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Abstract: Acute and chronic lower airway disease still represent a major cause of morbidity and
mortality on a global scale. With the steady rise of multidrug-resistant respiratory pathogens, such as
Pseudomonas aeruginosa and Klebsiella pneumoniae, we are rapidly approaching the advent of a post-
antibiotic era. In addition, potentially detrimental novel variants of respiratory viruses continuously
emerge with the most prominent recent example being severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). To this end, alternative preventive and therapeutic intervention strategies will be
critical to combat airway infections in the future. Chronic respiratory diseases are associated with
alterations in the lung and gut microbiome, which is thought to contribute to disease progression
and increased susceptibility to infection with respiratory pathogens. In this review we will focus
on how modulating and harnessing the microbiome may pose a novel strategy to prevent and treat
pulmonary infections as well as chronic respiratory disease.
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1. Introduction

Acute and chronic lower airway diseases are among the leading causes of death world-
wide and the third most common cause of death in the United States. In 2021, infectious
and chronic respiratory diseases accounted for more than 550,000 deaths in the US [1].
SARS-CoV-2 alone was the 3rd leading cause of death, outpacing all other causes with the
exception of heart disease and malignant neoplasms [1]. Direct medical expenditures for
the treatment of lower respiratory tract disease as well as indirect costs from the loss of
productivity represent a considerable socioeconomic burden [2,3]. These conditions are be-
coming increasingly challenging to manage due to the continuous emergence of multi-drug
resistant (MDR) bacteria and novel viral variants that promote infection and exacerbation
of chronic lung disease. In the absence of effective countermeasures, it is estimated that
infection with MDR strains will be responsible for 317,000 deaths each year in the US by
2050, a more than 10-fold increase to current numbers, underlining the urgent need for
alternative prevention and intervention strategies [4,5]. The human body harbors trillions
of microorganisms and comprises an intricate network of bacteria, archaea, protozoa and
fungi as well as bacteriophages and eukaryotic viruses. It is estimated that the number of
microorganisms that colonize the human body is at least equal to the number of somatic
cells and that 500–1000 bacterial species inhabit our mucosal surfaces and the skin at any
given time [6–9]. These microbes continuously interact with each other and with the human
host, and this tightly regulated interplay is essential for the development and priming of
the immune system and the maintenance of homeostasis [10–12]. When this symbiosis
is perturbed due to alterations in the diversity and composition of the microbiome, the
resulting dysbiosis can predispose to or exacerbate disease locally and at distal body sites.
Dysbiosis can be induced by a variety of environmental factors such as treatment with
antibiotics, diet and lifestyle or can be a consequence of chronic inflammation, infections or
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metabolic disorders [9,13–19]. Advances in culture-independent high-throughput bacterial
sequencing approaches that enable large-scale taxonomic profiling of bacterial communi-
ties in patients and animal models, in combination with immunological and multi-omics
datasets as well as mechanistic studies in germ-free rodent models, strongly suggest that
aberrant microbiome alterations are a key driver of disease. A lot of these insights were
gained in the course of the Human Microbiome Project (HMP), a 10-year interdisciplinary
worldwide effort to characterize the composition of the healthy human microbiome at
different body sites, analyze the relationship between microbiome changes and disease, and
provide resources and novel technologies to broadly facilitate these studies in the scientific
community [8,20–22]. Importantly, these studies also revealed a bidirectional cross-talk
between the gut and lung microbiota, and growing experimental and clinical evidence
show that changes in the intestinal microbiota can influence clinical outcomes of respiratory
infections and chronic lung disease [23,24]. Since our understanding of other members of
the human microbiome is still limited, we will briefly summarize implications of lung and
intestinal commensal bacteria in lower respiratory tract infections and chronic lung disease
and review how manipulation of the local and distal microbiota may aid in preventing
disease while also serving as a source of novel drugs or drug targets for treatment.

