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Abstract

Although the predominant function of all tendons is to transfer force from muscle to bone and position the

limbs, some tendons additionally function as energy stores, reducing the energetic cost of locomotion. To

maximise energy storage and return, energy-storing tendons need to be more extensible and elastic than

tendons with a purely positional function. These properties are conferred in part by a specialisation of a

specific compartment of the tendon, the interfascicular matrix, which enables sliding and recoil between

adjacent fascicles. However, the composition of the interfascicular matrix is poorly characterised and we

therefore tested the hypothesis that the distribution of elastin and proteoglycans differs between energy-

storing and positional tendons, and that protein distribution varies between the fascicular matrix and the

interfascicular matrix, with localisation of elastin and lubricin to the interfascicular matrix. Protein distribution

in the energy-storing equine superficial digital flexor tendon and positional common digital extensor tendon

was assessed using histology and immunohistochemistry. The results support the hypothesis, demonstrating

enrichment of lubricin in the interfascicular matrix in both tendon types, where it is likely to facilitate

interfascicular sliding. Elastin was also localised to the interfascicular matrix, specifically in the energy-storing

superficial digital flexor tendon, which may account for the greater elasticity of the interfascicular matrix in

this tendon. A differential distribution of proteoglycans was identified between tendon types and regions,

which may indicate a distinct role for each of these proteins in tendon. These data provide important advances

into fully characterising structure–function relationships within tendon.
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Introduction

Energy-storing tendons such as the human Achilles and

patellar tendons have an important role in reducing the

energetic cost of locomotion by stretching and recoiling

with each stride to store and return energy (Lichtwark &

Wilson, 2005; Malliaras et al. 2015). To enable this function,

they have distinct mechanical properties such as greater

extensibility and elasticity leading to improved energy stor-

age, when compared with tendons that are purely

positional in function, such as the anterior tibialis tendon

(Maganaris & Paul, 1999; Batson et al. 2003; Lichtwark &

Wilson, 2005; Thorpe et al. 2012).

The specific mechanical properties required for optimum

energy storage are conferred by specialised structure and

composition of energy-storing tendons. All tendons have

the same basic structure, in which highly aligned collagen

molecules are grouped together in a hierarchical manner,

forming subunits of increasing diameter, the largest of

which is the fascicle (Fig. 1) (Kastelic et al. 1978). At the

higher hierarchical levels, the collagenous subunits are

interspersed with a less fibrous, hydrated matrix, tradition-

ally referred to as ground substance (for more details see

Thorpe et al. 2013a and references therein). Small alter-

ations in structure and composition throughout the hierar-

chy are thought to contribute to the gross differences in

mechanical properties; for example, it has been shown that

the collagen crosslink profile and collagen fibril diameter
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differ in energy-storing and positional tendons (Birch et al.

2006; Birch, 2007). It has also been demonstrated that fasci-

cle structure differs between tendon types, with the pres-

ence of a helical component in fascicles from energy-storing

tendons which enables increased elasticity (Thorpe et al.

2013b). Further, our previous studies have demonstrated

that the matrix interspersing fascicles [the interfascicular

matrix (IFM)] is more extensible and elastic in energy-storing

tendons than in positional tendons, providing the capacity

for sliding and recoil between fascicles and therefore

enabling the greater extensions required by energy-storing

tendons (Thorpe et al. 2012, 2015b). The composition of

the IFM, however, is poorly characterised, and very little is

known about compositional specialisation and how this

results in the distinct mechanical properties seen in the IFM

of energy-storing tendons.

One of the few previous studies to investigate the compo-

sition of the IFM characterised the proteome of the IFM

and fascicular matrix (FM) in an energy-storing tendon. This

study demonstrated that the IFM has a distinct proteome,

with a greater number of proteins identified in the IFM

than in the FM (Thorpe et al. 2016). Other studies have also

shown that the IFM is rich in lubricin (also known as superfi-

cial zone, or proteoglycan-4) (Funakoshi et al. 2008; Sun

et al. 2015) and elastin (Smith et al. 2011; Grant et al.

2013). Lubricin is a heavily glycosylated protein that has

both glycoprotein and proteoglycan isoforms (Lord et al.

2011). In joints, lubricin provides boundary layer lubrication

(Lord et al. 2011). In tendon, it has been shown previously

that interfascicle gliding is impaired in the tail tendons of

lubricin null mice (Kohrs et al. 2011), and fascicle viscoelastic

properties are altered with lubricin depletion (Reuvers et al.

