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A B S T R A C T   

Objective: The purpose of this study was to construct a 3D and 2D contrast-enhanced computed 
tomography (CECT) radiomics model to predict CGB3 levels and assess its prognostic abilities in 
bladder cancer (Bca) patients. 
Methods: Transcriptome data and CECT images of Bca patients were downloaded from The Cancer 
Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) database. Clinical data of 43 cases 
from TCGA and TCIA were used for radiomics model evaluation. The Volume of interest (VOI) 
(3D) and region of interest (ROI) (2D) radiomics features were extracted. For the construction of 
predicting radiomics models, least absolute shrinkage and selection operator regression were 
used, and the filtered radiomics features were fitted using the logistic regression algorithm (LR). 
The model’s effectiveness was measured using 10-fold cross-validation and the area under the 
receiver operating characteristic curve (AUC of ROC). 
Result: CGB3 was a differential expressed prognosis-related gene and involved in the immune 
response process of plasma cells and T cell gamma delta. The high levels of CGB3 are a risk 
element for overall survival (OS). The AUCs of VOI and ROI radiomics models in the training set 
were 0.841 and 0.776, while in the validation set were 0.815 and 0.754, respectively. The Delong 
test revealed that the AUCs of the two models were not statistically different, and both models 
had good predictive performance. 
Conclusion: The CGB3 expression level is an important prognosis factor for Bca patients. Both 3D 
and 2D CECT radiomics are effective in predicting CGB3 expression levels.  
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1. Introduction 

Bladder cancer (Bca) is the most popular malignant tumor of the urinary tract system as well as the fourth most popular cancer in 
men. The incidence of Bca ranks first among urological malignancies in China [1,2]. Despite some good results in the treatment of Bca 
in recent years, such as radical cystectomy combined with neoadjuvant chemotherapy and immunotherapy for muscle-invasive 
bladder cancer (MIBC), the 5-year survival rate for MIBC is still below 50% [1]. It is crucial that an early diagnosis and personal-
ized therapy is the key to successful treatment. Although clinicopathological features, tumor antigens such as BTA, NMP22, and 
conventional imaging features can be used as prognostics, limitations such as low specificity and the need for tissue specimens ob-
tained by invasive manipulation make it difficult to meet the clinical needs [3,4]. Therefore, developing a noninvasive method to 
predict the molecular heterogeneity of Bca and further assess the prognosis and risk of tumor recurrence accurately is a current clinical 
challenge. 

It has been accepted that not alone gynecological cancers but additionally abounding added tumors of altered origins are able of 
secreting β-hCG [5,6]. The β-hCG mRNA expression of Bca has been reported to correlate with the tumor clinical stage. Tumors that 

Fig. 1. The brief flowchart of data collection and analysis. (A) Gene and image data screening process (Inclusion/exclusion criteria). (B) Brief 
flowchart of radiomic progression. 
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express multiple β-hCG mRNA isoforms simultaneously are indicative of poorly differentiated tumors and are prone to infiltration [7]. 
In an ongoing clinical trial (NCT00082706 Phase II trial, chemotherapy for uroepithelial carcinoma), β-hCG is used as a tumor marker 
for Bca as well as to assess disease progression [8]. A previous study has found that in T2-T4 Bca, elevated urinary β-hCG levels before 
treatment are a brand of poor prognosis [9]. The beta subunit of hCG is encoded by a set of highly homologous genes (human chorionic 
gonadotropin beta subunit, CGB, tagged CGB1-CGB9), which also determines its immunological properties [10]. As an affiliate of the 
glycoprotein hormone chain family, CGB3 (Chorionic Gonadotropin Subunit Beta 3, CGB, HCGB) encodes the β3 subunit of β-hCG 
(https://www.genecards.org/cgi-bin/carddisp.pl?gene=CGB3). It was found that the CGB gene products are expressed in Bca which 
may be involved in and drive tumor development [11,12]. Therefore, the accurate estimation of CGB3 expression may accept 
important implications for the analysis prognosis of tumors. 

