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Abstract

Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were
processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were
formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass
surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and
proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered
hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity
and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the
scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs)
up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests
and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the
entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG
secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of
hMSCs.
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Introduction

Articular cartilage is an avascular, alymphatic, aneural,

anisotropic tissue with limited capacity to regenerate [1,2]. Due

to these articular cartilage properties, tissue engineering approach-

es are needed to treat millions of people which suffer from

traumatic injuries and degenerative cartilage diseases. A wide

range of clinical options emerged to repair these lesions such as

micro-fracture, micro-drilling auto and allografts, among others

[3]. However, these treatments present some limitations, e.g.

availability of sufficient cells for repair, quality and quantity of

repaired tissue, and thereby fail to produce long-lasting repair

[4,5].

Tissue Engineering (TE) has appeared as a new method, which

offers advantages when compared with current treatments [5,6].

Scaffolds play an important role in TE strategies because they

provide the initial support structure, guiding the differentiation

and development of the cartilaginous tissue [7–9]. Typically native

tissues exhibit a hierarchical organization from the nano- to the

macro-scale levels which is difficult to achieve in conventional

scaffolds. Thus, the control from the nano-sizes to macroscale of

scaffold is of great interest because offers the possibility of

developing structures with further capabilities. These capabilities

include the fabrication of hierarchical-organized structures, the

control of cell behaviour at the nano-level and the inclusion of

other functionalities, such as the possibility of incorporate

bioactive molecules, or tune the mechanical and degradation

behaviour of the scaffold. This structures can be achieved by layer-

by-layer (LbL) methodology, a versatile technique that permits to

fabricate nanostructured multilayered films using a variety of

polyelectrolytes [10–12]. The principle of this technique is based

on alternate deposition of polyelectrolytes that will self-organize on

the material surface [10–13]. The main application of LbL is the

build-up of polyelectrolytes multilayers (PEMs) onto flat surfaces

[10–12]. Just a few works reported the use of LbL to fabricate

scaffolds. Such technique may be used to coat free-packet

leachable spherical templates [14] or to agglomerate beads [15],

leading in both cases to porous structures. In this work we propose

the use of an LbL based bottom-up approach to produce three-

dimensional (3D) highly porous scaffolds with a nanostructured

organization reminiscent of the native extracellular matrix

components of cartilage.

Cartilage specific ECM components play an important role in

chondrogenesis as well as supporting the chondrogenic phenotype.
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Among the wide range of materials that has been explored for

cartilage TE approaches appears chitosan (CHT) and chondroitin

sulphate [6,16]. CHT, a naturally derived is an excellent candidate

for polycation due to its structural characteristics similar to

glycosaminoglycan’s (GAGs) and ability to support chondrogenic

activity as well as Cartilage ECM expression by chondrocytes

[17,18]Chondroitin sulphate (CS) has a high negative charge

density and it is the major GAG component of native cartilage

tissue and it is reported its benefits for osteoarthritis as well as its

ability to increase the production of ECM matrix a and capacity to

induce the differentiation of multipotent stromal cells [1,19–21].

This combination was already used in LbL methodology, however

from our knowledge we reported from the first time the use of

these polyelectrolytes for a 3D porous construct only based in

PEMs for cartilage TE approaches [22].

The aim of this work is to prepare nanostructured 3D

constructs, based on the LbL methodology, studying its effect on

cartilage TE. For the proof of concept the build-up of CHT/CS

PEMs onto flat surfaces was firstly characterized using quartz

crystal microbalance (QCM). The biological performance was

evaluated with a cell culture of primary bovine chondrocytes

(BCH). The biological performance of highly porous nanostruc-

tured 3D scaffolds was also evaluated using BCH and multipotent

bone marrow derived stromal cells (hMSCs). The maintenance of

chondrogenic phenotype and the differentiation of hMSCs were

also investigated.

Materials and Methods

Materials
Chitosan (CHT) of medium molecular weight (Mw 190–

310 kDa, 75–85% degree of deacetylation, viscosity 200–800 cP)

and chondroitin-4-sulphate (CS) (Mw 50–100 kDa) were pur-

chased from Sigma Aldrich. Chitosan was purified by recrystal-

lization. Paraffin wax spheres with 200 mm were purchased from

Jojoba Desert Whale (Tucson, USA) and then modified with

polyethylene imine (PEI) (Sigma- Aldrich, Mw 750 000). Glass

coverslips with 13 mm (L4097–3) were purchased from Agar

Scientific. Lysozyme from chicken egg white (lyophilized powder

<10000 U/mg stored at 4uC) and hyaluronidase Type VIII

(300 U/mg stored at 220uC) were purchased from Sigma-

Aldrich.

