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Abstract: Maintenance of Na+ and K+ gradients across the cell plasma membrane is an essential
process for mammalian cell survival. An enzyme responsible for this process, sodium-potassium
ATPase (NKA), has been currently extensively studied as a potential anticancer target, especially
in lung cancer and glioblastoma. To date, many NKA inhibitors, mainly of natural origin from the
family of cardiac steroids (CSs), have been reported and extensively studied. Interestingly, upon
CS binding to NKA at nontoxic doses, the role of NKA as a receptor is activated and intracellular
signaling is triggered, upon which cancer cell death occurs, which lies in the expression of different
NKA isoforms than in healthy cells. Two major CSs, digoxin and digitoxin, originally used for the
treatment of cardiac arrhythmias, are also being tested for another indication—cancer. Such drug
repositioning has a big advantage in smoother approval processes. Besides this, novel CS derivatives
with improved performance are being developed and evaluated in combination therapy. This article
deals with the NKA structure, mechanism of action, activity modulation, and its most important
inhibitors, some of which could serve not only as a powerful tool to combat cancer, but also help to
decipher the so-far poorly understood NKA regulation.

Keywords: anticancer activity; cardiac glycosides; combination therapy; digoxin; digitoxin; digi-
toxigenin; Na+/K+-ATPase activity modulation; natural compounds; ouabain; sodium-potassium
pump inhibitors

1. Introduction

Cancer is a highly variable disease in terms of its origin and biological characteristics
of the affected tissues. There is a plethora of molecular targets, whose interactions with
suitable molecules suppress the growth and spreading of neoplastic tissues. Each of these
molecular targets has mostly a different mechanism of action.

The main role in cancer development is played by oncogenes that, when mutated,
produce the corresponding proteins to a greater extent or in a form with increased or still
“on” activity. Such a condition can be treated with inhibitors of the given proteins. One of
such is imatinib mesylate (GleevecTM), the inhibitor of the Abelson tyrosine-protein kinase
1 (ABL1) used to treat chronic myeloid leukemia [1], inhibitors of the mammalian target
of rapamycin (mTOR) [2], phosphatidylinositol 3-kinase (PI3K; [3]), or newly discovered
pyrazolopyrimidine-based GTPase inhibitors of K-Ras (Kirsten sarcoma virus protein) [4].

However, there are many types of cancer and, therefore, in addition to these examples,
a wide range of drugs and approaches acting by different mechanisms are used to treat
cancer, discussed in detail in ref. [5,6]. These include, for example, anticancer chemother-
apeutics such as commonly used cisplatin and oxaliplatin, which do not target only the
tumor tissue and due to this non-selectivity cause many side effects. Recently, a big effort
has been made to develop a therapy targeting specifically only tumor tissue, and thus,
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generating minimum side-effects. One such potential targets for cancer therapy, which has
attracted large attention lately, is the sodium-potassium ATPase (NKA).

NKA is an integral membrane protein localized in the cell plasma membrane of
animal cells. NKA belongs to the enzyme class of translocases and it is an essential protein
for maintaining ionic and osmotic balance in a eukaryotic cell. During one cycle, NKA
exports three Na+ and imports two K+ ions while hydrolyzing one molecule of adenosine
triphosphate (ATP). Therefore, NKA is also the key player in the transmission of nerve
impulses throughout the body of a neuron [7,8]. Moreover, NKA is also responsible for the
osmoregulation of Na+ and K+ ions in the hypertonic and hypotonic environment [9–11].
In addition to the transport function, NKA bears also a role of a receptor coupled with
the Src family of nonreceptor tyrosine kinases, forming a functional complex for signal
transduction [12]. This is the case when NKA is only partially inhibited and there is
no significant disruption of the homeostasis of Na+ and K+ ions. Depending on the cell
type, after activation by the respective ligand, NKA stimulates the proliferation of healthy
cells [13,14] or, contrarily, inhibits the proliferation of tumor cells [15,16]. Due to the
selective reduction of cancer cell proliferation, NKA currently represents a hot molecular
target for anticancer therapy.

2. Na+/K+-ATPase Structure

According to the enzyme classification, NKA (Figure 1), being an integral membrane
ion-transporting protein, belongs to the family of translocases (EC 7.2.2.13) utilizing the
energy for ion transport from ATP hydrolysis. NKA occurs as a dimer composed of α and
β subunits, which have four and three tissue-specific isoforms, respectively [17–21].
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Figure 1. Structure of Na+/K+-ATPase (PDB, 3A3Y; [22]) with bound ouabain (green) in a molecular
surface and cartoon view mode. Subunits are color-coded: Magenta (α subunit), cyan (β subunit),
and orange (FXYD subunit). The image was taken using PyMOL 2.3.3.

The α subunit is the catalytic part of the enzyme and, thus, executes all processes
connected to the Na+ a K+ ion transport across the cell plasma membrane. It consists
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of a transmembrane and a cytoplasmic part, the second of which can be further divided
into an actuator (A), nucleotide-binding (N), and phosphorylation domain (P). The spatial
arrangement of the transmembrane domain (M) consists of 10 α-helices and is highly
homologous with the three-dimensional structure of the transmembrane domain of another
ATPase playing an important role in cancer research, the sarco-/endoplasmic reticular
Ca2+-ATPase (SERCA) [23]. In both structures, there are the same amino acid residues at
the same positions in space except for L-Asp804 and L-Gln923, which are substituted with
L-Asn804 and L-Glu923 in the SERCA protein [24].