In the last two decades, the acreage of computer-aided medical image assay has evolved considerably. Many precision radiological 
imaging technologies are beginning to be applied to the non-invasive and accurate diagnosis and prognostic assessment of tumors 
[13–18]. The heterogeneity of cancer is closely related to histobiological features such as the proliferation of the abnormal cell, ne-
crosis, angiogenesis and fibrosis [19]. Features that were extracted from medical imaging can reflect potential temporal heterogeneity 
and spatial heterogeneity of tumors, providing effective information for identifying muscle invasion of tumors, pathological grading, 
and assessing prognosis [10,20,21]. Radiomics extracts high-throughput image features and acquires massive image parameters to 
non-invasively and dynamically detect and quantitatively reflect tumor characteristics. 

It has been shown that radiomics can be used for early diagnosis and staging of Bca, and can also be applied to tumor recurrence and 
assessment of response to chemotherapy. Radiomics is also affirmed as a tool for evaluating residual cancer neoplasia and tumor 
microenvironment (TME) [22–25]. However, many radiomics models are not sufficiently interpretable, the high-throughput char-
acteristics and specific biological features are not clearly defined, and there are some limitations. 

Currently, there are few studies applying radiomics accumulated with genes or transcriptome data for the prediction of Bca 
treatment and prognosis [26–28]. In our study, we extracted the imaging data of Bca as well as the mRNA expression level of CGB3 in 
Bca through The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA) databases. The radiomics and CGB3 expression 
were utilized to further predict the prognosis of Bca and provide a basis for clinical treatment planning. 

1.1. Retrieval and processing of data 

Data from 412 Bca patients in the portal system of TCGA (https://portal.gdc.cancer.gov/) was downloaded and processed. Pre-
operative CT imaging of 94 Bca patients was collected from TCIA (https://wiki.cancerimagingarchive.net/display/Public), while the 
transcriptomic message from TCGA was applied for feature extraction in radiomics and modeling. We used the clinical data of 43 
patients from the TCGA and TCIA databases for model evaluation in radiomics. Imaging and clinical data were deidentified and 
authorized by the Institutional Review Board of the TCIA host institution. Exclusion criteria include: incomplete clinical data; missing 
survival data; without the expression of CGB3; time of survival which is less than 30 days; without CT images; poor quality of CT 
images without corresponding gene (Fig. 1A). 

1.2. Bioinformatics analysis 

This study utilized medical imaging and transcriptome data (with clinical and follow-up data) provided by TCGA and TCIA da-
tabases. We carried out the characterization of the expression profiles of the genes. RNA seq data was uploaded and transferred in 
Transcripts Per Kilobase of exon model per Million mapped reads (TPM) format. BLCA (bladder uroepithelial carcinoma) for TCGA and 
corresponding in GTEx normal tissue data were extracted. Cancerous and non-cancerous tissues were not necessarily from the same 
patient. Patients with RNA-seq expression were included in the analysis, and those without CGB3 expression were excluded. The 
survival probabilities and median survival times (MST) were calculated with Kaplan-Meier (KM) curves and log-rank tests. The var-
iables impacting overall survival (OS) were examined in univariate and multivariate analyses using the Cox regression analysis. The 
interaction between CGB3 and other variables was examined using the likelihood ratio test. Fisher’s exact test was used to complete the 
correlation analysis between the clinical characteristics of cancer and CGB3. 

To evaluate immune cell infiltration, transcriptome expression profiles of Bca were transferred to the CIBERSORTx database 
(https://cibersortx.stanford.edu/), in which every specimen was figured out. For the correlation analysis between CGB3 and immune 
cell infiltration, Spearman correlation analysis was performed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis of differently expressed genes (DEG) was carried out with the program package of “clusterProfiler” in R 
software. The correlation analysis of CGB3 with cytokine-related genes was presented by Spearman’s rank correlation coefficient. 

1.3. Feature extraction of radiomics and model construction 

Fig. 1B shows the whole process of image processing. 
The device information and scanning parameters of Contrast-enhanced computed tomography (CECT): Manufacturer: GE, 

SIEMENS; X-ray tube voltage: median 120 kVp; Slice thickness: median 2.5 mm; X-ray tube current: median 210 mA; Pixel spacing: 
median 0.8 × 0.8 mm2. 

