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Abstract: The synthetic enzyme cinnamyl alcohol dehydrogenase (CAD) is involved in responses
to various stresses during plant growth. It regulates the monolignol biosynthesis and catalyzes
hydroxyl cinnamaldehyde reduction to the corresponding alcohols. Although the CAD gene families
have been explored in some species, little known is in Rosaceae. In this study, we identified 149 genes
in Pyrus bretschneideri (PbrCAD), Malus domestica (MDPCAD), Prunus mume (PmCAD) and Fragaria
vesca (mrnaCAD). They were phylogenetically clustered into six subgroups. All CAD genes contained
ADH-N and ADH-zinc-N domains and were distributed on chromosomes unevenly. Dispersed and
WGD/segmental duplications accounted the highest number of evolutionary events. Eight collinear
gene pairs were identified among the four Rosaceae species, and the highest number was recorded
in pear as five pairs. The five PbrCAD gene pairs had undergone purifying selection under Ka/Ks
analysis. Furthermore, nine genes were identified based on transcriptomic and stone cell content in
pear fruit. In qRT-PCR, the expression patterns of PbrCAD1, PbrCAD20, PbrCAD27, and PbrCAD31
were consistent with variation in stone cell content during pear fruit development. These results
will provide valuable information for understanding the relationship between gene expressions and
stone cell number in fruit.

Keywords: cinnamyl alcohol dehydrogenase; gene family; Rosaceae; stone cell; expression

1. Introduction

In plants, the phenolic polymer lignin plays crucial roles in water retention, mechan-
ical support, and protection [1–3]. However, the content of lignin also greatly affects
the quality of some fruits, reducing the flavor and quality [4,5]. The process of cell wall
lignification involves in many enzymes and corresponding genes [6,7]. Cinnamyl alcohol
dehydrogenase (CAD) is a key enzyme in the lignin biosynthesis, and the activity of CAD
affects the lignin content and monomer composition [8,9]. CAD catalyzes the reduction
of p-coumaraldehyde, coniferaldehyde, and sinapaldehyde to the corresponding hydrox-
ycinnamyl alcohols (monolignols) under the NADPH, then further transformed into lignin
as p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units [10–13]. Until now, the CAD
gene families and their homologs have been identified in various plants [12,14–18].

Pear (Pyrus) is the third largest species of fruit tree and is very popular among con-
sumers. Pear fruits have high nutritional value and many medicinal properties [19]. The
presence of sclereids is an important factor that affects the pear quality [20]. The deposition
of lignin in the cell wall forms the stone cells in pear, and the lignin content in stone cells
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is over 29.8% [5]. More and more genes in the lignin synthesis have been identified in
pears after the completion of pear genome sequencing and assembly, such as cinnamate
4-hydroxylase base pai (C4H), hydroxycinnamoyl-coenzyme A shikimate/quinate hydrox-
ycinnamoyl transferase (HCT), cinnamoyl-CoA reductase (CCR), etc. Furthermore, no
studies have identified the CAD gene family in lignin biosynthesis in pear.

In this study, we identified the members of the CAD gene family in the pear and
three other Rosaceae species. We also analyzed the phylogenetic relationships, structures,
conserved motifs, synteny, ontology and expression patterns of these genes with the
transcriptomic data of PbrCAD gene family.

2. Results
2.1. Identification of the CAD Gene Family in Rosaceae

In this study, a total of 234 candidate CAD genes were identified. However, 85 candi-
date genes without CAD domains were discarded using the Pfam and SMART databases.
Consequently, 149 CAD genes were identified in Rosaceae, including 57 in pear, 34 in Chi-
nese plum, 42 in apple, and 16 in strawberry, named as PbrCAD1-PbrCAD57, MDPCAD1-
MDPCAD42, PmCAD1-PmCAD34, and mrnaCAD1-mrnaCAD16, respectively (Table 1 and
Supplementary Table S1).