2011). Elastin is a highly extensible, fatigue-resistant fibrous

protein that is present in tissues that are subjected to high

levels of cyclic loading, including arteries and heart valves

(Gosline et al. 2002; Lillie & Gosline, 2002). However, no

previous studies have directly compared the distribution of

lubricin and elastin in energy-storing and positional ten-

dons.

While it is well established that the small leucine-rich pro-

teoglycans (SLRPs) decorin, biglycan, fibromodulin and

lumican are present in tendon and that they play an impor-

tant role in regulation of collagen fibrillogenesis during

tendon development (Thorpe et al. 2013a), differences in

their distribution in functionally distinct tendons, specifi-

cally their distribution in the FM and IFM, have not been

studied.

The horse is a relevant and accepted model for tendon

research, as it is an athletic species which maximises energy

efficiency by storage and release of elastic energy in the

limb tendons. The predominant energy store in the horse is

the forelimb superficial digital flexor tendon (SDFT), which

has an analogous function to the Achilles tendon (Biew-

ener, 1998; Innes & Clegg, 2010; Lui et al. 2010). Indeed,

tendon injuries in the SDFT show a very similar epidemiol-

ogy, aetiology and pathology to those seen in human

Achilles tendon injuries (Innes & Clegg, 2010; Lui et al.

2010). The anatomically opposing equine common digital

flexor tendon (CDET) is an example of a positional tendon,

functionally comparable to the human anterior tibialis ten-

don (Birch, 2007).

In this study, we assessed the distribution of a number of

matrix proteins within the equine SDFT and CDET using his-

tology and immunohistochemistry. We hypothesised that

the distribution of elastin and proteoglycans would differ

between the tendon types. We further hypothesised that

protein distribution would vary between the fascicular and

interfascicular matrices, with localisation of elastin and

lubricin to the IFM.

Materials and methods

Sample collection

Forelimbs, distal to the carpus, were collected from horses aged 3–

7 years euthanised for reasons unrelated to this project (n = 5). The

SDFT and CDET were harvested from each forelimb within 24 h of

euthanasia. Any tendons with macroscopic evidence of injury were

excluded from the study. Sections (approximately 15 9 5 9 5 mm)

were removed from the mid-metacarpal region of each tendon and

fixed for 24 h in 4% paraformaldehyde in phosphate-buffered sal-

ine at 4 °C. Samples were then paraffin-embedded, and 4-lm-thick

serial transverse and longitudinal sections were cut from each sam-

ple and attached to positively charged slides.

Histology

To assess the general distribution of proteoglycans and glycopro-

teins within the SDFT and CDET, sections were dewaxed, hydrated

and stained with Alcian Blue (pH 2.5)/periodic acid Schiff (AB/PAS)

using standard staining procedures. Sections were incubated in a

1% Alcian Blue solution (in 3% acetic acid, pH 2.5) for 30 min,

washed for 2 min, then treated with 0.5% periodic acid for 10 min.

Following a 5-min wash, sections were incubated with Schiff’s

Fig. 1 Schematic showing the hierarchical structure of tendon in

which collagen aggregates to form subunits of increasing diameter,

the largest of which is the fascicle. Fascicles are interspersed by the

interfascicular matrix (IFM, also known as the endotenon).

Reproduced from Thorpe et al., 2015a,b with kind permission from

Wiley publications.
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reagent for 15 min, washed in running tap water for 5 min and

nuclei-counterstained with Mayer’s haemalum for 2 min, before

blueing in tap water for 5 min. To determine the distribution of

elastic fibres, sections were stained with Miller’s elastic stain, and

collagen was counterstained with Van Gieson’s using standard

staining procedures. Sections were treated with 1% potassium per-

manganate for 5 min, rinsed and then decolorised in 1% oxalic acid

for 1 min. Sections were washed in running tap water, rinsed in

95% ethanol and then incubated in Miller’s stain for 1.5 h. Sections

were rinsed in 95% ethanol, washed in running water, and counter-

stained with Van Gieson’s stain for 4 min. Following staining, sec-

tions were dehydrated, cleared and mounted using D.P.X.

mountant.