The entire tumor area was manually outlined to obtain a three-dimensional (3D) whole-tumor area with 3D Slicer software (Version 
4.10.2). Based on the whole-tumor region, Python’s SimpleITK package (https://simpleitk.org/) was used to automatically obtain the 
region at the largest level of the tumor. To extract the image features, the “pyradiomics”program package in Python was applied. The 
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data were normalized based on the two-dimensional (2D) largest tumor level (region of interest, ROI) and three-dimensional (3D) 
whole-tumor (volume of interest,VOI). Extracted image radiomics features were screened separately using the least absolute shrinkage 
and selection operator regression (LASSO). A logistic regression method (LR) was applied to fit the radiomics characterization screened 
by repeated LASSO. 

On this basis, the established logistic regression model was subjected to two-way stepwise regression for further feature selection. 
The subset of characteristics with the smallest Akaike information criterion (AIC) was selected to build the final radiomics model for 
predicting the levels of CGB3. Radiomics features were derived by two experienced radiology specialists independently based on their 
manual outlining. The consistency of these features was evaluated with interclass correlation efficiency (ICC). After one physician had 
completed sketching all cases and outlining the whole tumor area (3D VOI) of each sample, another physician chose 10 samples at 
random and used the “random number table method” for secondary outlining before features extraction. ICC≥0.75 is often considered 
as being in high agreement, 0.51–0.75 is moderate, and below 0.50 is considered poor agreement. ICC≥0.75 was taken as the condition 
for compliance with subsequent analysis. 

1.4. Model evaluation and validation 

The validity of the radiomics model was evaluated in the training set, while radiomic signatures validation (10-fold cross- 
validation) was carried out. The Hosmer-Lemeshow goodness-of-fit test was employed to assess the calibration of the CGB3- 
predicting radiomics mode and to generate a calibration curve. The extent of the clinical benefit of radiomics predictive modeling 
was demonstrated by plotting decision curves. Intergroup variability in radiomics predictive values was further assessed. The 
radiomics score (Rad_score) was compared between low levels of CGB3 and high levels of CGB3 molecular subgroups using the 
Wilcoxon test. 

1.5. Statistics and analysis 

Statistics and analysis of data were performed with R software (Version 4.1.0). A bilateral p < of 0.05 was accepted as statistically 
significant. The radiomics model’s accuracy (ACC), specificity (SPE), sensitivity (SEN), positive predictive value (PPV) and negative 
predictive value (NPV) were assessed in the training and validation groups (10-fold cross-validation). In addition, the overall quality of 
the radiomics model was evaluated with ROC curves, and the performance was comprehensively evaluated by Precision-Recall (PR) 
curves. The area under the curve (AUC) was computed. To evaluate how well the radiomics prediction model has been calibrated, the 
Hosmer-Lemeshow goodness-of-fit test was applied. The radiomics evaluation for applications in clinical practice was disclosed with a 
decision curve analysis (DCA). 

2. Results 

2.1. CGB3 was discovered to be a DEG 

2.1.1. Comparison of clinical characterization of CGB3 
The “surf"program package was applied to measure the cutoff of levels of CGB3 (Cutoff = 0.039), while the patients were divided 

into groups with high and low levels of CGB3. 

Table 1 
Clinical characteristics of the population with high and low CGB3 expression group.  

Variables Total (n = 383) Low (n = 192) High (n = 191) p 

Age, n (%)    0.115 
~59 84 (22) 49 (26) 35 (18)  
60~ 299 (78) 143 (74) 156 (82)  
Gender, n (%)    0.976 
Female 101 (26) 50 (26) 51 (27)  
Male 282 (74) 142 (74) 140 (73)  
Histologic_grade, n (%)    0.031 
Low 18 (5) 14 (7) 4 (2)  
High 365 (95) 178 (93) 187 (98)  
Lymphovascular_invasion, n (%)    0.87 
NO 121 (32) 59 (31) 62 (32)  
Unknown 125 (33) 65 (34) 60 (31)  
YES 137 (36) 68 (35) 69 (36)  
Pathologic_stage, n (%)    0.185 
I/II 123 (32) 70 (36) 53 (28)  
III 134 (35) 62 (32) 72 (38)  
IV 126 (33) 60 (31) 66 (35)  
Histological_subtype, n (%)    0.29 
Non-Papillary 260 (68) 125 (65) 135 (71)  
Papillary 123 (32) 67 (35) 56 (29)  

Categorical variables are expressed as percentages, compared with chi-square tests. A two-sided p < 0.05 was considered statistically significant. 