Table 1. Genome information and number of CAD genes in Rosaceae species.

Common
Name Species Name ChromoSome

Number
Release
Version

Genome Gene
Number

Identified CAD
Genes

Gene Name
Prefix

Pear Pyrus
bretschneideri 34 NJAU, v1.0 42341 57 Pbr

Apple Malus domestica 34 GDR, v1.0 63541 42 MDP
Chinese plum Prunus mume 16 BFU, v1.0 31390 34 Pm

Strawberry Fragaria vesca 14 GDR, v1.0 32831 16 mrna

2.2. Phylogenetic Analysis of the CAD Genes

The CAD proteins were classified into six main families (Figure 1), designated as
clade 1 to 6: C1 (35 proteins), C2 (30), C3 (27), C4 (25), C5 (18), and C6 (14). Furthermore,
we detected the specific domains in different colors to mark the branches of genes with
particular domains (Figure 1). Each subgroup harbored at least one specific domain without
C5. The C1 subgroup also harbored four specific domains and the percentage of members
in this group was higher than other subgroups. Three genes in C3 contained the same
specific domain (adh short) and they were adjacent in the phylogenetic tree. The remaining
two subgroups only contained one specific domain (Figure 1).

2.3. Expansion and Evolution of the CAD Gene Family

Each member was assigned to one of the five different categories, as WGD/segmental,
singleton, tandem, proximal, or dispersed. In this study, three types of duplication events
contributed to the expansion of CAD gene family (Table 2 and Supplementary Table S2).
There were three duplication modes in the pear and only two duplication types in other
three Rosaceae species. The dispersed CAD genes in apple (95.2%), Chinese plum (58.8%),
pear (43.9%), and strawberry (43.8%) accounted for more than half of the total number
of genes. However, 56.2% (9) CAD genes in strawberry and 42.1% (24) in pear were
duplicated and retained from WGD/segmental duplication compared with only 38.2% (13)
and 4.8% (two) in apple. The higher proportion of WGD/segmental duplication in pear and
strawberry might be attributed to the recent lineage-specific WGD events (30–45 MYA) [21].
Thus, dispersed and WGD/segmental duplications played critical roles in the expansion of
CAD gene family.
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Figure 1. Neighbor-joining tree of CAD proteins in Rosaceae. The phylogenetic tree was constructed
using the MEGA 7.0 based on the full-length amino-acid sequences encoded by CAD genes from
Pyrus bretschneideri (57), Malus domestica (42), Prunus mume (34), and Fragaria vesca (16). A bootstrap
analysis was performed with 1000 replicates.

Table 2. The numbers of CAD genes of different origins in four Rosaceae species.

Scheme Number of CAD Genes
Number of CAD Genes of Different Origins (Percentage)

Singleton WGD Tandem Proximal Dispersed

Pear 57 8 (14.0) 24 (42.1) 0 0 25 (43.9)
Apple 42 0 2 (4.8) 0 0 40 (95.2)

Chinese Plum 34 0 13 (38.2) 0 0 20 (58.8)
Strawberry 16 0 9 (56.2) 0 0 7 (43.8)

2.4. Chromosome Distribution and Synteny Events

Here, the PbrCAD genes were distributed randomly on the 11 of 17 pear chromosomes
(Figure 2 and Supplementary Table S3). A total of 53 PbrCAD genes were mapped on
chromosomes and four on scaffolds. Chromosome 10 contained the highest number of
PbrCAD genes (10 genes), whereas chromosomes 3 and 14 exhibited only one. Similar to
the PbrCAD genes, the distributions of the CAD genes in other three Rosaceae genomes
were non-uniform (Figure 2 and Supplementary Table S3).
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Figure 2. Chromosomal distribution and synteny of the CAD genes in Rosaceae genomes. The CAD genes in pear (Pbr),
apple (MDP), Chinese plum (Pm), and strawberry (mrna) were mapped onto different chromosomes. Gene pairs with a
syntenic relation-ship were joined by a line.