2. The Lung and Gut Microbiome and Their Implications in Respiratory Disease
2.1. The Gut Microbiota

The gut microbiome performs many essential functions to maintain host homeostasis,
including the breakdown of complex carbohydrates, synthesis of vitamins, maintenance
of mucosal barrier integrity and protection against pathogens [25]. In addition, intestinal
bacteria play an important role in the development and priming of local and systemic
immunity [11]. The human gastrointestinal (GI) tract harbors more than 1014 bacteria and
it is estimated that the genomic information contained in these bacteria outnumbers the
genetic information contained in the human genome by at least 100-fold [26,27]. The healthy
intestine contains >1000 bacterial species and despite a high degree of interindividual
variability, can be reduced to a core microbiome that is dominated by taxa derived from
the phyla Firmicutes, Bacteroidetes and to a lesser extent Proteobacteria, Actinobacteria
and Verrucomicrobia [28–32]. As a consequence of oxygen availability, pH value and the
presence of antimicrobial peptides (AMP) and bile acids, the composition and density of
the microbiome varies greatly from the proximal to the distal GI tract. It gradually increases
from ~102 colony forming units/gram [CFU/g] luminal content in the acidic, sparsely
populated bile acid- and AMP-rich environment of the proximal small intestine and reaches
its highest density in the colon (~1011 CFU/g) [30]. Due to the higher availability of
oxygen and the selective pressure provided by natural antimicrobials, the small intestine
is mainly populated by fast-growing facultative anaerobic bacteria of the Lactobacillaceae
and Enterococcoceae families, while the colon is dominated by fermentative anaerobes of the
Bacteroidaceae and Clostridia families [30]. Colonization of the GI tract is induced during
birth upon contact with the vaginal microbiota and once established remains relatively
stable over time [9,30]. However, diet, lifestyle, and disease status can profoundly alter
the microbiota and induce a dysbiotic state [13–16,19,33]. Microbiome-wide association
studies (MWAS) in combination with mechanistic studies in germ-free or microbiota-
depleted animals established the causal relationship between intestinal dysbiosis and
the pathogenesis of a wide array of human diseases including not only gastrointestinal
conditions but also systemic manifestations such as obesity, type 2 diabetes as well as
allergic asthma and respiratory infections [34,35].

2.2. The Lung Microbiota

While it is well established that the upper respiratory tract (URT) of healthy individuals
is continuously colonized by microbes, due to technical limitations, the lung environment
was historically considered to be sterile. Recent advances in culture-independent bac-
terial sequencing approaches have now revealed that the lower respiratory tract (LRT)
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harbors a unique microbiome that plays a key role in promoting pulmonary homeostasis
and may facilitate the priming of local immune cell populations [36]. In addition, the
respiratory tract microbiome has emerged as a critical modulator of immune responses to
respiratory infections and the pathogenesis of chronic lung disease [37–40]. Compared to
the large intestine, the LRT colonization density in healthy individuals is relatively low,
with 103–105 CFU/g lung tissue [41]. Under homeostatic conditions, the most abundant
bacterial phyla in the human lung are Bacteroidetes (45–50%, genus Prevotella), Firmicutes
(30–35%, genera Streptococcus, Veillonella) and to a lesser extent Proteobacteria (10–15%,
genera Haemophilus, Neisseria), Actinobacteria (5%, genus Corynebacterium) and Fusobacteria
(5%, genus Fusobacteria) [41–49]. The lung microbiota is transient and maintained by con-
tinuous translocation of microorganisms from the URT and subsequent clearance by innate
lung immune mechanisms, rather than local expansion of lung-resident bacteria [36,44,46].
This balance between migration and elimination is often perturbed during respiratory dis-
ease, which leads to overgrowth of bacteria with a competitive advantage and consequently
a loss of microbial diversity. Structural alterations of the small airways and excessive mucus
production are a hallmark of COPD, asthma and cystic fibrosis (CF). The resulting airway
obstruction disrupts mucociliary clearance and the excess mucus may additionally support
colonization with potential pathogens such as Pseudomonas aeruginosa, which is associated
with increased mortality in CF and COPD [50–55]. In addition, defective clearance of
bacteria by alveolar macrophages and/or airway neutrophils is observed in COPD [56–60],
asthma [61,62], CF [63], idiopathic pulmonary fibrosis (IPF) [64] and after respiratory viral
infections [65–67]. In accordance, patients suffering from chronic lung diseases exhibit
elevated bacterial loads in their lungs, with increased abundance of potentially pathogenic
proteobacteria including Haemophilus, Moraxella and Pseudomonas spp. [36,40,68–70]. Al-
together, defects in mucociliary clearance as well as airway macrophage and neutrophil
dysfunction may further contribute to disease progression and exacerbation by predispos-
ing patients to bacterial infections.