Y. Zhang et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e20335

5

Table 1 displayed a comparison of the clinical characterization of CGB3. Except for histologic grading in clinical variables, there 
was no significant difference compared to the high with low levels of CGB3 groups. 

2.2. Differences in expression levels of CGB3 in tissues and comparison between survival statistics 

As shown in Fig. 2A, there were significantly lower levels of CGB3 in natural tissues than in carcinoma tissues (P < 0.001). The MST 
was 47.43 months in the CGB3 low levels group compared to 27.83 months in the high levels group. High levels of CGB3 were 
remarkably correlated with a decrease in overall survival, as revealed by Kaplan-Meier curves (p = 0.029) (Fig. 2B). 

2.3. Association between OS and characteristics of clinicopathology with the Cox regression analysis 

High levels of CGB3 were a statistically significant risk variable for OS in univariate analysis (HR = 1.27, 95% confidence interval 
(CI):1.024–1.574, p = 0.029). In addition, high levels of CGB3 were also a statistically significant risk factor for OS in a multifactorial 
analysis (HR = 1.264, 95% CI:1.018–1.571, p = 0.034)（Fig. 2C）. 

2.4. Association between CGB3 and immune infiltration enrichment 

Spearman’s rank correlation heatmap revealed that the levels of CGB3 were positively correlated with plasma cell infiltration (p <
0.05). In contrast, CGB3 was correlated with T cell gamma delta infiltration negatively. (p < 0.05). It seemed that CGB3 does not 
significantly correlate with B-cell naive infiltration versus B-cell memory infiltration (Fig. 3A). 

Fig. 2. Comparison of the CGB3 expression level between the normal tissues and Bca tissues and the comparison of survival data.(A)The expression 
level of CGB3 in Bca tissues and in normal tissues; (B) Kaplan-Meier curves showed that high expression of CGB3 was significantly associated with 
OS deterioration; (C) High CGB3 expression was a statistically significant risk factor for OS in both univariate analysis and multifactorial analysis. 
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2.5. Relationship with tumor clinical characteristics 

Fisher’s exact test was developed to carry out the relevance analysis between CGB3 and the clinical features of Bca, which was 
presented in pie charts. There was a significant association between CGB3 levels and histologic grading (p = 0.027); There was no 
significant correlation with other characteristics such as age, gender, histological subtype, and lymphatic invasion (p > 0.05) (Fig. 3B). 

2.6. Subgroup analysis and test for interaction 

High levels of CGB3 were identified as a risk variable for OS in the subgroup with non-papillary histological subtype in subgroup 
analysis (HR = 1.106, 95% CI:0.789–1.552), which was not statistically significant. There was a statistically significant difference in 
elevated CGB3 levels as a danger factor for OS in that particular subgroup with papillary histological subtype (HR = 2.881, 95% 
CI:1.486–5.587); The interaction test resulted in a p-value of 0.014, which concluded that there was a significant interaction of his-
tological subtype on the association of CGB3 with the OS of patients (Fig. 3C). 

2.7. Analysis of GO and KEGG enrichment of CGB3 

Enrichment analysis and visualization of the top 10 significantly enriched pathways were performed for biological processes (BP), 
molecular functions (MF) and cell components (CC), respectively. Enrichment analysis and visualization of 30 significantly enriched 
pathways were performed for KEGG. GO enrichment analysis showed that DEGs of CGB3 high/low levels groups were enriched in 
pathways associated with the initiation of DNA replication and ATP-dependent activity acting on DNA, and the results were significant 
(Fig. 4A). KEGG enrichment analysis showed that DEGs in the CGB3 high/low levels groups were prominently enriched in the cell 
cycle, chemoattractant-receptor activation, and other signaling pathways (Fig. 4B). 

2.8. Relevance analysis of cytokine-related genes 

CGB3 was significantly positively correlated (p < 0.01) with cytokine-related genes such as CALCR and CRLF1 (*, p < 0.05; **, p <
0.01; ***, p < 0.001) (Fig. 5). 