Methods
CHT/CS film build-up. The build-up process of CHT/CS

PEMs was followed in situ by quartz crystal microbalance with

dissipation monitoring (QCM-Dissipation, Q-Sense, Sweden),

using a gold coated sensor excited at a fundamental frequency

of 5 MHz and at seventh overtone (35 MHz). The crystals were

cleaned in an ultrasound bath at 30uC using successive acetone,

ethanol and isopropanol. Adsorption took place with a constant

flow rate of 50 mL min21.

The CHT (0.15% (w/v) in 1% acetic acid/ 0.15 M NaCl,

pH = 5.5) solution was pumped into the system for 10 min to allow

the adsorption equilibrium at the crystal surface. After rinsing with

0.15 M NaCl (10 min), the same procedure was followed for the

deposition of CS (0.15% (w/v) in 1% acetic acid/ 0.15 M NaCl,

pH = 5.5). The steps were repeated to the desire number of layers.

The frequency and dissipation were monitored in real time. The

thickness of the film was estimated using the Voigt model through

the Q-Tools Software, from Q-Sense [23].

LbL assembly in 2D surfaces. The CHT/CS PEMs were

deposited onto glass coverslips. The glass coverslips were placed in

70% (v/v) ethanol for 2 hours and then immersed in 0.15 M NaCl

for 10 min. After these two steps the glass coverslips were dried

using nitrogen flow. The multilayered film build-up started by

immersing first the substrate in CHT during 10 min followed by

the immersion in 0.15 M NaCl solution during 5 min. Then the

coverslips were dipped in CS solution for 10 min, followed by

immersion in 0.15 M NaCl over 5 min. These four steps allowed

the assembling of one double layer. The process was repeated until

10 double layers were achieved.

Scaffolds production by LbL. The PEMs were constructed

onto free-packet paraffin spheres previously modified with PEI.

Paraffin spheres modified with PEI were chosen as the porogen

and 150 mg of them placed into a modified cylindrical container,

with a porous base. Drop wise addition of polyelectrolyte solutions

and washing solutions over the top of assembly was done to form

10 double layers. The coated structure was placed in dichloro-

methane (DCM) to leach out the paraffin. After the leaching the

samples were freeze dried.

Morphology. The morphology of the scaffolds after the

leaching process and immersion in DCM was assessed by optical

microscopy, using the Axioplan Imager Z1 microscope (Zeiss).

Freeze-dried scaffolds were also observed by scanning electronic

microscopy (SEM), using a Philips XL 30 ESEM-FEG operated at

15 kV accelerating voltage. Surface morphology of the coated

glass coverslips was also observed using the same equipment at

7.5 kV accelerating voltage. All the samples were sputtered with a

conductive gold layer, using a sputter coater (Cressington) for 40 s

at a current of 40 mA.

Fourier transform infrared (FTIR) spectroscopy. FTIR

measurements were recorded using an IRPrestige-21 spectropho-

tometer, by averaging 34 individual scans over the range

4400 cm21 to 400 cm21. The samples were prepared in

potassium bromide (KBr) discs.

Swelling test. The water uptake ability of the scaffolds with

known weight was determined by soaking them in phosphate

buffered saline solution (PBS, Gibco) at pH = 7.4 up to 3 days at

37uC. The swollen scaffolds were removed at predetermined time

points (t = 15 min, 30 min, 1 h, 2 h, 3 h, 4 h, 5 h, 1 day, 2 days

and 3 days). After removing the excess water using a filter paper

(Whatman Pergamyn Paper), the scaffolds were weighed with an

analytical balance (Scaltec, Germany). The water uptake was

calculated, where Ww and Wd are the weights of swollen and dried

scaffold, respectively.

Wateruptake%~
Ww{Wd

Wd
|100 ð1Þ

Enzymatic Degradation. The enzymatic degradation test

was performed to evaluate the degradation profile of the scaffolds

in simulated physiological environments. Scaffolds were placed at

37uC in PBS solution (pH = 7.4) or in enzymatic solution

containing 2 mg.ml21 of lysozyme and 0.33 mg.ml21 of hyal-

uronidase (pH 7.4) (19). PBS and enzymatic solution were

changed every third day (19). At predetermined time intervals,

t = 3, 7 and 14 days the scaffolds were washed with distilled water

to remove the salts. Then the scaffolds were immersed in ethanol

100% and dried for 1 day at room temperature. The percentage

of weight loss (WL) was calculated, where Wi and Wf are the

weights of dry scaffold and after incubation in PBS or enzymatic

solution, respectively.