In this study, we segmentally searched the duplicated blocks within the genomes
of four Rosaceae species. There were eight collinear gene pairs in the four Rosaceae
species, including five pairs in pear (PbrCAD19-PbrCAD22, PbrCAD24-PbrCAD35, Pbr-
CAD25-PbrCAD27, PbrCAD26-PbrCAD29, and PbrCAD39-PbrCAD50), three pairs in apple
(MDPCAD3-MDPCAD20, MDPCAD10-MDPCAD23, and MDPCAD11-MDPCAD24), and
one pair in Chinese plum (PmCAD15-PmCAD29). However, the MDPCAD3 was located on
an unanchored scaffold (Figure 2).

Furthermore, we calculated the Ka/Ks ratio for the five PbrCAD gene pairs to assess
the selection pressure among the duplicated PbrCAD genes. All the Ka/Ks ratios were <1
(Table 3), implying that they had undergone strong purifying selection and played a critical
role in evolution of the CAD genes [22].
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Table 3. Estimated divergence period of the PbrCAD gene pairs. Ks, synonymous substitution rate; Ka, non-synonymous
substitution rate; MYA, million years ago; NG, Nei-Gojobori.

Common Name Method Ka Ks Ka/Ks p Value (Fisher’s Test)

PbrCAD19-
PbrCAD22 NG 0.030518 0.0331618 0.920278 0.822196

PbrCAD24-
PbrCAD35 NG 0.03653 0.294749 0.123935 1.02 × 10−21

PbrCAD25-
PbrCAD27 NG 0.014796 0.186026 0.0795362 8.38 × 10−18

PbrCAD26-
PbrCAD29 NG 0.019842 0.249629 0.0794857 8.57 × 10−24

PbrCAD39-
PbrCAD50 NG 0.036999 0.235759 0.156936 1.28 × 10−16

2.5. CAD Gene Structure and CAD Protein Motif Analyses in Pear

In this study, the PbrCAD genes were divided into seven subgroups (A1–A7) with high
bootstrap support. The 57 PbrCAD genes were unequally distributed in each subgroup
(Figure 3a). For instance, the A5 subgroup was the largest with 13 members, whereas the
A6 subgroup only included four members (Figure 3a).
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Figure 3. Phylogenetic tree, exon-intron structure, and conserved motifs of PbrCAD genes and proteins. (a) Unrooted
neighbor-joining phylogeny of PbrCADs, with bootstrap values >50. (b) The exon-intron structure is presented by yellow
boxes corresponding to exons and the linking black lines corresponding to introns, while the blue line indicates the 5′-UTR
and 3′-UTR. (c) Twenty-five conserved motifs identified by MEME tools in PbrCAD genes. Each colored box represents
conservation (color figure online).

An exon-intron analysis was performed on the PbrCAD genes to gain insight into the
diversity of the structure of these genes (Figure 3b and Supplementary Table S4). All of
the PbrCAD genes contained both exons and introns. Moreover, the majority members
in the same subgroup contained the similar exon-intron organizations. Most PbrCAD
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genes in subgroup A2 contained five exons and four introns, while those in subgroup
A3 contained six exons and five introns. The PoptrCAD gene family exhibited three
different gene structures [14]. These three patterns (I, II, III) were composed of 5, 5, and
6 exons, respectively, and patterns I and II differred in the length of exons 3 and 4, with
exon 3 being longer than exon 4 belongs in pattern I. Patterns I and II were generally
present in eudicots and monocots, while pattern III was found in eudicots and magnolia
plants, as well as in gymnosperms [14]. We discovered that eight genes belonged to pattern
I, 10 genes belonged to pattern II, and 13 genes belonged to pattern III in the PbrCAD gene
family (Figure 3b and Supplementary Table S4), accounting for more than 50% of all genes.