2.9. Radiomics features extraction and modeling 

Python was employed to extract the image data, with 102 radiomics features for ROI and 107 radiomics features for VOI. 

Fig. 3. (A) Relationship between CGB3 expression levels and the abundance of immune infiltrates; (B) Relationship between CGB3 expression levels 
and tumor clinical characteristics; (C) The interaction test revealed a significant interaction between histological subtype and “association of CGB3 
with OS of patients". 
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2.10. Feature selection and model construction for ROI 

1000 LASSO regression features were screened on the 2D_ROI radiomics features of the training set, and the features with fre-
quencies greater than 800 were selected for subsequent model construction. There were 3 filtered features finally selected: 
ROI_gldm_DependenceNonUniformityNormalized, ROI_ngtdm_Busyness, and ROI_shape2D_Elongation (Fig. 6A and C, Fig. 7A). The 
weight coefficients indicating the features in the LR algorithm and visualization of prediction results were shown in Fig. 8A and C. 

The radiomics formula was constructed by using the Rad_score calculated： radiomics formula = feature * corresponding coef-
ficient (Estimate) + Intercept value (Estimate) (Table 2). 

Fig. 4. GO and KEGG enrichment analysis of CGB3. (A)The GO enrichment analysis. The horizontal coordinates indicate the number of enriched 
genes, BP represents biological processes, CC represents cell components and MF represents molecular functions. (B) The KEGG enrichment analysis. 

Fig. 5. Relevance analysis of cytokine-related genes.  
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2.11. Feature screening and model construction for VOI 

1000 LASSO regression features were screened on the 3D_VOI radiomics features of the training set. The features with frequencies 
greater than 800 were selected for inclusion in the subsequent model construction, among which 6 features with frequencies greater 
than 800 were selected: VOI_ngtdm_Strength, VOI_shape_Elongation, VOI_glcm_ClusterProminence,VOI_glszm_LargeAreaLow-
GrayLevelEmphasis, VOI_glrlm_RunVariance,VOI_glszm_SmallAreaLowGrayLevelEmphasis (Fig. 6B,D, Fig. 7B). The figure represents 
the weight coefficients of the filtered features in the LR algorithm and visualization of prediction results were shown in Fig. 8B and D. 

The radiomics formula was constructed by using the Rad_score calculated： radiomics formula = feature * corresponding coef-
ficient (Estimate) + Intercept value (Estimate) (Table 3). 

Radiomics model evaluation and validation: performance of predicted CGB3 expression levels by 10-fold cross-validation. 
The predicted probabilities of the prediction model for the CGB3 high expression levels closely match the realized values in the 

ROI_LR model (Fig. 9A and B). The AUC of the ROI_LR model was 0.776 in the training and 0.754 in the validation set (Fig. 9C and D). 
DCA showed high clinical utility of the model (Fig. 9E). 

The predicted probabilities of the prediction model for the CGB3 high expression levels closely match the realized values in the 
VOI_LR model (Fig. 10A and B). The AUC of the ROI_LR model was 0.841 in the training set and 0.815 in the validation set, respectively 
(Fig. 10C and D). DCA indicated that the model has high clinical utility (Fig. 10E). 

The AUCs of the VOI_LR model were superior to those of the ROI_LR model in the training set; the cross-validation AUCs of the 
VOI_LR model were superior to those of the ROI_LR model. The Delong test revealed that the AUCs of the two models were not sta-
tistically different (training set: p = 0.38; cross-validation: p = 0.55) and both of them had a good predictive performance. The VOI_LR 
model provided more accuracy than the ROI_LR model. 

Fig. 6. Feature selection and model construction for ROI and VOI. (A,B)Optimal hyperparameter λ values were selected using 10-fold cross- 
validation in the ROI and VOI LASSO regression models, with the lowest being the feature that best matched the true results. LASSO regression 
models identified ROI (C) and VOI (D) radiomics features with nonzero coefficients. 
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2.12. Comparison of differences in the training set between radiomics scores with the Wilcoxon test 

2.12.1. Analysis of variance between ROI_LR model groups 
The Rad_score in the low levels of the CGB3 group was significantly lower than that in the high levels of CGB3 group in the training 

set (p < 0.01). (p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****,0.0001). (Fig. 9F). 