The β subunit affects the affinity of Na+ and K+ ions to their binding sites [25] and
augments the level of translation of the α subunit [26]. The β subunit consists of an extra-
cellular domain and one transmembrane helix, which interacts with transmembrane helices
M7 and M10 of the α subunit. The extracellular domain of the β subunit contains three
glycosylation sites [27,28], in which the asparagine residues are glycosylated by oligosac-
charides containing N-acetylglucosamine, mannose, and partially also galactose [29]. The
glycosylation level of the β subunit affects its folding and subsequent translocation into
the cell plasma membrane [30]. Moreover, the β subunit also protects the α subunit from
degradation, since NKA is translocated to the cell plasma membrane only as an α/β
heterodimeric complex [31,32]. The glycosylation level of the β subunit does not however
have importance only for the aforementioned processes, but it also plays a significant role
in other events such as cellular adhesion and polarization. It was reported that in polar-
ized hepatocytes, NKA upon deglycosylation of the β subunit translocates into the apical
instead of the basolateral membrane [33]. Targeting of NKA to the basolateral membrane
is important because two adjacent cells are able to form tight junctions via β subunits
interaction [34].

Even though that NKA is usually present in the form of a heterodimer of α and β

subunits, at some occasions, cells produce one extra subunit designated as FXYD. The
FXYD subunit comprises in total seven isoforms, which are in all cases formed by one
α-helix. The FXYD subunit contains a conservative sequence, based on which this family
of proteins was named. The FYD stands for L-Phe, L-Tyr, and L-Asp, respectively, X
represents one of the following amino acids: L-Thr, L-Glu, L-Tyr, L-Phe, and L-His (Figure 2).
Expression of the FXYD subunit is highly specific only for some tissues, mainly kidneys,
heart, and muscles, summarized in Figure 3. Moreover, the expression of the FXYD subunit
is also dependent on the salinity of the cell microenvironment [35]. In addition to that,
a significantly increased expression of the isoform 3 of the FXYD subunit was reported
for hepatocellular [36], colorectal [37], urinary bladder [38], breast carcinoma [39], and
pancreatic cancer [40]. Therefore, this isoform could be conveniently utilized as a prognostic
marker in the early onset of various cancer diseases.
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Figure 2. Amino acid sequence alignment of seven human isoforms of FXYD subunit of Na+/K+-
ATPase. A conservative FXYD sequence is highlighted in yellow. Other shared amino acids are in 
turquoise. An elongated N-terminus present in isoform 5 is depicted in italics. The sequences were 
taken from refs. [41–47]. * N-terminal extension of FXYD5 isoform. 

Figure 2. Amino acid sequence alignment of seven human isoforms of FXYD subunit of Na+/K+-ATPase. A conservative
FXYD sequence is highlighted in yellow. Other shared amino acids are in turquoise. An elongated N-terminus present in
isoform 5 is depicted in italics. The sequences were taken from refs. [41–47]. * N-terminal extension of FXYD5 isoform.
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Figure 3. The human proteome of individual Na+/K+-ATPase isoforms of α subunit (α-1, α-2, α-3, and α-4) β subunit (β-1,
β-2, and β-3) and FXYD subunit (FXYD-1, FXYD-2, FXYD-3, and FXYD-6, data for FXYD-4, FXYD-5, FXYD-7 were not
available). Data were taken from ProteomicsDB [48–58]. The color scale represents log10 normalized intensity-based absolute
quantification (iBAQ) [59] for respective isoforms in a given tissue. The plots were prepared in R software, version 3.4.4.
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Another role of the FXYD subunit is to stabilize NKA in the cell plasma membrane
via interaction with phosphatidylserine [60]. An individual isoform of the FXYD subunit
modulates the NKA activity in dependence on an affinity for Na+ and K+ ions to NKA, see
summary in Table 1. Similar to the case of the β subunit, one isoform of the FXYD subunit
(isoform 5) can also be glycosylated. However, contrary to the β subunit, glycosylation of
the FXYD subunit reduces the level of cell adhesion by hampering transdimerization of the
β subunits localized on adjacent cells [61].

Table 1. The affinity of individual Na+/K+-ATPase (NKA) isoforms of FXYD subunits for Na+ and
K+ ions.

Isoform
Affinity for Ions

References
Na+ K+

1 a +/− n.e. b [62,63]
2 n.e. + [64]
3 - - [65]
4 + - [66]
5 + - [67]

6 c +/− +/− [68]
7 c +/− n.e. [69]

a the affinity for Na+ depends on the level of NKA phosphorylation. b n.e.—not effective. c the affinity for Na+

and K+ depends also on the α and β isoforms.

3. Catalytic Cycle of Na+/K+-ATPase

Based on the fact that NKA similarly to SERCA transports ions against the concen-
tration gradient, both these enzymes utilize, for the Na+/K+ and Ca2+, respectively, ion
transport across the cell plasma membrane, energy that is supplied by a transfer of in-
organic phosphate from the ATP molecule to L-Asp [70,71]. Both proteins interconvert
between two conformational states called E1 and E2. The phosphorylation of L-Asp is
characteristic for all types of these enzymes, based on which they previously belonged to
the P-type ATPase class of enzymes (3.6.3.-).

The catalytic cycle of NKA is represented by the Post-Albers scheme, a model propos-
ing how NKA transports the Na+ and K+ ions. During one cycle, three intracellular Na+ are
transported into the extracellular space and two extracellular K+ in the opposite direction
into the intracellular space via hydrolysis of one ATP molecule. The NKA catalytic cycle
consists of the following steps:

• In the E1 state with bound ATP, the Na+ binding site in NKA is opened to the intracel-
lular space and NKA has a high affinity for Na+ in this state.

• NKA phosphorylation occurs only when all Na+ binding sites are occupied since
binding of the third Na+ ion causes a conformational change in the transmembrane
domain, which is subsequently transferred to the nucleotide-binding domain [72].

• Then, after NKA phosphorylation, another conformational change takes place leading
to the opening of the NKA cavity to the extracellular space, i.e., to the E2 state, and a
release of Na+ [73].

• In the E2 state, NKA has a higher affinity for K+ ions. Upon their binding, NKA
dephosphorylates and binds another molecule of ATP, which promotes the opening
of the NKA cavity to the intracellular space, conversion to E1 state, and release of K+

ions [74,75].