2.3. The Gut-Lung Axis in Respiratory Disease

Increasing experimental and clinical evidence suggests that the gut microbiota and
the lung are engaged in a continuous bidirectional cross-talk, termed the gut-lung axis and
that dysbiosis at either site can contribute to the development and progression of distal
diseases (Figure 1) [71,72]. Using animal models, it was shown that this dialogue is mainly
facilitated by structural bacterial ligands, such as lipopolysaccharide (LPS), that bind and
activate pattern recognition receptors (PRR) on host cells [38,73–75]. Microbiome-derived
metabolites also play a critical role in this process [65,76–79]. In addition, the migration of
activated immune cells from the intestine to the lung was described to aid in the defense
against pulmonary helminth and bacterial infections [80,81]. Importantly, these gut-lung
protective mechanisms could be directly stimulated by the intestinal microbiota and were
abrogated in germ-free and antibiotic-treated mice, resulting in increased susceptibility
to a wide array of bacterial and viral respiratory infections as well as chronic respiratory
diseases [24,65,75,76,81–86].

Up to 50% of inflammatory bowel disease (IBD) patients and one third of individuals
with irritable bowel syndrome (IBS) exhibit pulmonary manifestations ranging from sub-
clinical aberrations to chronic lung disease [84,87]. The intestinal symptoms in IBD precede
the lung phenotype, indicating that impaired lung function may be a consequence of a
dysbiotic gut [88]. Furthermore, reduced intestinal microbiota diversity following antibiotic
treatment during the first months of life as well as low levels of LPS and the microbiota-
derived short-chain fatty acid (SCFA) metabolites are associated with the development
of childhood asthma [89–96]. In accordance, genetically modified mice that are unable to
inactivate LPS exhibit reduced pulmonary type 2 immune responses in a mouse model of
allergic airway inflammation. This effect was ablated in mice treated with antibiotics and
could be restored upon intrarectal administration of LPS, indicating a protective role of
intestinal-derived LPS in allergic asthma [97]. Recent evidence suggests that SCFAs, the end
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products of dietary fiber fermentation by colonic commensals, are key modulators of the
gut-lung axis and exert potent anti-inflammatory functions both locally and systemically.
Oral supplementation with dietary fibers, SCFAs or SCFA-producing bacteria ameliorated
pulmonary inflammation in mouse models of allergic asthma, further underlining the
important role of the gut-lung axis in shaping lung immunity [76,78,86,98–101]. Cigarette
smoke and aging are major risk factors for COPD development and are associated with
shifts in gut microbial communities towards a decrease in alpha diversity as well as an
increase in the Firmicute/Bacteroidetes ratio, established markers of intestinal dysbio-
sis [40,102–104]. Similar to allergic airway inflammation, intake of fermentable dietary
fiber was associated with improved lung function in COPD patients and ameliorated lung
pathology and inflammation in mouse models of COPD [105,106]. Furthermore, transfer of
fecal matter from COPD patients into mice induced lung inflammation and accelerated the
development of COPD-like pathology in respective animal models, further establishing a
link of the gut microbiome to chronic lung disease etiology [107]. Importantly, the gut-lung
axis is bidirectional, and it is well established that chronic lower airway diseases are often
accompanied by manifestations in the gastrointestinal tract. For example, asthma patients
exhibit structural changes in their intestinal mucosa, and COPD is often accompanied by
chronic gastrointestinal tract diseases, intestinal microbiome alterations and lower levels
of SCFAs compared to healthy controls [82,107–111]. However, the mechanisms behind
these changes are only beginning to be understood and whether the differences in the gut
microbiota are a cause and/or a consequence of chronic respiratory disease is often hard to
discern and needs to be further addressed.