Nanostructured Construct for Cartilage Approaches
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WL~
Wi{Wf

Wi
|100 ð2Þ

Mechanical Test. Compression tests were carried out using

dynamic mechanical analysis (DMA), using Tritec 2000B equip-

ment (Triton Technology, UK) to characterize the mechanical

properties of cylindrical scaffolds in both the dry and wet states.

The sizes of the samples were measured using a digital

micrometre. Prior to any measurements in the wet state the

scaffolds were immersed in PBS until equilibrium was reached.

The measurement was carried out at 37uC under full immersion of

the sample in liquid bath (PBS) placed in a TeflonH reservoir.

Experiments were carried out in compression mode following

cycles of increasing frequency ranging from 0.1 to 15 Hz, with

constant strain amplitude of 30 mm. The frequency range chosen

covers the characteristic timescales of the periodic loads felt by the

scaffold in vivo (e.g. typical frequency of skeletal movement). The

high frequency limit used in this study should provide information

about the viscoelastic properties for the equivalent of short times

[24].

Bovine articular chondrocytes and human mesenchymal

stem cells culture. BCH cells were harvested from a patellar-

femoral groove of calf legs and isolated by 0.2% collagenase

overnight digestion (37uC) [25]. hMSCs were selected by

adherence from the bone marrow of human donors undergoing

total hip replacement [26]. Ethical approval has been obtained

from a local medical ethical committee. The isolated BCH were

washed, centrifuged and re-suspended in chondrocyte prolifera-

tion medium containing dulbecco’s modified eagle medium

(DMEM, Invitrogen, USA), fetal bovine serum (FBS, 10%,

Sigma-Aldrich), non-essential aminoacids (0.1 mM, Sigma-Al-

drich), penicillin/streptomycin (100 U/100 mg.mL21, Invitrogen),

proline (0.4 mM, Sigma-Aldrich) and Ascorbic acid 2-phosphate

(ASAC, 0.2 mM, Invitrogen) in a humidified atmosphere with 5%

CO2 and at 37uC. hMSCs were also washed, centrifuged and re-

suspended in MSCs proliferation medium containing alpha

modified eagle’s medium (a-MEM, Invitrogen, USA), fetal bovine

serum (FBS, 10% Sigma-Aldrich), penicillin/streptomycin

(100 U/100 mg.mL21, Invitrogen), Glutamine (2 mM, Sigma-

Aldrich), basic fibroblast growth factor (bFGF, 1 ng.mL21, Sigma

Aldrich) and ASAC (0.2 mM, Invitrogen) in a humidified

atmosphere with 5% CO2 and at 37uC. BCH and hMSCs were

seeded in tissue culture flasks and the medium was change every

third day until cells achieved 80% of confluence. BCH were used

at passage 2 and hMSCs at passage 3. Prior to cell seeding

scaffolds were sterilized with 70% (v/v) ethanol overnight and then

rinsed three times in PBS, whereas surfaces were treated with

ultraviolet (UV) light for 10 min to avoid the damage of the

coating. Scaffolds and flat surfaces were then immersed for 4 hours

in the medium appropriate for each cell type. For the scaffolds the

seeding was performed by applying the cell suspension, with a

concentration of 0.56106 cells in 25 mL of medium (per scaffold).

For surfaces the cell concentration was adjusted to 1.326104 cells

in 25 mL of medium (per glass coverslips). After cell attachment for

2 hours (37uC in a 5% CO2), chondrocytes proliferation medium,

MSCs proliferation medium or differentiation medium (DMEM,

2 mM glutamine (Gibco), 0.2 mM ASAC (Invitrogen),

100 mg.mL21 penicillin/Streptomycin (Invitrogen), 0.4 mM pro-

line (Sigma-Aldrich), 100 mg.mL21 sodium pyruvate (Sigma-

Aldrich) and 50 mg/mL insulin-Transferrin-selenite (ITS+premix,

BD biosciences), 10 ng.mL21 TGFb-3 (R&D systems) and 0.1 mM

dexamethasone (Sigma-Aldrich)) was added.

Cell viability. Cell viability and morphology were assessed

with live/dead assay, MTT assay and SEM analysis. The scaffolds

were cut in half in order to perform live/dead and MTT assays at

1, 3, 14 and 21 days. Scaffolds were further observed by SEM. For

the surfaces the live dead assay was performed at 1, 3, 7, 14 and

21 days followed by SEM visualization. Medium was changed

every third day to maintain an adequate supply of cell nutrients.

