although activation of p38MAPK and ERK1/2
signaling is necessary for FST-induced adipose browning in both
adipose depots (147), it is important to explore the possible role
of irisin/Fndc5 during the process as secretion of irisin and
subsequent activation of p38 MAPK and ERK1/2 has been
reported during exercise (94). Since FST secretion is also
induced following exercise (169, 170) and rFST treatment leads
to elevated Fndc5 gene expression in muscle (86), it is possible
that FST will indirectly affect p38MAPK and ERK1/2 activation
via increased secretion of irisin. b3-AR signaling has been shown
to promote p38 MAPK activation and induce browning of WAT
and nonshivering thermogenesis in BAT (150, 171, 172). It is,
therefore, possible that FST activates b3-AR signaling to promote
p38 MAPK phosphorylation during adipose browning as b3
agonist CL 316,243 treatment elicited additive response in UCP1
levels in both WAT depots as well as in BAT (147). FGF21,
another key regulator of adipose browning and a downstream
target of b3-AR signaling (173, 174) is upregulated in WAT of
Fst transgenic mice, suggesting a possible link between FST and
FGF21 signaling during adipose browning. Based on available
data, it appears that the beneficial effects of FST on adipose
browning, obesity, and related metabolic conditions are mainly
due to blocking of TGF-b ligands including MST and inhibition
of Smad3 signaling as summarized in Figure 1. Finally, data
obtained from Fst gene therapy studies in both human and
nonhuman primates did not indicate apparent structural or
functional aberration in various tissues, suggesting that FST
may have therapeutic potential in clinical settings for the
treatment of obesity and related diseases.
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