By computational simulations, it was also shown that the NKA affinity to the corre-
sponding ions is regulated in the E1 and E2 states by amino acid protonation (L-Asp804,
L-Asp808, L-Asp926, L-Glu327, L-Glu779, L-Glu954) in the active site of the enzyme [76]. More-
over, it was also found that the NKA catalytic cycle is affected by Mg2+ ions in the way that
in the E1 state, the Mg2+ ions induce the cavity occlusion, followed by autophosphorylation
and transition to the E2 state [77]. These data are further confirmed by the computational
simulations by [78], who used molecular docking and simulations of molecular dynamics
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to show that Mg2+ facilitates NKA transition from the open to occluded conformation and
subsequent autophosphorylation.

There are, in total, three binding sites (I, II, III) for Na+ and K+ ions localized in the
transmembrane domain of NKA between the following helices: αM4, αM5, and αM6 (I
and II) and αM5, αM6, and αM8 (III). The binding sites I and II are identical for K+ and
Na+. However, the binding site III is highly selective only for Na+ ions and occurs only in
the E1 state [76]. As aforementioned, the ion selectivity is reached by distinct protonation
states in the individual phases of the catalytic cycle [76]. This fact was confirmed by [79],
who also found that the protonation of L-Asp926 is driven by Cl− ion binding, but the exact
binding site has not been uncovered yet. Besides, L-Asp926 is an important amino acid
residue necessary for the formation of the binding site III, since its deprotonation enables
Na+ binding, and on the contrary, its protonation causes K+ transition into the binding
sites I and II [79].

The catalytic cycle occurs at the physiological Na+ and K+ ion concentrations; however,
interestingly, it was also reported that at low Na+ and K+ concentrations, NKA can also
transport H+ ions. In such a case, the NKA activity highly depends on the pH value,
growing with decreasing pH. During this catalytic cycle, two H+ ions are transported to
the extracellular space and then two H+ ions inside the cell upon hydrolysis of one ATP
molecule [80].

4. Na+/K+-ATPase Functions and Anticancer Potential of Cardiac Steroids

As mentioned above, the main role of NKA is to maintain the homeostasis of Na+

and K+ ion concentrations, by which it significantly contributes to osmoregulation and
maintenance of the resting membrane potential. Besides, NKA function is associated
with cellular signaling resulting from its interaction with cardiac steroids (CSs). CSs are
substances of a steroid character naturally occurring in sundry plants, mainly from the
genus Digitalis, and organisms. However, there are also endogenous CSs, such as ouabain
(1; Figure 4) and dihydroouabain [81]. The endogenous CSs are probably the reason that
NKA contains in its structure the binding site for these compounds, which our body
produces at picomolar to low nanomolar concentrations. At these low concentrations, NKA
is not inhibited, but on the contrary, its activity is stimulated or NKA can also act as a
signal transducer. Stimulation of NKA activity was observed in cardiac myocytes derived
from humans, canines, and guinea pigs. The NKA activity stimulation was detected in
an isoform-specific manner, which means that the most sensitive to this stimulation was
α2 isoform [82]. Kundmiri et al. [83,84] have associated low concentrations of compound
1 with activation of NKA signaling cascades and consequently increased proliferation of
opossum kidney cells as well as with stimulation of NKA ion transport. Therefore, this
mechanism could be the way that the body copes with low sodium levels. Indeed, elevated
amounts of compound 1 in plasma have been found in patients with low sodium [85]. The
ability of compound 1 to cause organ hypertrophy and to increase cell proliferation has
been reported by many authors so far, and it is probably the reason that compound 1 is
often found in the plasma of patients with increased blood pressure [86,87].
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It has long been known that a certain part of NKA is complexed with the non-receptor
tyrosine kinase (Src kinase, SrcK), caveolin, and the epidermal growth factor receptor,
which altogether form a signalosome in the caveolae of the cytoplasmic membrane. In
such a case, the NKA lacks its transport function and, conversely, acquires a signaling
function [88,89]. SrcK is inactive in this complex, however after the interaction of CSs
with NKA, dissociation of SrcK and NKA occurs. SrcK subsequently phosphorylates
the epidermal growth factor receptor [90,91] and a subsequent cascade of events results
in stimulation of cell proliferation. This mechanism was demonstrated in a study in
which SrcK activation occurred after stimulation of cells derived from autosomal-dominant
polycystic kidney disease with ouabain (Figure 4)—a major representative of CSs broadly
used in experimental pharmacology [92]. The same effect was also observed in venous
endothelial cells [93]. Furthermore, in the case of reduced NKA production in prostate,
breast, and kidney tumors and subsequent metastases, there was an increase in SrcK
activity followed by induction of cell proliferation [94]. Thus, to induce cell proliferation
by SrcK, it must not be in a complex with NKA, and this condition can be achieved by
the aforementioned ways. This statement is also supported by the fact that treatment
of cells with a synthetic peptide (pNaKtide) mimicking NKA reduces SrcK activity [95].
Newly, an effect of pNaKtide on the regulation of aging [96], lipid accumulation, and with
it associated obesity [97], as well as suppression of steatohepatitis and atherosclerosis in
mice, has also been recently discovered [98]. All these phenomena have been observed in
connection with the production of reactive oxygen species (ROS), which are also associated
with SrcK activation. ROS play a role in signal transduction from NKA to SrcK and, thus,
it probably forms a self-amplifying loop. The importance of ROS for SrcK activation
has been also demonstrated by Wang et al. [99], who reported successful SrcK activation
in porcine kidney cells with hydrogen peroxide. An elevated amount of ROS causes
NKA carbonylation, which possibly regulates signaling by modifying the interaction of
NKA with signalosome partners [100]. Carbonylation was observed after stimulation of
porcine kidney cells by compound 1. Contrary to that, decarbonylation of the A domain of
NKA occurred after the removal of compound 1 from the cell culture medium [101]. The
interaction of NKA with Src kinase is mediated by two domains in both proteins. The first
one is localized in the A domain of NKA and the SH2 domain of Src, and the second one is
in the N domain of NKA and the kinase domain of Src [102]. The mutual interaction of
NKA with Src is also likely to be dependent on the NKA isoform. It was found that isoform
α-2 of NKA cannot bind to Src unless its sequence does not contain residues responsible
for the interaction of Src with isoform α-1 [102].