Live/dead assay. To perform this assay the proliferation

medium was aspirated from the wells in which the scaffolds and

surfaces were deposited. The scaffolds and surfaces were then

incubated with ethidium homodimer-1 (4 mM) and calcein-AM

(2 mM) in PBS for 30 min at 37uC in a 5% CO2 atmosphere

incubator. After 30 min the samples were immediately examined

under an inverted fluorescent microscope (Nikon Eclipse E600)

using Fluorescein isothiocyanate (FITC) and Texas Red Filter, as

well as the NIS element-F.30 software.

MTT assay. The scaffolds were incubated in 900 mL of

proliferation medium and 100 mL of MTT solution (5 mg.mL21)

per well for 2 h at 37uC in 5% CO2. MTT staining images were

captured using a stereomicroscope with colour camera (Nikon

SMZ-10A) and the Qcapture software.

Scanning electron microscopy observation. The struc-

tures with cells were fixed in formalin (10%) and dehydrated using

serial concentrations of ethanol [70%, 80%, 90%, 96% and 100%

(v/v), 30 min in each], before performing critical point drying

(Balzers CPD 030). The samples were then coated with a

conductive layer. The SEM observations were performed in a

Philips XL 30 ESEM-FEG operated at 7.5–15 kV accelerating

voltage.

DNA quantification. Scaffolds seeded with BCH and

hMSCs in differentiation medium at 1, 14 and 35 days were

washed with PBS and frozen at 280uC before proteinase K

(Sigma Aldrich) digestion. Then the scaffolds were digested with

1 mg/mL of proteinase K in tris (hydroxymethyl) aminomethane

ethylenediaminetetraacetic (Tris\EDTA) buffer (pH = 7.6) con-

taining 18.5 mg.mL21 idoacetamide and 1 mg/mL pepstatin A

(Sigma Aldrich) at 56uC for 20 hours. Quantification of total DNA

in each sample was determined with CyQuant DNA kit according

to manufacturer description (Molecular probes, Eugene, Orgeon,

USA), using a spectrofluorometer (Victor3, Perkin-Elmer, USA) at

an emission wavelength of 520 nm and an excitation wavelength

of 480 nm.

Histology. Haematoxylin & eosin (H&E) and alcian blue

staining was used to analyse cell distribution and cartilage tissue

formation, respectively. For histology analysis, scaffolds were fixed

overnight in 10% formalin, and then dehydrated using sequential

ethanol series [70%, 80%, 90%, 96%, and 100% (v/v), 30 min in

each]. Once dehydrated, they were incubated in butanol overnight

at 4uC and then in a solution of paraffin at 56uC for 12 hours.

Sections of 4.5 mm were cut using a microtome (MicroM

HM355S). After deparaffinization with xylene and rehydration

using a graded ethanol series [from 100% to 70% (v/v)], the

samples were stained using an automatic stainer (MicroM

HMS740). For H&E staining samples were stained with

haemotoxylin for 1 min and rinsed up to 6 min before being

stained with eosin for 30 s. For alcian blue staining the samples

were placed in alcian blue solution (0.5%, pH = 1) for 30 min and

rinsed with tap water or distilled water for 4 min. In the last step

nuclear fast red was added for 5 min before dehydration. Slides

were assembled with resinous medium and mounted slides were

examined under a light of Axioplan Imager Z1 microscope (Zeiss).

Representative images were captured using a digital camera

(AxioCAM MRCE) and treated using Axiovision software. Each

Nanostructured Construct for Cartilage Approaches
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assay was performed after 1, 14, 21 and 35 days of BCH and

hMSCs culture, as well as with CHIT/CS scaffold as control.

Statistical Analysis. The experiments were carried out in

triplicate unlike otherwise specified. The results were presented as

mean 6 standard deviation (SD). Statistical analysis was

performed using one way ANOVA followed by Turkey test

(Graph Pad Prism 5.0 for Windows). Statistical significance was set

to p,0.05 (*) and p,0.01 (**).

Results and Discussion

CHT/CS film build-up
The build-up mechanism of the polymeric multilayered films

made of CS and CHT was assessed in situ with QCM-D. This

technique detected the adsorbed mass of polyelectrolytes and

measured the viscoelastic properties of the surface [27,28].