Subsequently, a total of 25 conserved motifs were identified, and the logos of these
motifs were showed in Supplementary Table S5. Most of the closely related members within
the same subgroup had a similar motif composition and arrangement (Figure 3c). Among
these motifs, motifs 1, 6, and 8 were detected in most of the PbrCAD genes, indicating that
these motifs were the major conserved domains of the PbrCAD family.

2.6. Histochemical Test and the Content of Stone Cells during Fruit Development

The pear contained a low stone cell content at the early stage of fruit development
(Figure 4). Subsequently, it reached a peak at the middle stage of development, and
finally declined gradually over the course of fruit maturation. The stone cell clusters
were mainly distributed in the fruit core and pericarp through the staining of longitudinal
and transverse sections of fruit revealed (Figure 5). Similar to the trend of stone cell
contents, the distribution of stone cell clusters reached the maximum at the middle stage of
development. It can be inferred that the middle stage of fruit development is a key period
for the formation of lignin and stone cell.
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2.7. Expression Patterns of the PbrCAD Genes

In this study, 51 PbrCAD genes were expressed in pear fruit through the development
transcriptome sequencing (RNA-Seq) data (Supplementary Table S6) [19,20]. Nine genes
exhibited high and stage-specific expressions during the development of the pear fruit
(Figure 6 and Supplementary Table S6). Subsequently, four of the seven genes were
consistent with the RNA-Seq data (without PbrCAD39, PbrCAD41, and PbrCAD43) by the
qRT-PCR analysis (Figure 7).
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Figure 6. Heatmap of the expression levels of PbrCAD genes in Chinese white pear. Transcriptome
sequencing was used to measure the expression levels of PbrCAD genes. S1-S5 correspond to the
five fruit developmental stages: 15 days after full bloom (DAFB) (S1), 36 DAFB (S2), 81 DAFB (S3),
110 DAFB (S4), and 145 DAFB (S5). The color scale presented at the top of the figure represents the
log2-transformed RPKM values. The light-green color indicates a low expression level and the red
color indicates a high ex-pression level.
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PbrCAD1, PbrCAD20, PbrCAD27, and PbrCAD31 were expressed at lower levels during
the early stage of fruit development, achieved the highest levels of expression at the middle
stage, and decreased gradually at the fruit-ripening stage. Furthermore, compared with
the physiological data (Figures 5 and 6), the relative expressions of the four genes were in
agreement with the changes in lignin physiology. These results demonstrated that these
four genes may be involved in the regulation of lignin synthesis in pear fruit.

3. Discussion

In our study, the distribution of the CAD genes identified from Rosaceae was unequal.
A total of 57 PbrCAD genes, 42 MDPCAD genes, 36 PmCAD genes, and 16 mrnaCAD genes
were discovered. The CAD gene family in pear was larger than that of the three other
Rosaceae species, which may be related to the peculiar traits of the presence of stone cells
in pear.

The phylogenetic tree classified the CAD proteins into six subgroups: C1–C6. Interest-
ingly, each subgroup involved at least one specific domain, with the exception of clade 5.
The different modes of gene duplications were important for genomic rearrangement and
expansion, and the diversification of gene function [23]. The dispersed duplication and
WGD/segmental duplication played critical roles in the expansion of the CAD gene family.
The insertion and mediation of transposons on distant single-gene translocations may
explain the wide spread of the dispersed duplicates [24], which accounted for 43.9% (25) of
the PbrCAD genes. Our chromosomal-location analysis showed that the distribution of the
CAD genes in Rosaceae genomes had different densities. The Ka/Ks ratios of five collinear
CAD gene pairs were <1, suggesting that these genes were evolved under the influence of
purifying selection.