Besides chronic disease, intestinal dysbiosis was linked to the development of acute
lower respiratory tract infections in children and evidence from mouse models show that
the gut microbiota plays a key role in the defense against pulmonary pathogens [112].
Accordingly, germ-free and antibiotic-treated mice exhibit increased susceptibility to in-
fluenza virus [71,72,75,79] and respiratory syncytial virus (RSV) infections [83] and worse
outcomes following lung infections with Streptococcus pneumoniae [38,67,74,81,113], Kleb-
siella pneumoniae [38,74,85], Pseudomonas aeruginosa [114,115] and Staphylococcus aureus [116].
Importantly, the administration of PRR agonists or the transfer of fecal material from
control mice was sufficient to restore pulmonary immunocompetence and reversed suscep-
tibility to lung infections in dysbiotic mice [38,72,74,75,85]. Furthermore, supplementation
with dietary fibers and the metabolites SCFAs or desaminotyrosine (DAT) conferred pro-
tection against viral respiratory infections [79,83,117]. On the contrary, infections with
influenza virus induce transient changes in the intestinal microbiota composition as well as
gastroenteritis-like symptoms in mice and humans which cannot be explained by intestinal
tropism of the virus [65,118–125]. These changes in the intestinal microbiota following
influenza infection further predisposed the host to secondary enteric infections in mouse
models of co-infection [121,124]. Influenza virus-mediated intestinal dysbiosis was also
shown to feed back on the lung, leading to decreased bactericidal activity of alveolar
macrophages and predisposing to pneumococcal pneumonia [89]. Importantly, alveolar
macrophage function could be restored by oral SCFA supplementation [65]. Shifts in the
intestinal microbiota towards increased abundance of Bacteroidetes and a decrease in
Firmicutes were observed in a mouse model of RSV infection and specific microbial profiles
were linked to disease severity in RSV-infected children [122,126]. Intestinal manifestations
are also frequently reported in individuals infected with SARS-CoV-2, however, as opposed
to influenza virus, there is clear evidence that SARS-CoV-2 is able to productively infect
gastrointestinal epithelial cells and thereby directly causes intestinal dysbiosis [127,128].
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Figure 1. The gut-lung axis in respiratory disease. The continuous cross-talk between the gut
and lung is facilitated by structural bacterial pattern recognition receptor (PRR) ligands including
bacterial cell wall components, gut commensal-derived metabolites and migratory immune cells.
Bacterial PRR ligands and metabolites are released in the circulation and bind to their respective
receptors on pulmonary immune and/or epithelial cells, thereby modulating immunity to respiratory
pathogens during chronic lung disease. Pulmonary insults can induce intestinal dysbiosis, however
the underlying mechanisms are not well understood. COPD, chronic obstructive pulmonary dis-
ease; RSV, respiratory syncytial virus; PRR, pattern recognition receptor; LPS, lipopolysaccharide;
LTA, lipoteichoic acid; SCFAs, short-chain fatty acids; DAT, desaminotyrosine. Figure created with
BioRender.com.

3. Microbiome-Based Prevention and Intervention Strategies in Respiratory Disease

Given the implications of the intestinal microbiome in respiratory diseases, modu-
lating the composition or activity of the resident microbiome by supplementation with
bacterial substrates (prebiotics), live bacteria (probiotics, fecal microbial transplantation)
or inanimate bacterial preparations (postbiotics) has been proposed as a novel prevention
and intervention strategy for infectious and chronic lung disease. In addition, the selective
depletion of opportunistic pathogens by antibacterial monoclonal antibodies or bacterio-
phages has shown promising results in preventing bacterial pneumonia in at-risk patients
and both will be further discussed below and are summarized in Figure 2.
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Figure 2. Microbiome-based strategies to prevent and treat respiratory disease. Modulation of the
composition and/or activity of the intestinal microbiota to promote lung immunity aids in the defense
against respiratory bacterial infections and management of chronic lung disease. Intake of non-
digestible dietary fiber drives the production of the bioactive SCFA metabolites by colonic commensal
bacteria while the use of probiotics aims to modify the composition of the microbiome towards
beneficial bacterial taxa, including SCFA-producers. The precise immunomodulatory mechanism
of intranasally or orally administered postbiotics remain elusive but may be in part due to mucosal
DC and IgA induction. In addition, the lung microbiota can be directly modulated by selectively
eliminating bacterial pathogens using probiotic predatory bacteria, antibacterial human mAbs or
strain-specific bacteriophages. Abbreviations: SCFAs, short-chain fatty acids; FMT, fecal microbiota
transplant; DC, dendritic cell; IgA, immunoglobulin A; mAb, monoclonal antibody. Figure created
with BioRender.com.