Furthermore, in the presence of compound 1, the NKA signalosome activates phos-
pholipase C, which then cleaves phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-
triphosphate (IP3). IP3 interacts with the IP3 receptor and this interaction results in oscil-
lations of cytosolic Ca2+ [103,104]. These oscillations subsequently induce the synthesis
of the antiapoptotic subunit p65 of nuclear factor kappa B and antiapoptotic factor B-cell
lymphoma-extra-large (Bcl-xL) [105] and the activation of calmodulin-dependent kinase 2G,
which inactivates the proapoptotic protein Bcl2-associated agonist of cell death (BAD) [106].
All of these effects were observed in noncancerous cells derived from renal tissue.

Another mechanism of NKA signal transduction that is independent of SrcK is the
activation of PI3K, which suppresses cell motility by actin restructuralization and promotes
cell adhesion with βS NKA [107,108]. However, some authors also reported that the
processes associated with cell adhesion and the formation of tight and gap junctions are
also linked to NKA/SrcK signaling [109], or even that this pathway promotes cell migration
and healing [110]. This means that this mechanism has not been reliably elucidated yet.

Another phenomenon, which has also not been reliably explained, yet is the mecha-
nism by which NKA contributes to its anticancer activity. From the facts described above,
in particular the induction of cell proliferation and antiapoptotic action, at first glance,
it might seem that NKA may not be a suitable target for tumor therapy, in which the
antiproliferative effects and proapoptotic action are highly desired. Originally, it was
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described that CSs exhibit proapoptotic effects via NKA inhibition at orders of magnitude
higher concentrations, at which a positive inotropic effect in the heart occurs [111]. This
results in the long-term increase in intracellular concentration of Ca2+, which leads to
apoptosis. However, this mechanism occurring at higher CS concentrations is not selective
for cancer cells and proceeds in both cancerous and noncancerous cells [112,113]. Further
in-depth studies provided new data about the different effects of CSs in normal and cancer
cells. Very low concentrations of CSs induce cell proliferation in noncancerous cells caused
by SrcK activation but apoptosis is induced in cancer cell lines [15]. Interestingly, anti-
cancerous effects via the activation of signal transduction occur at very low concentrations
(picomolar to low nanomolar) of several tested CSs, which are below the concentrations
causing NKA inhibition [15]. Kometiani et al. reported cell cycle arrest of breast cancer cells
after their treatment with compound 1 (concentrations were far below the half-maximal
inhibitory concentration [IC50]), which was caused by activation of the SrcK pathway and
subsequently increased levels of the cell cycle inhibitor p21cip1 (cyclin-dependent kinase
inhibitor 1) [114]. In a different study, digoxin (2, Figure 5) exhibited a cytotoxic effect in
several cell lines derived from lung tumors; however, this activity was caused by SrcK
and PI3K inhibition, not by SrcK activation [115]. Further, in another study, compound
1 was able to cause SrcK inhibition in human cells derived from lung adenocarcinoma
(A549), which led to downregulation of focal adhesion kinase (FAK), underlining the
fact that interaction of CSs with NKA in cancer cells leads to different outcomes than in
non-transformed cells [116]. FAK plays role in regulating cell motility as was in the work of
Pongrakhananon et al. [117], where compound 1 reduced tumor cell motility of lung cancer
cells by reducing the activity of FAK, which could lead to hampering of metastatic potential
of cancer cells. Reduced activity of FAK and subsequently reduced cell motility could not
only reduce metastasis but could also lead to inhibition of angiogenesis as was reported
by several researchers [118–120]. This is supported by the work of Trenti et al. [121], who
reported concentration-dependent inhibition of migration of HUVEC cells after treatment
with compound 1. Angiogenesis is also closely related to hypoxia-inducible factors, a
group of transcription factors that regulate the expression of angiogenic genes [122]. One
of those factors is hypoxia-inducible factor 1 alpha (HIF-1α), which was shown to regulate
the expression of vascular endothelial growth factor (VEGF) and angiopoietin/Tie-2 sys-
tem [123]. It was discovered that protein synthesis of HIF-1α and its downstream target
VEGF is inhibited by compounds 1 and digitoxin (3, Figure 5) leading to reduced invasive
capabilities of affected cells and consequently to the slower formation of new blood vehi-
cles [124–126]. Antiproliferative effects of compounds 1 and 2 used for the treatment of cells
derived from colorectal carcinomas were also demonstrated in connection with NKA and
volume-regulated anion channels (VRAC), since after stimulation of NKA with CSs, VRAC
is opened, cell volume is reduced, the consequence of which cell proliferation is inhibited.
It is also worth mentioning that these effects were not observed in a noncancerous cell
line of human fibroblasts (Hs68) [127]. Therefore, it is clear that the interaction of CSs
with NKA and the subsequent activation of signaling cascades has an antitumor effect,
but the mechanism of action differs not only between noncancerous vs. cancerous cells
but also among various cancer types. Furthermore, NKA is not only associated with the
aforementioned signal cascades, but also with many other cellular processes. Some of these
associated processes can be predicted by databases such as the STITCH 5.0 database, and
the interactions are depicted in Figure 6. Taken together, the anticancer mechanism of CSs
is dependent on their concentration. At higher concentrations (above IC50), they inhibit
NKA by which they disrupt the ion homeostasis leading to apoptosis. On the other hand,
at concentrations far below IC50, CSs activate several signaling pathways that are involved
in their anticancer action. These actions also depend on the cancer type and include the
aforementioned processes such as retention of the cell cycle by p21cip1, activation or in-
hibition of SrcK, regulation of cell volume by VRAC, and inhibition of cell motility, and
angiogenesis.
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5. Regulation of Na+/K+-ATPase Activity
5.1. Exogenous NKA Modulators