We explored the phylogenetic tree, gene structure, and conserved motifs to identify
the evolutionary relationship of the CAD gene family in pear. These PbrCAD genes were
classified into seven subgroups, most of the adjacent members contained similar exon-
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intron organizations and motifs in the same subgroups. Populus exhibits three different CAD
gene structure patterns [14], and PbrCAD gene structures accounted for more than 50%.
Otherwise, the PbrCAD genes contained an additional seven gene structures. In addition,
Oryza had fewer CAD genes than Populus and exhibited the greatest number of intron-exon
structure variants, which may be attributed to the insertion of transposable elements [17].
This was demonstrated by the dating of the great number of dispersed duplication events
in the PbrCAD genes, as the transposons increased the dispersed duplication events by
regulating distant single-gene translocations [24].

The content of stone cells reached a maximum value and the distribution of the stone
cell mass also reached a maximum density at the middle development stage. According to
previous research, more than 75% of the total lignin content in fruit pulp is located in mature
stone cells [5]. In our study, the stone cell content exhibited a rise-fall tendency, which
was consistent with the results reported by Tao et al. (2015) and Ma et al. (2017) [22,25].
The inhibition of the synthesis of lignin in pear fruit may reduce the content of stone
cells [26]. Members of the CAD gene family have been identified in many species, such as
the observation of nine CAD genes in Arabidopsis [16], 12 in rice [17], 15 in hybrid Populus
(Populus deltoides× Populus Nigra) [14], and five in Cucumis melo [27]. However, few AtCAD
genes are directly involved in lignification [10]. Indeed, only AtCAD4 and AtCAD5 are
related to lignification [16]. In the present study, we combined the results pertaining to
the physiological changes of stone cells with transcriptome data to identify nine genes
that might be involved in lignin biosynthesis during pear fruit development. The nine
candidate PbrCAD genes were confirmed by qPCR analysis, indicating that the expression
levels of four genes were consistent with the changes in stone cell content. Therefore, we
speculated that these four genes may participate in the regulation of lignin synthesis in
pear fruit.

4. Materials and Methods
4.1. Collection and Identification of the CAD Genes

Chinese white pear (Pyrus bretschneideri) genome was retrieved from the Pear Genome
Project (http://peargenome.njau.edu.cn/, 25 September 2019). Chinese plum (Prunus mume)
sequence was obtained from the Prunus mume Genome Project (http://prunusmumegenome.
bjfu.edu.cn/index.jsp, 25 September 2019). Apple (Malus domestica) and strawberry (Fra-
garia vesca) sequences were obtained from the Genome Database for Rosaceae (http:
//www.rosaceae.org/, 25 September 2019). Nine CAD protein sequences of Arabidopsis
(AT1G72680, AT2G21730, AT2G21890, AT3G19450, AT4G34230, AT4G37970, AT4G37980,
AT4G37990, and AT4G39330) were downloaded from The Arabidopsis Information Re-
source (http://www.arabidopsis.org/, 25 September 2019) and used as queries to perform a
BLAST search against the four Rosaceae genome databases. Additionally, the CAD domains
(PF08240 and PF00107) obtaining from the Pfam database (http://pfam.sanger.ac.uk/,
25 September 2019) were used to build an HMM file with HMMER3 (http://hmmer.org/,
25 September 2019). Subsequently, HMM searches were performed against the local pro-
tein databases of the four Rosaceae species using HMMER3. A total of 234 candidate
CAD genes were identified from the four Rosaceae species. Then, the Pfam and SMART
databases (http://smart.embl-heidelberg.de/, 25 September 2019) were used to check each
candidate CAD-related protein sequence as a member of the CAD gene family. At last, the
candidate genes which did not harbor the CAD domains or exhibit the domains with an
incomplete structure were removed.