Immunohistochemistry

Immunohistochemistry was used to assess the distribution of specific

proteoglycans within the SDFT and CDET. Sections were de-waxed,

rehydrated and treated with 3% H2O2 for 10 min to inhibit endoge-

nous peroxidise activity. After pre-treatment with chondroitinase

ABC for 30 min at room temperature [0.1 U mL�1 Tris-buffered sal-

ine (TBS)] and blocking [20% goat serum in TBS with 0.05% Tween-

20 (TBS-T)], samples were washed and primary antibodies were

applied at a concentration of 1 : 50 in TBS-T (see Table 1 for anti-

body details). Antibodies for decorin, biglycan, lumican and lubricin

were a kind gift from Prof. Caterson, Cardiff University, and the

fibromodulin antibody was kindly provided by Prof. Roughley,

McGill University. Sections were incubated with primary antibody

overnight at 4 °C. Negative controls were included where the pri-

mary antibody was omitted from the staining procedure. For the

mouse monoclonal antibodies, mouse IgG1 (M5284) and IgM

(M5909) isotype controls (Sigma-Aldrich) were included. Following

washing, sections were incubated with peroxidase-conjugated sec-

ondary antibodies [goat anti-mouse IgG (A4416)/IgM (A8786) or

goat anti-rabbit IgG (A6154, all from Sigma-Aldrich)], with 1 : 50

dilution in 20% goat serum in TBS-T for 2 h at room temperature.

Staining was developed with 3,30-diaminobenzidine and nuclei

were counterstained with Mayer’s haemalum, with the exception

of lubricin, where no nuclei-counterstaining was performed, due to

previous studies reporting intracellular staining for lubricin in the

Achilles tendon (Sun et al. 2015). Sections were dehydrated and

coverslipped with a xylene-based mountant (DPX). No staining was

observed in any negative control samples, confirming that no back-

ground staining occurred due to non-specific binding of the pri-

mary or secondary antibodies (Supporting Information Fig. S1).

Image acquisition

Slides were imaged using a digital slide scanner (Nanozoomer,

Hamamatsu) and a 940 objective. Images of each section were

acquired using specialist software (NDP.VIEW2) at magnifications

ranging from 95 to 940. For each stain, one low-magnification and

two high-magnification images were acquired from transverse and

longitudinal sections, resulting in a total of six images from each

tendon for each staining condition.

Image scoring

To assess the distribution of specific proteins, two independent

assessors (K.J.K. and J.N.), blinded to tendon type and staining con-

dition, graded the staining intensity of the immunohistochemical

images. In each image, the IFM and FM were graded separately on

a scale from 0 to 5, with 0 representing no staining and five repre-

senting very intense staining. Any images with patchy staining or

cutting artefacts were not included in the final analysis. Inter-obser-

ver variability was assessed by calculating linear weighted Kappa

statistics (Viera & Garrett, 2005) using an online software tool

(http://vassarstats.net/kappa.html).

Elastic fibre quantification

Elastic fibres were sparsely distributed throughout the IFM and FM,

so elastin content was assessed by measuring the length of each

fibre and expressing total fibre length relative to IFM or FM area

(IMAGEJ Software, NIH, USA). Elastic fibre thickness appeared constant

across all images and so was approximated to one pixel for all fibres.

Statistical analysis

To assess differences in staining intensity between paired IFM and

FM samples in the SDFT and CDET, repeated measures analysis of

variance (ANOVA) were used (PRISM version 5, GraphPad Software, Inc.,

La Jolla, CA, USA). To assess differences in staining intensity

between tendon types, one-way ANOVA s were used. Statistical signif-

icance was taken as P < 0.05.

Results

Assessor variation

An overall Kappa statistic of 0.5 was calculated, indicating

good agreement between the two blinded observers.

There was no difference between Kappa statistics for indi-

vidual stains.

General glycoprotein distribution

Staining of tendon sections using AB/PAS provides informa-

tion on glycoprotein and proteoglycan distribution, as well

Table 1 Details of antibodies used for immunohistochemical staining.

Antibody Species Mono/Polyclonal Epitope recognised Antibody concentration Reference

Biglycan (PR8A4) Mouse IgG Monoclonal Core protein 1 : 50 Rees et al. (2000)

Decorin (70.6) Mouse IgG Monoclonal Core protein 1 : 50 Rees et al. (2000)

Fibromodulin (184) Rabbit Polyclonal C-terminus (CGG)LRLASLIEI 1 : 50 Roughley et al. (1996)

Lubricin (6-A-1) Mouse IgG Monoclonal C-terminal domain 1 : 50 Schumacher et al. (1999)

Lumican Mouse IgM Monoclonal Unknown 1 : 50
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as revealing differences in structure between tendon types.