The most well-known NKA effectors modulating its activity are CSs, the chemical
structure of which contains a steroid skeleton substituted with a lactone and saccharide
moiety at the positions C-17 and C-3, respectively. As mentioned in Chapter 4, CSs can
modulate NKA activity and are among the main exogenous effectors of this protein. The
binding site for CSs is located in the M domain among the M1–M6 helices with the highest
affinity in the P-E2 state, i.e., with released Na+ and not yet bound K+ [129]. The cavity, into
which the steroid skeleton of CSs is bound, consists of a hydrophobic surface comprising
amino acids L-Ile315, L-Phe316, L-Gly319 (M4), L-Phe783, L-Phe786 (M5), and L-Leu793 (loop
M5–6) and hydrophilic surface composed of amino acids L-Gln111 (M1), L-Glu117, L-Asp121,
L-Asn122 (M2), and L-Thr797 (M6) [130]. Of the aforementioned, amino acid residues L-
Gln111, L-Asn122, and L-Thr797 are the most important for CS binding, as their substitution
significantly reduces the sensitivity of NKA to CSs, as evidenced by numerous mutagenesis
studies [131–134].

Dominant CS representatives are compounds 1, 2, and 3. Besides NKA, these com-
pounds can interact with a large variety of targets, some of which are depicted in Figure 7.
Compounds 1, 2, and 3, are currently the most widely used to study the interaction of
CSs with NKA, as well as for the development of novel inhibitors. The most important
element of the CS structure is the steroid core motif substituted by a lactone at C-17 and by
a carbohydrate at C-3. It is exactly the structure of these three parts that are used in the
development of novel NKA inhibitors or for the interaction studies.
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ouabain created by STITCH 5.0 database [135]. The nodes represent gene products depicted in
a molecular action view. The type of the lines indicates the predicted mode of action: Green =
activation, blue = binding, turquoise = phenotype, black = reaction, red = inhibition, dark blue =
catalysis, pink = posttranslational modification, yellow = transcriptional regulation, a line with an
arrowhead = positive, a line with a vertical bar = negative, a line with a filled circle = unspecified
interaction. The cardiac steroid association network was generated according to the known and
predicted interactions for Homo sapiens with the confidence score set to 0.700 with a maximum of
50 interactions. Small and large nodes represent proteins with unknown and known or predicted 3D
structures, respectively. A description of the listed gene products is in Supplementary Information
Table S2.

Appropriate distribution of hydroxyl groups on the steroid skeleton of CSs is impor-
tant for their binding to NKA. The NKA binding pocket for CSs consists of a polar and
non-polar part. Correspondingly, the structure of the CS steroid skeleton can be divided
into polar and nonpolar surfaces. This fact is most evident in compound 1, which, in
addition to the conservative hydroxyl group at C-14, also contains hydroxyl groups at
C-1, C-5, C-11, and C-19 positions and, thus, exhibits a greater in vitro NKA inhibition in
comparison to compounds 2 and 3 [136]. The importance of polar interactions is evidenced
by the work of Magpusao et al. [137], who blocked the hydroxyl groups of compound 1 at
C-1 and C-19 positions using an acetonide group yielding a derivative 4 (Figure 8), the IC50
of which increased almost 120-fold in comparison to compound 1 in NKA activity assay.
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Another structural motif also significantly involved in the CS binding to NKA is the
lactone at the C-17 position. Its derivatization usually leads to a reduction in the NKA
inhibitory effects of the resulting derivative, both in the case of double bond saturation
and cycle opening [138,139] as well as by the introduction of a benzylidene group at the
C-21 position [140,141]. However, in some cases, this modification resulted in a change in
the CS affinity for the individual NKA isoforms [142]. This fact was also confirmed by the
work of [143], who reported on specific inhibition of the α-4 isoform of NKA caused by a
newly prepared derivative of compound 1, in which the lactone group was replaced by a
benzotriazole moiety, and whose IC50 on NKA (α-4 isoform) was three orders of magnitude
lower than that for compound 1.

Glycosylation of the hydroxyl at the C-3 position also alters the strength of CS in-
teraction with NKA and its resulting inhibitory properties. Iyer et al. [144] investigated
the effect of O-glycoside substitution for MeON-neoglycoside in the structure of com-
pound 3 (Figure 5) as well as the effect of the glycosylation level of this CS on the NKA
inhibitory potential. In both groups (O-glycosides and MeON-neoglycosides), the NKA
inhibitory potency of compound 3 derivatives increases with the descending level of
glycosylation. Furthermore, compared to O-glycosylated derivatives of compound 3,
MeON-neoglycosided compounds exhibited reduced cytotoxicity in vitro. A similar effect
of CS glycosylation level on NKA inhibition was also reported by Elbaz et al. [145]. Al-
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though there is a correlation of increasing inhibitory activity of CSs towards NKA with
a decreasing level of CS glycosylation, this does not apply to CS aglycones. It has been
reported that an aglycone of a glycosylated form of a CS exhibits reduced NKA inhibition
even when compared to triglycosylated forms of CSs [136]. The glycosylated forms of
compounds 1, 2, and 3 also exhibit different affinities for the individual NKA isoforms,
whereas the aglycones themselves do not [146]. Of the aforementioned NKA inhibitors,
only compound 2 is currently under clinical evaluation as a potential drug for cancer
treatment. Clinical trials including compound 2 are performed at phase I and II of clinical
testing for therapy of various types of cancer (prostate, breast, pancreas, head and neck,
lung, etc.) are summarized in Table 2. Not surprisingly, compound 2 is a good candidate
for repurposing as a potential anticancer compound. Long-term experience of clinicians
with the administration of compound 2 in cardiac diseases and collecting clinical data can
overcome pharmacokinetics weaknesses of this compound, mainly the narrow therapeutic
window. Moreover, results of research focusing on its antitumor effects show that low
nanomolar concentrations are needed to affect molecular structures in cancer cells.