Fig. 7. Histogram of the frequency of features filtered. (A)Histogram of the frequency of features filtered by Lasso for ROI; (B) Histogram of the 
frequency of features filtered by Lasso for VOI. 

Y. Zhang et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e20335

10

2.12.2. Analysis of variance between VOI_LR model groups 
It was found that the Rad_score of the high levels of the CGB3 group was dramatically higher in the training set. This was 

remarkably different from the Rad_score of the low levels of CGB3 group (p < 0.0001) (p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p <
0.001; ****,0.0001). (Fig. 10F). 

2.13. Consistency evaluation 

The median ICC of the VOI radiomics features was 0.884 and there were 87 features with an ICC≥0.75 (Table 4). The median ICC of 
the ROI radiomics features was 0.892, of which 84 features with ICC≥0.75 (Table 5). All the ICCs of the screened radiomics features 
were higher than 0.75 (Table 6). 

Fig. 8. Weight coefficients of the filtered features in the LR algorithm. (A)Weight coefficients of the filtered features in the LR algorithm for ROI; (B) 
Weight coefficients of the filtered features in the LR algorithm for VOI; (C)Visualization of prediction results for ROI; (D)Visualization of prediction 
results for VOI. 

Table 2 
Formula of the ROI radiomics model.   

Estimate Std. Error z value Pr (>|z|) 

(Intercept) 0.018273811 0.384447528 0.047532653 0.962088706 
ROI_gldm_DependenceNonUniformityNormalized 1.473332472 0.641158371 2.297922852 0.02156618 
ROI_shape2D_Elongation 0.900473751 0.452539647 1.989822898 0.046610448  

Table 3 
Formula of the VOI radiomics model.   

Estimate Std. Error z value Pr (>|z|) 

(Intercept) 0.018273811 0.384447528 0.047532653 0.962088706 
ROI_gldm_DependenceNonUniformityNormalized 1.473332472 0.641158371 2.297922852 0.02156618 
ROI_shape2D_Elongation 0.900473751 0.452539647 1.989822898 0.046610448  
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3. Discussion 

A research approach combining radiomics and bioinformatics analysis was employed in the study to explore the potential of un-
derlying molecular mechanisms associated with expression levels of CGB3 and develop a CGB3-predicting radiomics model. We 
predicted the mRNA expression of CGB3 in Bca by CECT radiomics and evaluate the association of the constructed radiomics model 
with prognosis. We found that both 3D and 2D radiomics models can predict the expression levels of CGB3 and can also be used to 
assess its prognosis. 

According to guideline recommendations [29,30], tumor grading, staging and tumor muscle infiltration status (MIS) are important 
predictors for the recurrence of bladder cancer, which are important for clinical decision-making and tumor prognosis. Accurate 
prediction of prognosis is the key to Bca treatment. High expression levels of β-hCG have now been revealed to exist in tumors of 
multiple tissue-organ origins, while studies have also found that Bca expresses multiple β-hCG isoforms suggesting poor tumor dif-
ferentiation and poor prognosis [7–9]. CGB3 is the most important subunit encoding β-hCG and may contribute to tumorigenesis and 
tumor progression. In our study, high expression levels of CGB3 are a risk component for OS in Bca and can be a valid indicator of 
clinical prognosis of Bca. Based on this, radiomics model construction was performed subsequently. Our findings suggested that a 
higher Rad_score is associated with higher levels of CGB3, which indirectly indicates a lower survival rate in patients with a high 
Rad_score. This suggested high levels of CGB3 are associated with poor prognosis in Bca patients. Therefore, it is feasible to use 
radiological prediction models to predict disease prognosis based on the characteristics of CGB3. 