Figure 1A shows the build-up of 10 layers of CHT and CS in

terms of variations on normalized frequency, ?fn/n (where n is the

frequency overtone) and dissipation, ?D7. As expected, the

normalized frequency decreased with each CHT and CS solutions

injection, reflecting the increased mass over the gold sensor. The

increase of ?D7 was due to the non-rigid adsorbed layer structure

of the deposited film. During the washing step after the injection of

each polyelectrolyte, the change of both ?f7/7 and ?D7 were

relatively small compared to the total frequency variation

associated to the adsorption of the respective polymer. This

indicated a strong association of the layers on the surface of the

crystal.

The combination of ?f7/7 and ?D7 gave information about the

adsorbed amount and the variations of the viscoelastic properties

[28–30]. The thickness of the film was estimated using the Voigt

Model [23]. Figure 1B showed the thickness variation along the

deposition of 10 layers. The results revealed a decrease of thickness

from the first layer to the second one, which could be explained

due to changes in water absorption [31]. The absorption of water

was due to the presence of some groups in the polysaccharides

(hydroxyl, carboxyl and sulphate groups) that interacted favour-

ably with water molecules [31]. When the second layer was

adsorbed the presence of opposite charge led to electrostatic

interactions between them and the counterion-polymer. Conse-

quently, water-polymer bonds were disrupted, resulting in an

effective decrease of the hydrated film thickness [30–32]. The

trend was observed during the first three pairs of layers. After the

first three dL, this trend was no longer observed: there was an

increase of thickness with the addition of CS. The SEM

microphotography of the multilayered surface revealed a homog-

enous coating along the 2D flat surface (inset image of Figure 1B).

Moreover, the surface presented a rough texture and some

granularity, with characteristic diameter sizes around 2 mm as

measured by Image J.

The results obtained through QCM measurements and SEM

demonstrated that CS could be successfully used with CHT to

conceive a homogeneous viscoelastic polymeric self-assembled

coating using the LbL approach.

Multilayer surface
Using LbL methodology it was possible to produce surfaces with

tuned properties [10–12].In this work, multilayers of CHT and CS

were prepared on glass coverslips by using the LbL methodology,

obtaining self-assembled films with 10 double layers.

Cell behaviour in multilayers. In order to assess the cell

viability in the surfaces, live/dead assay was performed (Figure 2A,

2B, 2D, 2E, 2G, 2H, 2J, 2K, 2M and 2N). The results showed a

large amount of living cells and an increase in terms of cell number

which results in cell confluence and in a continuous staining of

calcein. The cell adhesion/morphology was also studied using

SEM (Figure 2C, 2F, 2I, 2L and 2O). The results revealed that the

BCH were attached to the surface from the earliest time points

onwards. Attachment, adhesion and spreading are the first phase

of cell/material interaction and the quality of this stage influenced

the capacity of cells to proliferate and differentiate itself on contact

with an implant [33,34]. With increasing culture time, cells started

to spread out along the surface, losing their round phenotype

which might occur due to the high proliferation of cells or to the

2D environment that leads to de-differentiation. As a result of

significant cell proliferation most of the surface area was already

covered with cells after 7 days of culture. At 14 days cellular

confluence was achieved.

These results suggested the potential of CHT and CS as

polyelectrolytes for the fabrication of the 3D nanostructure.

Nanostructured Scaffolds: physicochemical
characterization

Scaffold preparation and morphology. The use of bottom-

up approaches to produce 3D porous structures is of particular

interest to TE due to the hierarchical organization of the native

tissues. It has been hypothesized that an interconnected 3D porous

structure could be prepared combining LbL with leaching of free-

packet paraffin spheres. A drop-wise addition method of PEMs

over the 3D template formed by free-packet paraffin spheres was

Figure 1. Build-up monitoring of the CHT/CS polyelectrolyte multi-layered using QCM for film constructed. A) Normalized frequency
(?f7/7) and dissipation changes (?D7) obtain at 35 MHz, 1) deposition of CHT, 2) washing step and 3) deposition of CS; B) Estimated thickness (th)
evolution and SEM micrographs of the multilayer surface with 10 double layers (inset image).
doi:10.1371/journal.pone.0055451.g001
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applied. This technique allows the formation of a 3D lattice

arrangement from a randomly placed paraffin spheres. After

coating the paraffin template was leached out and void spaces

were created. Thus, the remaining material should be entirely

composed by the CHT/CS multilayers (Figure 3A and Figure 3B).