3.1. Supplementation with Prebiotics, Live Bacteria or Postbiotics
3.1.1. Prebiotics

According to the International Scientific Association of Probiotics and Prebiotics (IS-
APP), a prebiotic is “a substrate that is selectively utilized by host microorganisms to
confer a health benefit to the host” [129]. Beneficial effects conferred by prebiotics are
associated with modulation of the composition and/or activity of the commensal micro-
biota and include the expansion of beneficial bacterial taxa as well as the production of
anti-inflammatory bacterial metabolites. The most well-studied and recognized prebiotics
are non-digestible dietary fibers such as fructo-oligosaccharides, galacto-oligosaccharides,
inulin and pectin, which are complex carbohydrates that are metabolized to SCFAs by
commensal bacteria in the colon via anaerobic fermentation. Epidemiological and preclini-
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cal data strongly suggests a causative relationship between dietary fiber intake and lung
health [130,131]. The generic Western diet contains low amounts of fermentable fiber and
the associated gut microbiota harbors decreased microbial diversity, lower abundances of
SCFA-generating bacteria and is associated with reduced lung function [132–134]. In accor-
dance, increased dietary fiber intake positively correlated with pulmonary function and is
associated with an up to 50% reduction in respiratory-related death rate [133,135–137]. It
was suggested that the observed beneficial effects may be at least partly due to the biological
functions of SCFAs such as acetate, propionate and butyrate. SCFAs exert important local
physiological functions by stimulating intestinal epithelial cell turnover, promoting intesti-
nal barrier integrity and serving as a vital energy source for colonocytes [138]. Furthermore,
SCFAs exhibit anti-inflammatory and immunomodulatory functions either locally or at
peripheral sites through activation of the G protein-coupled receptors (GPCRs) on epithelial
cells and/or immune cells [139–141]. Several studies using mouse models showed that
SCFAs promote the development and differentiation of extrathymic regulatory T cells
(Tregs) [100,142–144] and can restrain allergic airway inflammation by impairing dendritic
cells to drive TH2 effector functions and suppressing group 2 innate lymphoid cell (ILC2)
activity [76,78,86]. In addition, SCFAs can promote lung immunity by modulating immune
cell hematopoiesis in the bone marrow [78,115,117]. Immunomodulatory mechanisms of
SCFAs in animal models are described in more detail in Table 1. Propionate and acetate
are mainly produced by members of the Bacteroidetes, and Actinobacteria phyla such as
Bacteroides spp. and Bifidobacterium spp., respectively, which can in addition to SCFAs,
also generate lactate during dietary fiber fermentation [145,146]. The mucin-degrading
bacteria Akkermansia muciniphila (Verrucomicrobia phylum) also produces both propionate
and acetate [147] and Firmicutes, particularly Faecalibacterium prausnitzii (clostridial cluster
IV), Eubacterium rectale and Roseburia spp. are the main butyrate-producing bacteria in the
human intestine [146,148]. Anaerostipes spp. (clostridial cluster XIVa) and other colonic
acetate- and lactate-utilizers can additionally generate butyrate through cross-feeding inter-
actions [148]. Humans and mice consuming a diet high in fiber exhibited an elevated ratio
of beneficial SCFA-producing Bacteroidetes to Firmicutes in the gut, which corresponded
to higher local and systemic SCFA concentrations [78,100].

Consumption of a high-fiber diet or SCFA supplementation can ameliorate airway
inflammation and improve lung function in asthmatic subjects and was protective in animal
models of allergic airway inflammation [76,78,86,98,100,101,149,150]. Similar observations
were made in COPD patients and animal models of COPD where high fiber intake was
associated with a significant increase in lung function and decrease in COPD development
and progression [105,106,151–155]. Other studies demonstrated that dietary fiber and
SCFA supplementation was protective in experimental infection models of influenza and
RSV as well as bacterial pneumonia and secondary bacterial infections following viral
infections [83,117,156–158]. Direct evidence that the protective effects observed stem from
SCFAs was obtained in studies using SCFA receptor-deficient mice which are more suscep-
tible to bacterial pneumonia as well as respiratory viral infections, and exhibit exacerbated
allergic airway inflammation in asthma models. However, the precise molecular mecha-
nisms on how SCFAs mediate their beneficial effects are not yet fully understood. Dietary
intake of fermentable fibers to promote the growth and activity of SCFA-producing gut
bacteria and thereby remotely modulate lung immunity is a relatively easy and promising
strategy to limit the onset and progression of chronic airway disease and may also confer
protection against respiratory bacterial and viral infections. Clinical trials are underway to
assess the potential effect of soluble dietary intake of inulin in COPD patients [159], and
supplementation of asthmatics with a prebiotic that selectively promotes the growth and
development of Bifidobacteria [160].
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Table 1. Role of commensal-derived metabolites in mouse models of infections and chronic lung disease.