Typical AB/PAS images are shown in Fig. 2. It can be seen

that tendon structure differs notably between the SDFT and

CDET, with a much more distinct and abundant IFM appar-

ent in the SDFT. When considering proteoglycan distribu-

tion, there is more intense staining overall in the SDFT than

in the CDET. Further, staining is concentrated within the

IFM, particularly in the SDFT.

Decorin distribution

Typical images of decorin staining and resultant scores are

shown in Fig. 3. There were no significant differences in

decorin staining between tendon type or region.

Lumican distribution

Typical images of lumican distribution and resultant scores

are shown in Fig. 4. There was significantly greater stain-

ing for lumican in the CDET IFM than in the SDFT IFM

(P < 0.01). Further, the IFM stained significantly more

intensely for lumican than the FM within the CDET

(P < 0.001).

Biglycan distribution

Typical images of biglycan distribution and resultant scores

for staining intensity are shown in Fig. 5. Staining for bigly-

can was low, and absent in some sections. Where biglycan

staining was present, it was often localised to the IFM, with

significantly greater staining for biglycan in the SDFT IFM

than in the FM (P < 0.05).

Fibromodulin distribution

Typical images showing fibromodulin distribution and

scores for staining intensity are shown in Fig. 6. Fibromod-

ulin staining appeared more intense in the CDET than in

the SDFT, and there was significantly greater staining in the

CDET FM than in the SDFT FM (P < 0.01).

Lubricin distribution

Typical images showing lubricin distribution are shown in

Fig. 7. Lubricin was predominantly localised to the IFM in

both the SDFT and the CDET, with significantly greater

staining in the SDFT IFM than in the FM (P < 0.01).

A B

Fig. 2 Representative images showing AB/

PAS staining for proteoglycans in the SDFT

(A) and CDET (B). Scale bar: 100 lm.

A B

C D

Fig. 3 Representative images showing

immunohistochemical staining of decorin in

the SDFT (A) and CDET (B). Scale bar:

100 lm. There were no significant differences

in decorin staining intensity between tendon

types or regions (C,D). Individual data points

are shown, with lines representing IFM and

FM regions in the same image (C). In (D),

data are displayed as mean � SD.
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Elastin distribution

Typical images showing the distribution of the elastic fibres

and percentage staining are shown in Fig. 8. It was not pos-

sible to assess significant differences in percentage staining

between the SDFT and CDET due to the low numbers of

CDET samples in which elastin was present. In the SDFT,

elastic fibres were predominantly located within the IFM,

with significantly greater percentage staining in the IFM

than in the FM (P < 0.001).

Discussion

In this study, we have assessed the distribution of extracellu-

lar matrix proteins in different tendon compartments and

between tendon types. The data support our hypothesis,

showing a different distribution of proteoglycans and

elastin in the functionally distinct SDFT and CDET. Further,

we have shown that the distribution of specific proteins var-

ies with tendon region, with localisation of lubricin and

elastin to the IFM, particularly in the energy-storing SDFT.

The finding that elastic fibres are localised to the IFM in

the SDFT, supports previous studies that have demonstrated

that the IFM is rich in elastin, both in tendon (Grant et al.

2013) and ligament (Smith et al. 2011). However, elastin

was largely absent in the CDET IFM. Our previous work has

demonstrated that the IFM in the SDFT is more extensible

and elastic than the CDET IFM (Thorpe et al. 2012, 2015b).

Taken together, these data suggest that elastin may play an

important role in tendon recoil, enabling the greater inter-

fascicular recoil that is seen in energy-storing tendons

(Thorpe et al. 2015b).

General proteoglycan and glycoprotein staining was

greater in the SDFT than in the CDET, which supports

A B

C D
Fig. 4 Representative images showing

immunohistochemical staining of lumican in

the SDFT (A) and CDET (B). Scale bar:

100 lm. Staining intensity was significantly

greater in the CDET IFM than in the SDFT IFM

and in the CDET FM (C,D). Individual data

points are shown, with lines representing IFM

and FM regions in the same image (C). In D,

data are displayed as mean � SD.