The morphology of the obtained scaffolds after the leaching was

observed by optical microscopy. The results clearly revealed a

bubble-like morphology with geometry and pore sizes consistent

with the paraffin spheres used as the template (Figure 3C). The

paraffin spheres used as porogen had a diameter of 200 mm which

is appropriate for cartilage TE approaches, allowing the deposition

of ECM and cell infiltration even after the commonly shrinking

after the freeze drying process [22]. The interconnectivity should

be assured by the existence of physical contact points between the

neighbouring paraffin beads that will result in a passage point

between the two pores after the leaching process (see red arrow in

Figure 3A). Further structural information was obtained by SEM

(Figure 3D and 3E). SEM images of freeze-dried scaffolds revealed

a noticeable hollow imprint of the porous spherical wax template

morphology. This concept allowed the production of highly

porous structure with controlled pore size and interconnectivity.

Consequently, this type of scaffolds should allow the diffusion of

substances as well as the integration of cells, namely its infiltration,

migration and distribution in the entire volume of the scaffold.

The histological cross-sections of the freeze-dried scaffold stained

by alcian blue (Figure 3F) and eosin (Figure 3G) showed a

homogeneous distribution of the polysaccharides. Alcian blue

stained chondroitin sulphate [35] and eosin chitosan due to the

high ability of this polysaccharide to adsorb anionic dyes [36].

Fourier transform infrared spectroscopy. FTIR mea-

surements (Figure 4A) were performed on the scaffold produced,

as well as on both CHT and CS powders in order to identify the

presence of both polysaccharides in the entire specimen. The

spectra of CHT and CS were very similar, as expected, reflecting

the similarities in the chemical structure of both materials. As a

result, they shared some common peaks around 3400 cm-1

corresponding to –OH and N-H bond stretching vibrations, and

the peaks around 2900 cm-1 corresponding to C-H stretching.

Between 1020 cm-1 and 1080 cm-1 the peaks associated with the

stretching of C-O bonds could be observed also. Moreover, the

amide groups appeared at 1648 cm-1 [37].

In the CHT spectrum the amine group bonds, characteristic of

this polysaccharide, appeared at 1570 cm-1 [18]. The represen-

tative peak of chondroitin sulphate was detected at 1250 cm-1

Figure 2. Live/dead assay and SEM micrographs of BCH seeded on glass coverslips coated with chitosan and chondroitin sulphate
at day 1 (A, B, C), 3 (D, E, F), 7 (G, H, I), 14 (J, K, L) and 21 (M, N) of culture in proliferation medium.
doi:10.1371/journal.pone.0055451.g002
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corresponding to the stretching in the S = O bond (SO2{
4 ) [37].

The spectrum of the scaffold showed globally the absorption peaks

from both CHT and CS which was indicative of the presence of

both raw materials in the final structure.

Swelling ability. Water uptake is particularly important for

implantable materials because it allows the diffusion and exchange

of nutrients and waste through the entire scaffold; moreover the

water uptake ability also influences the mechanical performance of

the biomaterial [9]. The materials used in the scaffold have

abundant hydrophilic groups, such as hydroxyl, amino, sulphate

and carboxyl groups, which can promote the swollen state of the

scaffold [38–40]. The swelling ability was evaluated by soaking

scaffolds in PBS (pH 7.4) at 37uC for 3 days (Figure 4B). The

results showed that the water uptake increased mainly in the first

hour and then tended to remain stable, reaching an equilibrium

after 5 h (water uptake = 280%). This result could be explained

with the high density of charge that increased the difference in

osmotic pressure between the scaffold network and medium,

resulting in a swollen scaffold. Moreover, the swelling ability of

cartilage is well known to be highly dependent on the binding of

water to polar groups of GAGs, namely carboxylate and sulphate

groups, on electrostatic repulsion of GAGs and entropic contri-

butions resulting from the mixing of water and counterions [41].

Enzymatic degradation. The biodegradability profile of

scaffolds will dictate the changes in the structure that will occur

upon the implantation. Enzymatic activity plays a fundamental

role in the degradation of polysaccharides in vivo [42]. In vitro

enzymatic degradation tests were performed with lysozyme and

hyaluronidase solution and compared with weight loss in PBS

(control). These two enzymes were chosen because they are

present in the synovial fluid and they have as well the ability to

cleave the polysaccharides used in this study [43,44]. Lysozyme is

able to degrade CHT and hyaluronidase has the ability to degrade

both CHT and CS [44–47]. The weight loss as a function of time

is presented in Figure 4C.