Metabolite Disease Model Immunomodulatory Effect References

DAT IAV
• type I IFN signaling ↑
• antiviral phagocyte response ↑ [79]

acetate RSV
• lung epithelial IFN-β ↑
• antiviral activity ↑ [83]

acetate IAV +
S. pneumoniae

• AM effector functions ↑
• S. pneumoniae host defense

following IAV infection ↑
[65]

acetate S. pneumoniae
• AM IL-1β and nitric oxide ↑
• AM bactericidal activity ↑ [161]

acetate K. pneumoniae

• macrophage and neutrophil

phagocytosis ↑
• bacterial burden / lung inflammation ↓

[158]

butyrate IAV

• virus-specific CD8+ T cell response ↑
• Ly6C- monocyte hematopoiesis and

differentiation to alternatively activated lung
macrophages ↑
• neutrophil response ↓

[117]

butyrate heat exposure +
IAV

• lung IL-1β ↑
• restores virus-specific CD8+ T cell and

antibody responses upon heat exposure
[156]

butyrate K. pneumoniae
• HDAC ↓
• IL-10 ↑
• lung inflammation and pathology ↓

[157]

acetate HDM

• HDAC ↓
• FoxP3 promoter acetylation and

regulatory T cell function ↑
• allergic airway disease ↓

[100]

butyrate
acetate

propionate

vancomycin +
OVA, papain

• lung DC migration to mLN ↓
• antibiotic-induced exacerbated
allergic response ↓

[76]

butyrate OVA
• eosinophil apoptosis ↑
• lung eosinophil recruitment ↓
• lung inflammation / eosinophilia ↓

[98]

propionate HDM

• DC precursor hematopoiesis ↑
• seeding of lung with DCs exhibiting

low Th2 polarization capacity ↑
• allergic lung inflammation ↓

[78]

butyrate IL-33 • lung ILC2 function ↓
• airway hyperreactivity ↓ [86]

Abbreviations: DAT, desaminotyrosine; IAV, influenza A virus; RSV, respiratory syncytial virus; HDAC, histone
deacetylase; HDM, house dust mite; OVA, ovalbumin; DC, dendritic cell; mLN, mediastinal lymph node; ILC2,
group 2 innate lymphoid cell.



Antibiotics 2022, 11, 474 9 of 25

3.1.2. Fecal Microbiota Transplantation and Probiotics

Fecal microbiota transplantation (FMT) from healthy donors has been successfully
used to treat patients with recurrent intestinal Clostridioides difficile infections and induce
remission in ulcerative colitis patients [162]. These initial successes have sparked interest
for the potential application of FMTs in extraintestinal diseases that are associated with
gut dysbiosis including respiratory conditions. However, besides a proposed clinical trial
administering FMTs to SARS-CoV-2 patients to potentially attenuate cytokine storm and
pulmonary inflammation, the efficacy of FMTs for prevention or treatment of respiratory
conditions has not yet been addressed in the clinic [163]. After fecal transplants contami-
nated with drug-resistant Escherichia coli resulted in the severe illness and death of clinical
trial participants, safety concerns to enhance the donor screening process were voiced [164].
This incident and other safety issues have led efforts to focus on the development of defined
and well-characterized formulations of fecal-derived live bacterial consortia or the use of
known probiotic strains.

The ISAAP defines probiotics are “live microorganisms that, when administered in
adequate amounts, confer a health benefit on the host” [165]. Probiotics are one of the
most commonly consumed dietary supplements in the United States despite their efficacy
being highly debated for many indications including respiratory diseases, and no probiotic
has yet been approved as a live biotherapeutic agent [166]. However, favorable effects
on the outcomes of respiratory infections and chronic airway disease were reported in
some studies, mainly using animal models and in the context of upper respiratory tract
infections in humans [167]. Due to their critical roles in immune maturation, their ability
to generate bioactive metabolites and their critical role in the maintenance of intestinal
barrier function and homeostasis, the most commonly used probiotics for preventive and
therapeutic purposes are members of the Bifidobacterium (e.g., B. breve, B. animalis, B. longum)
and Lactobacillus (e.g., L. rhamnosus GG, L. paracasei, L. casei, L. plantarum) genera, and to
a lesser extent Streptococcus thermophilus and Enterococcus faecium [168]. Gut dysbiosis in
early life characterized by reduced abundance and/or changes in in the composition of
gut Bifidobacteria and Lactobacilli has been associated with allergic sensitization and the
development of asthma [96,169]. Several studies suggest that preventive and therapeutic
administration of probiotics may confer protection in animal models of allergic asthma.
Mice that were supplemented with certain strains of Lactobacilli (e.g., L. rhamnosus GG,
L. reuteri, L. johnsonii), Bifidobacteria (e.g., B. lactis, B. breve) or Enterococcus faecalis exhibited
dampened allergic airway inflammation and airway hyperreactivity as well as decreased
expression of pulmonary type 2 cytokines (IL-4, IL-5, IL-13), while anti-inflammatory
cytokines such as TGF-β and regulatory T cells were induced [170–175]. Although these
studies point to a potential protective role of probiotics, human studies testing the efficacy
of supplementation with probiotics to prevent or treat asthma are so far inconclusive.
Similar observations were made in cigarette smoke-induced COPD animal models where
therapeutic and preventive dietary supplementation with L. rhamnosus or colonization
with the commensal Parabacteroides goldsteinii ameliorated pulmonary inflammation and
pathology [176,177]. However, there is no clinical evidence of a beneficial effect of probiotics
on the onset or progression of COPD in humans.