**P < 0.01; ***P < 0.001.

A B

C D
Fig. 5 Representative images showing

immunohistochemical staining of biglycan in

the SDFT (A) and CDET (B). Scale bar:

100 lm. Staining intensity was significantly

greater in the SDFT IFM than in the FM (C,D).

Individual data points are shown, with lines

representing IFM and FM regions in the same

image (C). In D, data are displayed as mean

� SD. *P < 0.05.
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previous studies showing a greater glycosaminoglycan con-

tent in the SDFT (Batson et al. 2003; Thorpe et al. 2010).

Further, overall proteoglycan staining was more intense in

the IFM than in the FM in both tendon types. When consid-

ering the distribution of specific proteoglycans, lubricin was

found to be localised to the IFM in both tendon types. This

supports previous studies that have shown localisation of

lubricin to the IFM in the human Achilles (Sun et al. 2015),

goat supraspinatus (Funakoshi et al. 2008) and mouse tail

(Kohrs et al. 2011) tendons, as well as to the tendon sheath

(Taguchi et al. 2009). Further, it has been demonstrated

that a reduction in lubricin content reduces tendon and fas-

cicle gliding ability (Taguchi et al. 2009; Kohrs et al. 2011),

suggesting that the function of this glycoprotein in the IFM

may be to facilitate sliding between fascicles. This is

particularly important in energy-storing tendons, where the

greater requirement for extension appears to be provided

by a larger degree of interfascicular sliding (Thorpe et al.

2012). The presence of intracellular lubricin staining was

also observed in interfascicular and fascicular cells in both

tendon types. The presence of intracellular lubricin has

been reported previously in tendon (Sun et al. 2015), inter-

vertebral disc (Shine & Spector, 2008) and the superficial

layer of cartilage (Schumacher et al. 1999). It is not clear

whether this staining represents production of lubricin that

will be secreted into the matrix, or whether lubricin has an

additional intracellular function. To date, several isoforms

of lubricin have been identified, and lubricin can occur in

both proteoglycan and glycoprotein forms (Lord et al.

2011). It has been suggested that these different isoforms

A B

C D

Fig. 6 Representative images showing

immunohistochemical staining of

fibromodulin in the SDFT (A) and CDET (B).

Scale bar: 100 lm. Staining intensity was

significantly greater in the CDET than in the

SDFT FM (C,D). Individual data points are

shown, with lines representing IFM and FM

regions in the same image (C). In D, data are

displayed as mean � SD. **P < 0.01.

A B

C D

Fig. 7 Representative images showing

immunohistochemical staining of lubricin in

the SDFT (A) and CDET (B). Scale bar:

100 lm. Staining intensity was significantly

greater in the SDFT IFM than in the FM (C,D).

Individual data points are shown, with lines

representing IFM and FM regions in the same

image (C). In D, data are displayed as mean

� SD. **P < 0.01.

© 2016 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

Protein distribution within tendon, C. T. Thorpe et al. 455



may have distinct functions, including lubrication, matrix-

binding, cytoprotection and cell proliferation (Flannery

et al. 1999).

The differential distribution of SLRPs identified between

tendon types and regions may indicate a distinct role for

each of these proteoglycans in tendon. Decorin is the most

abundant proteoglycan within tendon (Yoon & Halper,

2005) and plays an important role in collagen fibrillogenesis

during development (Birk et al. 1995). Decorin distribution

was not significantly different between the IFM and FM in

either tendon type, supporting a previous study that

showed decorin staining throughout the IFM and FM in the

SDFT (Kim et al. 2010). While biglycan is present at a lower

abundance than decorin in tendon, it is also a regulator of

fibrillogenesis (Zhang et al. 2006). Fibromodulin and lumi-

can are also involved in collagen fibrillogenesis (Ezura et al.

2000) and fibromodulin has an additional role in modulat-

ing collagen crosslink formation (Kalamajski et al. 2014).

The role of the SLRPs in adult tendon is yet to be fully eluci-

dated, although data from several studies suggest they may

contribute to tendon mechanical properties. Studies in

knock-out mice have reported that decorin and biglycan

modulate tendon viscoelasticity (Robinson et al. 2005;

Dourte et al. 2012), and that this response is tendon-specific

(Robinson et al. 2005). Further, a recent study has demon-

strated that enzymatic disruption of chondroitin sulphate

side chains reduces sliding between collagen fibrils (Rigozzi

et al. 2013), suggesting that decorin and biglycan, which

have chondroitin sulphate side chains, may facilitate inter-

fibril sliding and contribute to fascicle extension. In the cur-

rent study we have shown that these SLRPs are also present

within the IFM, which indicates they may also contribute to

sliding between fascicles.