The results showed that the scaffolds degraded in the presence

of the selected enzymes, showing weight losses of ca. 40% after

14 days. The degradation of scaffolds in the presence of the

enzymatic solution was likely facilitated by the high porosity and

interconnectivity of the structures allowing the easy access of the

enzyme to their substrate. Moreover, the high hydrophilicity of

scaffold (revealed by the high water uptake) could increase the

interaction of scaffolds with the enzymatic solution, promoting the

weight loss. The scaffolds placed in PBS also suffered some weight

loss of ca. 15% after 14 days. In this case the weight loss could be

the result of some disaggregation of the multilayered structure, as

the polyelectrolytes were self-assembled through electrostatic

interactions. The ions present in PBS may destabilize the structure

and promote partial detachment between the macromolecules

resulting in their release to the medium.

Mechanical Properties. The viscoelastic/mechanical prop-

erties of an implantable device are fundamental for its perfor-

mance in vivo [24]. Dynamical mechanical analysis (DMA) is an

adequate non-destructive tool to characterize the mechanical and

viscoelastic properties of polymeric materials [48,49]. Since

articular cartilage often is exposed to dynamic compression forces,

DMA experiments were performed in a hydrated environment

and at 37uC allowing the assessment of the mechanical properties

of the scaffolds in more realistic conditions [24]. The storage

modulus (E’) and loss factor (tan d) as a function of frequency of

the developed scaffolds, in the dry and wet state are presented in

Figure 5. The results for the hydrated scaffold showed a slight

increase in both E’ and tan d with increasing frequency. In the dry

state the values of E’ were about one order of magnitude higher

Figure 3. Scaffold characterization. A) Production steps of scaffolds: LbL and leaching of free-packet paraffin spheres, B)Digital photograph of
the scaffold after all the steps C) Optical Microscopy image of the scaffolds after the leaching of the core material, D, E) SEM micrographs of cross-
sections (two different magnifications) and Histological cross-sections of the scaffolds after staining with alcian blue (F) and eosin (G).
doi:10.1371/journal.pone.0055451.g003
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when compared with the wet state. This was consistent with the

high water uptake ability of the scaffolds and the plasticization

effect of water molecules in such kind of polysaccharides increasing

their molecular mobility and decreasing the stiffness of the

material. A similar loss of the stiffness due to the effect of water

was observed in CHT membranes [50]. In both cases no evident

variation of E’ along the frequency axis were seen, indicating that

no relaxation phenomena took place in the scaffolds within the

time scale covered by the experiments. The tan d of the dry sample

decreased slightly with an increasing of frequency. However an

opposite trend was observed when the samples were immersed in

PBS. tan d was higher in the wet samples, indicating that some

dragging of entrapped water participated in energy loss for the

hydrated structure [51]. The DMA results demonstrated visco-

elastic behaviour of the scaffold which approached the viscoelastic

nature of native cartilage [52]. Moreover, the E’ values obtained in

the wet state (0.6–0.8 MPa, 0.01 – 10 Hz) were included in the

range of mandibular condylar cartilage E’ values (0.1–1.5 MPa,

0.01 – 10 Hz ) [53].

Cell behaviour in nanostructured scaffolds
Cell viability, adhesion and morphology. The cell viabil-

ity tests with BCH (Figure 6A, 6D, 6G and 6J) and hMSCs

(Figure 7A, 7D, 7G and 7J) showed evidence of cell attachment

and a large amount of living cells (green)). This was consistent with

the results obtained on flat surfaces.. After 1 day it was possible to

see that the cells tended to aggregate. Furthermore, the results

obtained with MTT assay for BCH (Figure 6B, 6E, 6H and 6K)

and hMSCs (Figure 7B, 7E, 7H and 7K) suggested an increase in

cell number and metabolic activity due to the increase in dark

purple staining over time when compared with the control, the

empty scaffold (Figure S1).

Cell adhesion and morphology was further studied by SEM

using cross-sections of the scaffolds (Figure 6C, 6F, 6I and 6L).

The results obtained for BCH at day 1 showed that cells attached

to the surface, displaying a round shape. During the following

culture time the adherent cells were more spread out along the

scaffolds. The BCH presented a round shape in all time points

which was an indication of phenotype retention and essential for

matrix deposition [54]. The results for hMSCs (Figure 7C, 7F, 7I

and 7L) revealed that the cells were attached to the surface and

presented a more stretched morphology. After 1 day, cells started

to adhere and an increase in terms of cell migration occurred in

the inner areas of the scaffolds (t = 14 days).

Cell proliferation. Cell proliferation in differentiation me-

dium was evaluated using a DNA assay (Figure 8). The result

obtained for the two types of cell showed that the number of both

types of cells increased with increasing culture time. Between the

first day of culture and after 35 days there were significant

differences in the amount of BCH and hMSCs, indicating that the

cells continued proliferation even after long time culture which

corroborated the results of cell viability tests.