The use of probiotics to prevent viral and bacterial lower respiratory tract infections
yielded promising results in animal models. Oral supplementation or intranasal adminis-
tration of the probiotics Lactobacilli or Bifidobacteria was protective in mouse models of
influenza virus, RSV and mouse pneumonia virus infection [173,178–180]. Furthermore,
dietary supplementation with L. casei, L. rhamnosus or B. longum enhanced lung clearance
of P. aeruginosa, S. pneumoniae or K. pneumoniae, respectively, and ameliorated pulmonary
inflammation [181–183]. Several clinical studies assessed whether dietary supplementation
with probiotics leads to a reduction in the incidence and duration of acute respiratory tract
infections. Meta-analyses showed a modest effect in reducing the duration and incidence of
upper respiratory tract infections compared to placebo controls [184]. Efficacy of probiotics
in specifically preventing lower respiratory tract infections has only been addressed in a few
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studies, including a clinical trial in high-risk ICU patients where daily oropharyngeal and
gastric administration of L. rhamnosus significantly reduced the incidence of VAP compared
to a placebo control [185]. In addition, COVID-19 patients orally receiving a multi-strain
probiotic cocktail exhibited a decreased risk of developing respiratory failure compared
to standard of care alone [186]. While these data are promising, further clinical evidence
is needed to support the preventive or therapeutic use of probiotics in lower respiratory
tract disease.

Besides the increasing the abundance of beneficial bacteria, dysbiosis can be coun-
teracted by limiting the outgrowth of pathogenic bacteria. One potential approach to
attack respiratory pathogens is the probiotic use of predatory bacteria from the genera
Bdellovibrio spp. or Micavibrio spp. which specifically target and prey on other Gram-
negative bacteria. Bdellovibrio attach to their prey, hydrolyze outer cell wall components
and penetrate the periplasmic space, where they replicate and eventually burst the cell
envelope of the host bacteria to start a new life cycle [187]. Bdellovibrio exhibit a broad
host range, including major respiratory pathogens [115]. Importantly, B. bacteriovorus, the
most extensively studied bacterial predator, was able to kill planktonic cultures as well
as biofilm-embedded multidrug (MDR)- and extensively drug-resistant (XDR) clinical
isolates of the opportunistic respiratory pathogens K. pneumoniae, E. coli, Acinetobacter
baumannii, and Pseudomonas aeruginosa [188–190]. Another well-studied bacterial predator,
Micavibrio aeruginosavorus, exhibits a more narrow host range than B. bacteriovorus and
rather than invading its prey, M. aeruginosavorus attaches irreversibly to the prey cell sur-
face and feeds on it while replicating externally, ultimately resulting in the death of the
infected cells. M. aeruginosavorus shows potent in vitro killing activity when co-cultured
with the respiratory pathogens P. aeruginosa, K. pneumoniae and E. coli [187]. Importantly,
intranasal administration of both B. bacteriovorus and M. aeruginosavorus significantly re-
duced K. pneumoniae lung burden in a rat pneumonia model, had no adverse effect on
the host in rodent models, and were cleared within days by innate immune mechanisms,
encouraging their potential use to treat bacterial pneumonia in humans [191–193]. In
addition, the administration of B. bacteriovorus generally exhibits low immunogenicity in
vertebrate models due to the unique LPS composition, and no adverse effects were ob-
served upon intravenous injection, ingestion or topical application in several independent
studies [191–195]. Furthermore, B. bacteriovorus is present and abundant in the duodenum
and ileum of healthy human individuals with significantly reduced abundance in Crohn’s
disease and celiac disease patients, indicating a potential role of B. bacteriovorus in the
maintenance of intestinal homeostasis [196]. While it is well established that predatory bac-
teria exhibit potent in vitro killing of Gram-negative respiratory pathogens, and no known
adverse physiological effects were reported upon administration in animal models, further
in vivo studies addressing safety concerns and effects on the host microbiome are needed.
Predatory bacteria may also be for single use only due to the potential development of
adaptive host immune responses.