Bioinformatics analysis showed that CGB3 was correlated in a positive way with the infiltration of plasma cells (p < 0.05), while in 
a negative way with the degree of T cell gamma delta infiltration (p < 0.05). Plasma cells are thought to be terminally differentiated B 
cells that generate antibodies against tumors based on tumor-associated antigens [31,35]. Studies of different cancers revealed that 
elevated infiltration of plasma cells predicted a worse prognosis as well as a poorer response to immunotherapy in individuals [32–34]. 
It was found that the TLR4 was expressed at low levels in Bca, and low levels of TLR4 were correlated with a high level of plasma cells, 
which indicated that an increased level of plasma cell infiltration may be a sign of a poor prognosis in Bca [36]. T cell gamma delta is a 
type of T cell, a lymphocyte with extremely natural immunological properties and an adaptive immune response. T cell gamma delta is 
capable of producing antibody-dependent cell-mediated cytotoxicity (ADCC) by secreting perforin and granzyme, acting as an 
antigen-presenting cell for indirect tumor killing [37,38]. Low levels of T cell gamma delta are associated with high levels of CGB3, 
suggesting that a decrease in T cell gamma delta may be associated with tumor development and progression. 

The combination of radiomics with genomics or transcriptomics has already been reported in recent years [39]. Radiogenomics is 
mainly used to study the relationship between medical images and oncogenes. As a non-invasive test, radiogenomics can compre-
hensively analyze tumor texture characteristics and genetic heterogeneity within tumors [40–42]. ZT Zheng [42] reported that CD8A 
is a new marker of prognosis and response to immunotherapy in Bca. The CD8A expression can be predicted preoperatively on the basis 
of MRI radiomics features in Bca patients. Sheng Wan [43] reported developing radiomics models that could predict CCR5 expression 
levels to provide a further prognosis for patients with ovarian cancer. The expression levels of CD44 and CD133 in gliomas can be 
predicted by radiomics features [44]. The above studies further illustrate the potential of radiomics in predicting gene expression in 
cancers. Furthermore, several studies have revealed a remarkable association between radiomics features based on CT and OS of Bca 
Patients. Xin Tang [45] studied that the prediction model based on pelvic CECT radiological features had a good ability to predict 
tumor mutation burden (TMB). Qing Li [46] found that the expression of HRG (histidine-rich glycoprotein) has a significant impact on 
the prognosis of Bca patients, while radiomics features based on CT can successfully predict the preoperative HRG. These outcomes 
match those from our analysis. This consistency indicates that CT radiomics have a high ability to predict Bca. In this study, an as-
sociation between radiological modeling and the prognosis was constructed using 3D_VOL and 2D_ROI CECT combined with the CGB3 
gene. The AUCs of the ROI model in the training set and the validation set were 0.776 and 0.754, respectively; The AUCs of the VOI 
model in the training set and the validation set were 0.841 and 0.815, respectively. Both models had good predictive efficacy and high 
clinical usefulness. 

Both 3D and 2D CT radiomics features had good predictive power for CGB3 in Bca in our results. Radiomics based on the 2D tumor 
maximum level were found to have predictive value, with applications in prostate cancer [47] and lung cancer [48]. One study found 
that models established with 2D radiomics characteristics performed similarly to those constructed with three-dimensional features in 
characterizing gastric cancer [49]. YL Feng [50] reported the prediction of survival of patients with non-small cell lung cancer using 2D 
and 3D radiomics features. The combination of 2D and 3D showed better prediction performance than radiomics features generated 
with either 2D or 3D features alone. Our study demonstrated that radiomics based on both 2D and 3D CECT can make an effective 
prediction of the expression level of CGB3 [50]. The AUCs of the 3D VOI_LR model were superior to that of the 2D ROI_LR model in the 

Fig. 9. The performance of the ROI radiomics model for predicting the CGB3 expression level with 10-fold cross-validation on the training and 
validation set. (A) Calibration curves of the ROI model. A calibration curve describes the consistency between the predicted and gene expression 
levels. The 45-degree dotted black line represents the ideal prediction performance; the solid red line represents the model’s prediction perfor-
mance. The closer the solid red line is to the ideal dotted line, the better the model’s prediction accuracy. (B)Precision- Recall (PR) curve of the ROI 
model. The X-axis of the recall curve is the actual positive rate (Recall), and the Y-axis is the precision rate. The area under the curve (AUC)-PR is the 
average accuracy calculated for each coverage threshold. The more convex the turn to the upper right, the better the model’s performance. (C)A 
receiver operating characteristic (ROC) curves of the ROI model in the training set. (D)ROC curves of the ROI model in the validation set. (E) 
Decision curve analysis (DCA) for the ROI model. The y-axis measures the net beneft. The red curve represents the radiomics model; the gray curve 
represents the assumption that all patients were treated and the straight black line at the bottom of the figure represents the assumption that no 
patients were treated. (F) Analysis of variance between ROI_LR model groups. 
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training set, and the precision of the VOI_LR model was higher than that of the ROI_LR model. The performance of 3D radiomics 
features was observed to be superior in our tests. ICCs screened for radiomics characteristics were higher than 0.75 in both 3D and 2D 
radiomics models, which reflect a good correlation and agreement between the measurements. 