4.2. Phylogenetic Analysis

The CAD proteins of pear, Chinese plum, apple, and strawberry were aligned using
ClustalX2.1 (http://clustalx.software.informer.com/2.1/, 25 September 2019). MEGA 7.0
was used to generate a phylogenetic tree of the CAD genes in Rosaceae [28]. The neighbor-
joining (NJ) method was applied to construct various CAD trees. The bootstrap analysis
was conducted with 1000 replicates.

http://peargenome.njau.edu.cn/
http://prunusmumegenome.bjfu.edu.cn/index.jsp
http://prunusmumegenome.bjfu.edu.cn/index.jsp
http://www.rosaceae.org/
http://www.rosaceae.org/
http://www.arabidopsis.org/
http://pfam.sanger.ac.uk/
http://hmmer.org/
http://smart.embl-heidelberg.de/
http://clustalx.software.informer.com/2.1/
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4.3. Chromosomal Locations and Duplication Analysis

Chromosomal locations of the CAD genes were obtained on the basis of genome
annotation data. The location data were plotted using Circos [29]. A method similar
to PGDD (http://chibba.agtec.uga.edu/duplication/, 25 September 2019) was used to
analyze the synteny [30,31]. BLASTP was used to search for potential homologous gene
pairs (E < 1 × 10−5, top five matches) across multiple genomes. Finally, the homologous
pairs were input in MCScanX to identify syntenic chains [32,33].

4.4. Calculation of Non-Synonymous (Ks) and Synonymous (Ka) Substitutions

To annotate the Ka and Ks substitution rates of syntenic gene pairs, the downstream
analysis tools of MCScanX were used [34]. The Ka/Ks ratios were calculated using the
toolbox KaKs_Calculator 2.0 and the Nei-Gojobori (NG) method [35,36].

4.5. Gene Structure and Motif Analyses in Pear

Structures of the CAD genes were obtained through alignment of ORFs and genomic se-
quences using the Gene Structure Display Server (http://gsds.chi.pku.edu.cn/, 25 Septem-
ber 2019) [37]. Sequences of PbrCAD proteins were elucidated using the online MEME
website (http://meme-suit.org/tools/meme, 25 September 2019) [38]. The parameters
were as follows: maximum number of motifs, 25; minimum motif width, 6; and maximum
motif width, 200.

4.6. Plant Materials

This research used 40-year-old pear (Pyrus bretschneideri ‘Dangshansuli’) trees cultivat-
ing in a commercial orchard in Gaoyou, Jiangsu Province, China. A total of 10 strong and
healthy trees were selected. On April 4th, 2016 (when the fruit trees were in the full-bloom
stage), the branches with consistent bud growth and size in the middle of the canopy were
selected and labeled. Fruit samples were collected every 8 days (starting at 15 days after
flowering), and 30 fruits with a relatively consistent size were collected every time. All
fruits were placed into ice box and transferred to the laboratory for further experimentation.

4.7. Measurement of Stone Cell Number

Stone cells were separated and counted using the method reported by Tao et al. (2009)
and Cai et al. (2010) [5,20]. A 100-g sample of pear flesh was collected and stored at
−20 ◦C for 24 h, followed by homogenization at 18,000 rpm for 5 min in distilled water.
The suspension was stirred for 3 min, then precipitated at room temperature for 30 min.
The supernatant was discarded, and the precipitate was suspended in 0.5 mol/L HCl for
30 min and washed with distilled water. This process was repeated several times until the
stone cells separating from impurities. The assay was repeated three times.

4.8. Histochemical Staining

Freehand sections of fruit material were stained with 1% (w/v) phyloroglucinol dis-
solved in 95% ethanol. After 2 min, a drop of 35% HCl was added. The section was placed
into a shadowless light box and photographed by a digital camera [5].

4.9. Expression Analysis Based on Transcriptomic Data

To further investigate the role of CAD family genes in the formation of pear stone
cells, we analyzed the expression patterns of the PbrCAD genes based on transcriptome
sequencing (RNA-Seq) data from previous studies [19,20,39]. The accession number of the
transcriptomic data is PRJNA185970 on NCBI. We used the samples of 21, 35, 48, 55, 68,
85, and 114 days after full bloom (DAFB) to examine the expressions of PbrCAD genes.
Total RNAs were extracted for RNA sequencing, and a sequencing library was constructed
according to the manufacturer’s instructions (Illumina). The cDNA library was sequenced
on an Illumina HiSeq™ 2000 sequencer (San Diego, CA, USA) without biological replicates.