However, it seems that the biology of individual types of tumors (solid or others)
offers different molecular pathways and targets for anticancer intervention of many CSs.
Compounds 1–3, and also other less known CSs isolated from plants, were intensively
studied in the two past decades to show the anticancer mechanism in detail. Based on
many individual experiments, new findings have emerged, i.e., the inhibition of NKA
is transduced and continues by changes in intracellular signaling pathways. Next to Src
kinase signaling described above, p38-mitogen-activated protein kinase (MAPK) cascade,
PI3K/protein kinase B (Akt)/mTOR pathway, and p21Cip1, or cholesterol homeostasis are
also linked to α and β subunits of NKA. Specifically, for compound 2, we can conclude
that inhibition of Src signaling cascade, inhibition of hypoxia-inducible factor-1 alpha
(HIF-1α) synthesis, and inhibition of androgen-dependent/independent mechanisms are
the main modes of CS action for non-small-cell lung cancer, hepatoma Hep3B cells, and
prostate cancer cells, respectively [147]. In clinical trials currently being performed [148],
the investigation of compound 2 in the treatment of predominantly solid tumors (prostate,
breast, pancreas, head and neck, lung, and melanoma) continues. Some clinical trials
examine the efficacy of monotherapy of compound 2, as has been designed for the treatment
of Kaposi’s sarcoma. HIF-1α is the major regulator of tumor growth in this type of sarcoma.
Other trials are related to combinatory therapy with other anticancer drugs as a currently
recruiting clinical trial [149] in patients with resectable pancreatic cancer. Other studies
are focused on pharmacokinetic parameters and interactions in combinatory therapy of
malignant melanoma [150].

Table 2. Clinical trials of digoxin (2) for cancer treatment; the data were taken from [151].

Clinical Trial
Identifier Study Title Condition or

Disease First Posted Status Phase Intervention/
Treatment

NCT02906800

Potentiation of cisplatin-based
chemotherapy by digoxin in advanced

unresectable head and neck cancer
patients

Head and neck
cancer

20 September
2016 Unknown I, II Digoxin

NCT04094519

A study to evaluate the effect of
multiple doses of enzalutamide on the

pharmacokinetics of substrates of
P-glycoprotein (digoxin) and breast

cancer resistant protein (rosuvastatin)
in male subjects with prostate cancer

Prostate cancer 19 September
2019

Active, not
recruiting I

Enzultamide,
enzultamide

placebo, digoxin,
rosuvastatin

NCT01763931
DIG-HIF-1 pharmacodynamic trial in

newly diagnosed operable breast
cancer

Breast cancer 9 January
2013 Completed II Digoxin

NCT01162135 Digoxin for recurrent prostate cancer Prostate cancer 14 July 2010 Completed II Digoxin
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Table 2. Cont.

Clinical Trial
Identifier Study Title Condition or

Disease First Posted Status Phase Intervention/
Treatment

NCT01887288 Capecitabine with digoxin for
metastatic breast cancer

Metastatic breast
cancer 26 June 2013 Terminated II Capetabine,

digoxin

NCT00650910

Study to examine the effects of
lapatinib on the pharmacokinetics of
digoxin in subjects w/ErbB2 positive

breast cancer

Neoplasm, breast 2 April 2008 Completed I Lapatinib,
digoxin

NCT03889795 Phase IB metformin, digoxin,
simvastatin in solid tumors

Advanced
pancreatic cancer,

advanced solid
tumor

26 March
2019 Recruiting I

Metformin,
simvastatin,

digoxin

NCT03928210 Digoxin induced dissolution of CTC
clusters

Breast cancer,
circulating tumor

cells (CTCs)
26 April 2019 Not yet

recruiting I Digoxin

NCT04141995 FOLFIRINOX with digoxin in patients
with resectable pancreatic cancer

Pancreas cancer,
adenocarcinoma
of the pancreas

28October
2019

Not yet
recruiting II

Digoxin,
5-fluorouracil,

calcium
leucovorin,
irinotecan,
oxaliplatin

NCT02106845
Effect of regorafenib on digoxin and

rosuvastatin in patients with advanced
solid malignant tumors

Neoplasms 8 April 2014 Completed I
Digoxin,

rosuvastatin,
regorafenib

NCT04322552

A pharmacokinetic interaction study
between apatinib mesylate and

transporter Pgp substrate digoxin in
advanced solid tumor subjects

Advanced solid
tumor

26 March
2020 Recruiting I Apatinib

mesylate, digoxin

NCT01517399

Drug-drug interaction study of
tivantinib (ARQ 197) with omeprazole,
S-warfarin, caffeine, midazolam, and

digoxin in cancer subjects

Solid tumors 25 January
2012 Completed I

Tivantinib,
omeprazole,
s-warfarin,

caffeine, vitamin
K (dietary

supplement),
digoxin,

midazolam

NCT02626234

A drug-drug interaction (DDI) study
to assess the effect of INC280 on the

pharmacokinetics of digoxin and
rosuvastatin in patients with

cMET-dysregulated advanced solid
tumors

cMET-
dysregulated

Advanced Solid
Tumors

10 December
2015 Completed I INC280, digoxin,

rosuvastatin

NCT00281021 Second line erlotinib (Tarceva) plus
eigoxin in non-small cell lung cancer

Carcinoma,
non-small cell

lung

24 January
2006 Terminated II Erlotinib, digoxin

NCT01765569

A pharmacokinetic study to
investigate the effect of vemurafenib

on Digoxin in Patients With
BRAFV600 mutation-positive

Metastatic Melanoma

Malignant
melanoma,
neoplasms

10 January
2013 Completed I Digoxin,

vemurafenib

NCT02740712 Pharmacokinetic drug-drug
interaction study of rucaparib (DDI) Neoplasms 15 April 2016 Completed I

Caffeine,
warfarin,

omeprazole,
midazolam,

digoxin, vitamin
K, rucaparib

NCT02212639
Phase II multicentric study of digoxin
per os in classic or endemic Kaposi’s

sarcoma (KADIG 01)