Additionally, SLRPs may play a non-mechanical role in the

IFM. While it has previously been thought that the IFM is

composed predominantly of non-collagenous proteins,

recent profiling of the IFM proteome identified the pres-

ence of 10 types of collagen in the IFM, (Thorpe et al.

2016), which appear to be turned over more rapidly than

collagen within the FM (Thorpe et al. 2015a). The presence

of SLRPs within the IFM may therefore be required for regu-

lation of ongoing collagen fibrillogenesis in this compart-

ment. Further studies are required to establish how specific

SLRPs contribute to tendon function and how this may vary

between tendon types.

In contrast to the results in the current study, we have

previously, using mass spectrometry and Western blotting

techniques, reported that both decorin and fibromodulin

are more abundant in the FM than in the IFM in the SDFT

(Thorpe et al. 2016). However, mass spectrometry and Wes-

tern blotting are more sensitive than immunohistochemical

techniques and therefore may identify differences that are

not apparent in the current study. Further, our previous

analysis of the IFM and FM proteome did not identify elas-

tin or lubricin in either compartment. However, this is likely

due to inherent difficulties in identifying these proteins

using mass spectrometry (Thorpe et al. 2016). The specificity

of the antibodies used in the current study must also be

considered. With the exception of fibromodulin, all anti-

bodies used were mouse monoclonal antibodies, and no

staining was observed when using appropriate isotype con-

trols, providing confidence that there was no non-specific

background staining. Further, previous studies have vali-

dated the specificity of the decorin and biglycan antibodies

by pre-adsorption with purified protein (Rees et al. 2000).

Although it is not possible to perform isotype control exper-

iments for the fibromodulin antibody as this is a rabbit

polyclonal antibody, the specificity of this antibody has

been determined previously by pretreating an antibody

preparation with the immunising peptide, which abolished

A B

C

Fig. 8 Representative images showing Elastic

von Gieson’s staining of the SDFT (A) and

CDET (B). Scale bar: 50 lm. Elastic fibres are

visible as blue/black lines. In the SDFT, elastin

staining was predominantly localised to the

IFM (arrow) with a small number of elastic

fibres evident within the FM (dashed arrows).

In the CDET, a small number of elastic fibres

were identified in the IFM and in the FM.

Quantification of the percent staining of

elastin demonstrated significantly greater

elastin in the SDFT IFM than in the FM (C). It

was not possible to perform statistical

analyses comparing the SDFT and CDET due

to low numbers of stained elastic fibres in the

CDET groups. ***P < 0.001.
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the staining (Roughley et al. 1996). It should be noted that

these pre-adsorption studies were performed in species dif-

ferent to that used in the current study; however, it is unli-

kely that antibody specificity will be markedly affected by

species differences and we are therefore confident in the

specificity of the antibodies used. Using immunohistochemi-

cal methods, it is not possible to compare abundance of dif-

ferent proteins, and protein amounts can only be assessed

semi-quantitatively. It should also be noted that staining

intensity is not directly proportional to protein abundance

and comparison between proteoglycan types is not possi-

ble. Future studies should therefore establish the absolute

amounts of individual proteins within the IFM and FM of

functionally distinct tendons.

Conclusions

We have demonstrated for the first time how the distribu-

tion of specific proteins differs between tendon type and

sub-structural compartments. Lubricin is enriched in the

IFM, which likely facilitates interfascicular sliding, a function

that is particularly important in energy-storing tendons. We

have also shown that elastin is localised to the IFM in

energy-storing tendons, which may enable the greater elas-

ticity and ability to recoil seen in this tendon type. Further,

we identified differential distributions of SLRPs within ten-

don. These data provide important advances into fully char-

acterising structure–function relationships within tendon.
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Fig. S1. Images of negative isotype controls, in which the pri-

mary antibody has been replaced by a mouse IgG1 (a) and IgM

(b) isotype control antibodies. Sections from the SDFT were

counterstained with Mayer’s haemalum. Scale bar: 100 lm.
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