http://chibba.agtec.uga.edu/duplication/
http://gsds.chi.pku.edu.cn/
http://meme-suit.org/tools/meme
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4.10. Quantitative Real-Time PCR (qRT-PCR)

According to the manufacturer’s instructions, gene quantifications were performed
using the SYBR Green Master Mix (SYBR Premix EX Taq, TaKaRa, Dalian, China). The
mixture comprised 5.5 µL of nuclease-free water, 12.5 µL of 10× buffer, 0.5 M of each
primer, and 1 µL of diluted cDNA. Each 20-µL reaction was run in triplicate. PCR was
performed as follows: 5 min of incubation at 95 ◦C, followed by 45 cycles of 94 ◦C for
10 s, 60 ◦C for 30 s, and 72 ◦C for 30 s, and final extension at 72 ◦C for 3 min. TUB-b2
(accession number, AB239681) was used to evaluate qRT-PCR. The relative mRNA levels
were calculated using the relative 2−∆∆CT method [40]. The primers used to investigate
the gene expression patterns in fruit tissues were listed in Table 4. Each RT-qPCR was
performed in triplicate. Statistical analyses were performed using SPSS. In graphs, each
bar represents the mean and standard error (SE) (n = 3).

Table 4. List of primers used for quantitative real-time PCR analyses of PbrCAD and internal control genes.

Gene Name Forward Primer Sequence (5′ → 3′) Reverse Primer Sequence (5′ → 3′) Amplicon Length (bp)

PbrCAD1 TGACCTTGGCACGTCAAACT CAGTACTGCTCGTTGTCCGT 174
PbrCAD11 CGGAACAAAGGACACGCAAG TCGAGCGCTTCAGTTGCATA 102
PbrCAD20 CCAGGCCGGAAATTCACTG TGCCGTAAAGAGTTGTATCAGC 221
PbrCAD27 GGGCCCATGATGTTCGAGT AACTTCATGTCCGGGCAAAGA 245
PbrCAD31 TGTTAGAGACGCCAAACCTGC TCCGATCACCATCGGATCCTTA 195
PbrCAD37 GTCTACAGCTGGTCAGGTTATCAGATG CCACAACTCCTCCAGCTTCATGA 202
PbrCAD39 GATGGCCAGTCCAGGTTCTC AGCAAGGGAACCAACATGAC 102
PbrCAD41 TCAGCTCACTTGTGCCTCTG CACCTTGTGCAACGGAAAGG 153
PbrCAD43 GTCCAAGTCGAGGTGGCACC TGCATTCTCCTGTGAACACTGGCA 203

TUB-b2 TGGGCTTTGCTCCTCTTAC CCTTCGTGCTCATCTTACC 169

5. Conclusions

In summary, a comprehensive analysis of the CAD gene family in Rosaceae was
performed. A total of 149 full-length genes were identified and classified into six subgroups.
A chromosome distribution analysis showed that the CAD genes were unevenly distributed
in Rosaceae. Dispersed duplication and WGD/segmental duplication played the most
important role in the expansion of the CAD gene family. The Ka/Ks ratio showed that
five collinear PbrCAD gene pairs were under positive selection. PbrCAD1, PbrCAD20,
PbrCAD27, and PbrCAD31 were identified using qPCR may be involved in lignin synthesis
in pear. Future research needs to identify the functions of these genes, and this study will
be useful for elucidating functions of the CAD genes in pear.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10071444/s1, Table S1 The gene name of four Rosaceae species, Table S2 Different
duplication events in Rosaceae, Table S3 Information of chromosome location in Rosaceae, Table
S4 The different gene structure in PbrCAD genes, Table S5 The entire of sequence logos of motifs
(Followed by motif 1 to motif 25), Table S6 The RPKM value of 51 PbrCAD genes.
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