Figure 4. Physicochemical characterization of scaffolds. A) FTIR measurements of CHT/CS scaffolds and pure polysaccharides (CHT and CS), B)
Swelling test up to 3 days (The inset graphic expands the water uptake for the first 5 hours), C) Weight loss of the scaffolds in PBS (m) and in an
enzymatic solution at 37uC (&).
doi:10.1371/journal.pone.0055451.g004
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Histology. Cell distribution and matrix production in differ-

entiation medium was evaluated using histology cross-sections

stained with H&E and alcian blue (Figure 9).

The H&E staining of scaffold seeded with BCH showed the

round morphology of cells. Moreover, over time the abundance of

cells per section was increased in support of cell proliferation. At

day 1, cells started to attach to the walls forming small aggregates.

At day 14 the size of BCH agglomerates increased. During the

following weeks, the cells presented a higher dispersion and

distribution in the scaffolds. Sulphated GAGs, indicating new

Figure 5. Variations of (A) Storage modulus (E’) and (b) loss factor (tand) of the CHT/CS scaffolds obtained by LbL methodology.
Experiments are reported for dry samples (&) and hydrated samples in PBS at 37uC (N).
doi:10.1371/journal.pone.0055451.g005

Figure 6. Live/dead assay, MTT assay and cross-section SEM micrographs of BCH seeded on scaffold at day 1(A, B, C), 3(D, E, F), 14
(G, H, I) and 21(J, K, L) of culture in proliferation medium.
doi:10.1371/journal.pone.0055451.g006
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cartilage matrix formation, were stained by alcian blue. CS, which

gave as well a positive staining for GAGs, can be distinguished

from newly deposited matrix by comparing alcian blue staining at

day 1 with later time points. Secretion of GAGs by BCH was first

observed from 14 days of culture. GAG production increased

during subsequent weeks. Lacunae formation was also seen in the

matrix surrounding BCH, namely at day 21 and 35. The

maintenance of chondrogenic phenotype is indicated by the

lacunae formation.

In scaffolds seeded with hMSCs it was possible to see some

agglomerated cells at day 1 and after 2 weeks the size of these

agglomerates increased (Figure 9). During the following time

points the hMSCs were more spread throughout the scaffold.

GAG deposition was also assessed and at day 14 a small amount of

deposition could be seen. The amount of deposition increased

during the next weeks. The deposition of GAGs by hMSCs

indicated the chondrogenic differentiation of these cells. The

driving force for differentiation in this assay was TGF-b, although

a role of CS in chondrogenic differentiation cannot be excluded

[35].

Conclusions

Flat CHT/CS PEMs prepared using LbL elicit a positive effect

on BCH cells, allowing its attachment and proliferation. It was

possible to use LbL combined with spherical template leaching to

produce an innovative 3D nanostructured constructs of CHT/CS

with high porosity and interconnectivity, just composed by self-

assembled multilayers of these polyelectrolytes. Both BCH and

hMSCs could adhere and proliferate in these scaffolds, Secretion

of GAGs was observed in BCH and hMSCs upon culture in

chondrogenic differentiation medium, indicating that the chon-

drogenic phenotype was maintained and hMSCs differentiation

was successfully induced. Our results suggest that nanostructured

Figure 7. Live/dead assay, MTT assay and cross-section SEM micrographs of hMSCs seeded on scaffold at day 1(A, B, C), 3(D, E, F),
14 (G, H, I) and 21(J, K, L) of culture in proliferation medium.
doi:10.1371/journal.pone.0055451.g007

Figure 8. DNA assay on the scaffolds seeded with BCH and
hMSCs in differentiation medium. Significant differences between
each cell type at different time points were found for p,0.05(*) and
p,0.01(**).
doi:10.1371/journal.pone.0055451.g008
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scaffolds of chitosan and chondroitin sulphate obtained by LbL

technology could have potential use in TE approaches for cartilage

namely for matrix blunt and partial thickness/chondral defects.

The scaffold would be implant after cell culture in vitro in order to

increase the production of matrix that will start under static

conditions after 14 days. The use of low oxygen tension,

mechanical stimulation could accelerate this process [55]. As

future work we envisage the production of scaffolds with an

increase in terms of mechanical properties by incorporation of

fillers, such as nanotubes or using crosslinked PEMs that will also

reduce its degradation rate. The ability of these PEMs to sustain

delivery of growth factors such as TGF-b could be another way to

improve its performance. These improvements will open new

horizons for clinical application in the field of cartilage tissue

engineering.

Supporting Information

Figure S1 Empty scaffold stained by MTT assay.
(TIF)
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