Classic and
endemic Kaposi’s
sarcoma, lymph

angio
proliferations

8 August
2014 Unknown II Digoxin
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Table 2. Cont.

Clinical Trial
Identifier Study Title Condition or

Disease First Posted Status Phase Intervention/
Treatment

NCT03720366
A study of perpetrator drug

interactions of enasidenib in AML
patients

Leukemia,
myeloid, acute

25 October
2018

Not yet
recruiting I

Caffeine, dex-
tromethorphan,

flurbiprofen,
midazolam,
omeprazole,

digoxin,
rosuvastatin,
pioglitazone

NCT03684772 Topical ionic contra-viral therapy in
actinic keratosis Actinic keratosis 26 September

2018 Recruiting II

ICVT topical gel,
furosemide

topical, digoxin
topical gel,

vehicle topical gel

NCT02138292

A phase 1B clinical trial of trametinib
plus digoxin in patients with

unresectable or metastatic BRAF
wild-type melanoma

Melanoma 14 May 2014 Completed I Trametinib,
digoxin

NCT02915666 A clinical trial of patients with
melanoma Melanoma 27 September

2016 Withdrawn I

Digoxin
combination,
dabrafenib,
trametinib

NCT02732275 DS-3201b in participants with
lymphomas

Lymphoma,
malignant,

non-Hodgkin
lymphoma

8 April 2016 Recruiting I
DS-3201b,

midazolam,
digoxin

NCT02333643 A phase 2 efficacy study of CLS003
ICVT in subjects with cutaneous warts Cutaneous warts 7 January

2015 Completed II

CLS003,
furosemide,

digoxin, vehicle
topical

Apart from compound 1, 2, and 3, other substances belonging to the group of CSs are
also mentioned in the literature as NKA inhibitors, e.g., gitoxin (5), evomonoside (6), bufalin
(7), cinobufagin (8), and gamabufotalin (9) (Figure 9) [136,152]. Although CSs are the best-
known NKA inhibitors, other groups of compounds with the ability to inhibit this protein
have been discovered lately. These compounds are characterized by condensed aromatic or
saturated rings, so we may speculate similar pharmacophore as for CSs in NKA inhibition.
These compounds are sesquiterpenes (10–13, Figure 9) isolated from Thujopsis dolabrata.
Some compounds from this group exhibit anticancer and antimicrobial activity [153], and,
more recently, the ability to also inhibit NKA was discovered. Their structure–activity
relationship has not yet been fully elucidated. However, the hydroxymethylene group at
the C-11 position of compound 10 is important for higher NKA inhibitory activity. When
this group is replaced by an aldehyde group, the NKA inhibitory activity of the resulting
derivative, i.e., compound 11, decreases almost four times. Moreover, the substitution of
the hydroxymethylene group (compound 12) with a methyl group leads to loss of NKA
inhibitory activity (compound 13) [154].
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Furthermore, panaxatriol (14, Figure 9) and its derivatives (15, 16, Figure 9), belonging
to the group of triterpenes, are similar to the structure of CSs since they share a steroid
skeleton. The inhibitory potency of compound 14 can be further increased by the introduc-
tion of a benzyl ether moiety (compound 15, a three-time increase) and also by opening the
A ring (compound 16, a four-time increase) [155].

Istaroxime (17, Figure 9) is a synthetic derivative derived from 5α,14α-androstane
with the ability to inhibit NKA [156]. Istaroxime is also known for its anticancer effect [157].
Later, other derivatives based on the structure of compound 17 with enhanced NKA in-
hibitory activity were developed. Two of these derivatives (18, 19, Figure 9) exhibited
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significantly higher inhibitory activity compared to compound 17. This was achieved by re-
placement of linear 2-aminoethyl oxime at the C-3 position by (3R)-3-pyrrolidinyloxyimino
chain and by introducing an oxime moiety in the C-6 position [158]. Another group of NKA
inhibitors comprises substances derived from xanthone (compounds 20, 21, Figure 9), the
potency of which to inhibit NKA depends on the number and position of hydroxyl groups;
it increases with the higher hydroxyl group number. However, methylation of hydroxyl
groups, on the other hand, leads to a reduction of their NKA inhibitory activity [159].
Xanthone derivatives have also shown anticancer effects [160]. However, it is difficult
for these molecules as well as other compounds in Figure 9 to distinguish between the
anticancer effect caused by NKA inhibition and by modulations of other targets, e.g., the
nuclear receptors.

Inhibitory constants of various NKA inhibitors from Figure 9 are given in Table 3.

Table 3. Inhibitory constants (Ki) of selected Na+/K+-ATPase inhibitors.

Compound Name (Code) Group of Compounds Ki or IC50 [µM] Isoform/Source Ref.

Ouabain (1)

Cardiac steroids

0.09 ± 0.01
Shark (rectal gland

microsomes, α3) [136]Digoxin (2) 0.13 ± 0.02

Digitoxin (3) 0.18 ± 0.01

4 12.4 * Porcine cerebral cortex [137]

Gitoxin (5) 0.16 ± 0.04
Shark (rectal gland

microsomes, α3) [136]Evomonoside (6) 0.11 ± 0.01

Bufalin (7) 0.13 ± 0.00

Cinobufagin (8) 0.68 Pig kidney [152]

Gamabufotalin (9) 0.16 ± 0.02 Shark (rectal gland
microsomes, α3) [136]

10

Sesquiterpenes

55.62 ± 0.41

Porcine cerebral cortex [154]
11 212.0 ± 1.92

12 108.09 ± 2.01

13 >494.22

Panaxatriol (14)

Triterpenes

1.09 ± 0.11
Human Na+/K+-ATPase [155]15 0.33 ± 0.03

16 0.26 ± 0.03

Istaroxime (17)

Steroids

0.11

Dog kidney [158]18 0.02

19 0.02

3,4,5-trihydroxyxanthone
(20)