Fig. 10. The performance of the VOI radiomics model for predicting the CGB3 expression level with 10-fold cross-validation on the training and 
validation set. (A)Calibration curves of the VOI model. (B)PR curve of the VOI model. (C) ROC curves of the VOI model in the training set. (D)ROC 
curves of the VOI model in the validation set. (E)DCA for the VOI model. (F)Analysis of variance between VOI_LR model groups. 
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There are some limitations to our study. First, because all the image information comes from public databases, we are inevitably 
subject to image and quality variations. These factors may affect the results of the predictive analysis. Second, this study was retro-
spective and its generalization remained to be studied. Third, there may have been a certain degree of selection bias in this study. 
However, the study individuals were a population for which both transcriptomic and radiomics data were available, and the selection 
bias resulting from the development of inclusion and exclusion criteria to ensure that the results applied to the majority of the pop-
ulation were not significant for this study. Fourth, because of the small sample size, the Cox proportional-hazards model was not 
applicable to this study. This led to the inability to further predict the prognosis of Bca by radiomics instead of gene expression. Fifth, 
although the ROIs and VOIs outlined in the images were hand-drawn and supervised by two experienced radiology specialists, it was 
subjective in nature. Automatic or semi-automatic methods were recommended in further studies to reduce operator interaction 
during segmentation. 

4. Conclusion 

Accurate cancer subtype identification and indicators of tumor immune biology are becoming increasingly essential in prognosis 
and therapy selection. Our study demonstrated that the expression levels of CGB3 can significantly influence the outcomes of patients 
with Bca. In this study, noninvasive models were developed from CECT radiomics which could efficiently and accurately predict the 
CGB3 expression. CGB3 can be used as a target in current clinical trials and as an important reference for clinical diagnostic and 
therapeutic decisions, which facilitates the screening of the superior population corresponding to the target. 
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Table 4 
The ICC of VOI radiomics features.   

ICC≥0.75 0.5 ≤ ICC<0.75 ICC<0.5 ICC_Mean ICC_Median 

Percentage 0.824 0.157 0.02 0.892 0.954 
Number 84 16 2 NA NA  

Table 5 
The ICC of ROI radiomics features.   

ICC≥0.75 0.5 ≤ ICC<0.75 ICC<0.5 ICC_Mean ICC_Median 

Percentage 0.813 0.178 0.009 0.884 0.94 
Number 87 19 1 NA NA  

Table 6 
The ICCs of the screened radiomic features.   

x 

VOI_shape_Elongation 0.751991988 
VOI_glcm_ClusterProminence 0.980633726 
VOI_glszm_SmallAreaLowGrayLevelEmphasis 0.916521272 
ROI_gldm_DependenceNonUniformityNormalized 0.950824721 
ROI_shape2D_Elongation 0.874559611  
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Abbreviations 

2D two-dimensional 
3D three-dimensional 
AUC area under the receiver operating characteristic 
AIC Akaike information criterion 
Bca bladder cancer 
CECT contrast-enhanced computed tomography 
CT computed tomography 
CI confidence interval 
DCA decision curve analysis 
DEG differentially expressed genes 
GO Gene Ontology 
ICC intraclass correlation efficiency 
KEGG: Kyoto Encyclopedia of Genes and Genomes 
KM Kaplan-Meier curve 
LASSO the least absolute shrinkage and selection operator regression 
LR logistic regression algorithm 
MST median survival times 
OS overall survival 
PR precision recall curves 
Rad_score radiomics score 
ROC: receiver operating characteristic 
ROI region of interest 
TCGA The Cancer Genome Atlas 
TCIA Cancer Imaging Archive 
VOI volume of interest 
TME tumor microenvironment 
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