Hydroxyxanthones

10.0

Dog kidney [159]3,4,5,6-
tetrahydroxyxanthone

(21)
1.5

4. 4-((3R,3aR,5R,5aS,5bR,9aR,11S,12aS,14aR,14bS)-5,12a,14b-trihydroxy-3a,8,8-trimethyl-11-(((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-
methyltetrahydro-2H-pyran-2-yl)oxy)hexadecahydro-6H-cyclopenta[7,8]phenanthro[4,4a-d][1,3]dioxin-3-yl)furan-2(5H)-one; 10.
mixture of: a) 2-((2R,4aR,8aR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-2-yl)prop-2-en-1-ol, b) 2-((2R,4aR,8aS)-4a-
methyl-8-methylenedecahydronaphthalen-2-yl)prop-2-en-1-ol, c) 2-((2R,4aR)-4a,8-dimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalen-
2-yl)prop-2-en-1-ol; 11. 2-((2R,4aR,8aR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-2-yl)acrylaldehyde; 12. (R)-(4-(1,2,2-
trimethylcyclopentyl)phenyl)methanol; 13. (R)-1-methyl-4-(1,2,2-trimethylcyclopentyl)benzene; 15. (5R,6S,8R,10R,12R,13R,14R,17S)-
6-(benzyloxy)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-3H-
cyclopenta[a]phenanthren-3-one; 16. methyl 3-((3S,3aR,4R,6R,7R,9aR,9bR)-4-hydroxy-7-(2-hydroxypropan-2-yl)-6,9a,9b-
trimethyl-8-oxo-3-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)dodecahydro-1H-cyclopenta[a]naphthalen-6-yl)propanoate; 18.
(5S,6E,8R,9S,10R,13S,14S)-3-((2-aminoethoxy)imino)-6-(methoxyimino)-10,13-dimethylhexadecahydro-17H-cyclopenta[a]phenanthren-
17-one; 19. (5S,6E,8R,9S,10R,13S,14S)-6-(hydroxyimino)-10,13-dimethyl-3-((((R)-pyrrolidin-3-yl)oxy)imino)hexadecahydro-17H-
cyclopenta[a]phenanthren-17-one, * p = 0.0002.
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5.2. Endogenous NKA Modulators

In addition to exogenous modulators of NKA activity, there are also endogenous
modulators. These compounds are present and synthesized directly in the human body
and include cyclic adenosine monophosphate (cAMP). The cAMP molecule activates NKA
via a signaling cascade that includes two independent pathways. The first one involves
the activation of protein kinase A, while the second one activates the exchange of protein
directly activated by cAMP (EPAC) 1 and 2. In both pathways, the next step is switching on
the p21-activated kinase 4, which in turn triggers NKA [161]. Apart from cAMP, another
endogenous NKA modulator is epinephrine (adrenaline), which induces the production of
prostaglandin E2 (PGE2). Production of PGE2 ultimately leads to nitric oxide synthesis
followed by the production of cyclic guanosine monophosphate and activation of protein
kinase G, which results in NKA inhibition by its phosphorylation [162,163]. Besides, insulin
can also regulate/activate NKA through activation of Src and extracellular signal-regulated
kinases [164].

In Chapter 4, it has been shown that ROS regulates the activity of SrcK in an NKA
signalosome; however, ROS also regulates the NKA pumping activity. Alharbi et al. [165]
showed that ROS induced a decrease in the NKA activity, which led to apoptosis of canine
cancer cells, and this effect was abrogated by pretreatment with an antioxidant N-acetylcysteine.
The mechanism for this regulation of NKA activity lies in the S-glutathionylation of L-Cys
residues, which leads to conformational change preventing ATP binding and thus reducing
NKA activity [166,167]. However, Bibert et al. showed that the FXYD3 subunit can
reverse this glutathionylation since its L-Cys residues are glutathionylated instead [168].
Another regulatory mechanism of NKA occurs during hypoxia and on the other hand,
can be prevented upon reoxygenation. When cells lack oxygen, they tend to save energy
by downregulating several ATP-consuming proteins, including NKA. This regulation
is mediated by mitochondrial ROS and activation of protein kinase C-ζ, which leads to
activation of clathrin-dependent endocytosis of NKA and degradation by the ubiquitin-
conjugating system [169–171].

6. Conclusions

Cancer research has made a giant leap in recent decades owing to which, now, we
not only better understand the cause of individual cancer diseases, but we also have
better knowledge on systematic design of novel anticancer agents, which could have
improved performance in terms of selectivity than the drugs currently used by clinicians.
Recently, several research groups reported that one of cell essential enzymes, the sodium-
potassium ATPase, could be a valid target in cancer treatment and that some of the natural
compounds, from the group of CSs, are very potent inhibitors of NKA and when used at
nontoxic low nanomolar concentrations, even selective for cancer cells. The selectivity of
these compounds is probably caused by the binding of the α-subunit of NKA. However,
further research needs to be done to better understand the anticancer mechanism of action
of CSs. What is more, CS NKA inhibitors are very potent inducers of immunogenic cell
death, by which they activate the immune system, based on which the therapy is far
more efficient. Some of the CSs are used in clinical practice already from 1975 for the
treatment of cardiac failure. Therefore, a possible repositioning of these compounds for
other indications, such as cancer, is new hope for patients suffering from this severe disease.
In addition, CSs could be used either alone or in a combination with other antineoplastic
treatment methods. Thus, not only CSs, but also their molecular target, NKA, are more than
valuable for further investigation. In conclusion, we hope that CSs and their semi-synthetic
derivatives could be a new way for combating multidrug-resistant tumors.

Supplementary Materials: The following are available online, Table S1: A description of the listed
gene products from STRING database; Table S2: A description of the listed gene products from
STITCH database.
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ATP Adenosine triphosphate
BAD Bcl2 associated agonist of cell death
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PI3K Phosphatidylinositol 3-kinase
PGE2 Prostaglandin E2
ROS Reactive oxygen species
SERCA Sarco-/endoplasmic reticular Ca2+-ATPase
siRNA Small interfering ribonucleic acid
SrcK Non-receptor tyrosine kinase
VEGF Vascular endothelial growth factor
VRAC Volume-regulated anion channels
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