3.1.3. Postbiotics

Per ISAAP, postbiotics refer to “preparations of inanimate microorganisms and/or
their components that confers health benefits in the host” that must stem from defined
microorganisms [197]. Although they might be present in postbiotic preparations, substan-
tially purified bacterial metabolites and molecules such as SCFAs, exopolysaccharides and
proteins do not qualify as postbiotics due to the absence of cellular biomass [197]. The
most commonly used postbiotics in the context of respiratory tract diseases are mixtures of
whole and/or fractionated bacterial lysates of common respiratory pathogens which have
been shown to reduce the frequency of acute recurrent respiratory infections [198–202].
Bacterial lysates were proposed to exert immunomodulatory functions by activating mu-
cosal dendritic cells and stimulating mucosal pathogen-specific IgA responses, however
the precise molecular mechanisms underlying their potentially beneficial clinical effects are
not understood [203]. Polyvalent bacterial lysates such as Broncho-Vaxom or Ismigen are
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currently used for prophylactic purposes in the management of respiratory tract infections
and COPD exacerbations. Modestly favorable outcomes were reported from a limited
number of clinical trials. However, due to the relatively small sample sizes of these studies
and contradictory results from similar studies, there is a clear need for more robust clinical
trials to assess the preventive or therapeutic efficacy of these postbiotics.

3.2. Prevention and Treatment of Lower Respiratory Tract Infections by Selective Depletion of
Opportunistic Bacterial Pathogens

Opportunistic respiratory pathogens including P. aeruginosa, S. aureus, K. pneumoniae,
S. pneumoniae, M. catarrhalis and H. influenzae are commonly found in the human upper
respiratory tract. While these bacteria are known to asymptomatically colonize healthy
individuals, they can cause severe lower airway infections and exacerbations in patients
suffering from chronic respiratory diseases. In addition, they are major etiological agents
of hospital-acquired pneumonia (HAP) including ventilator-associated pneumonia (VAP),
which due to their high incidence and mortality rates are a predominant cause of death
among hospital infections. Treatment of these infections is further complicated by multi-
drug resistant bacterial strains that are commonly isolated from the lower airways of
HAP and VAP patients. Therefore, selective depletion of these bacteria in at-risk patient
populations as well as therapeutic intervention by antibiotic-independent strategies to
prevent and control potentially detrimental lung infections represents a critical area of
research for the future management of multi-drug resistant lower airway infections.

3.2.1. Antibacterial Monoclonal Antibodies

The development and use of monoclonal human antibodies (mAbs) that target and
inactivate bacteria, their virulence factors and/or toxins is widely considered as one of
the most promising antibiotic-independent approaches to combat infectious diseases [204].
Antibacterial mAbs exhibit several advantages over the use of conventional antibiotics.
Due to their narrow target specificity, they exhibit no known adverse effects on the host
microbiota and are less likely to induce widespread resistance [205]. Recent advances
in human mAb technologies now allow for the design of polyvalent mAbs that can ex-
ert multiple mechanisms of action, including inactivation of virulence factors as well as
complement the deposition and subsequent innate immune activation to further aid in
bacterial clearance [206]. With a general half-life of several weeks, which can be further
extended by introducing amino-acid substitutions in the Fc region to increase the binding
to the neonatal Fc receptor, a single injection of a human mAb may be sufficient to provide
protection against infection as opposed to multiple regimens of antibiotics a day [207–209].
While only three antibacterial antibodies targeting the exotoxins of Clostridioides difficile,
Clostridium botulinum or Bacillus anthracis have been approved for clinical use so far, multi-
ple mAbs for the management of lower respiratory tract infections are currently in clinical
development [210,211]. S. aureus and P. aeruginosa are the leading causes of bacterial
nosocomial pneumonia, including VAP, and are associated with significant mortality and
morbidity [212–214]. Colonization of the upper airways with S. aureus or P. aeruginosa
is a known risk factor for the development of VAP, and modulation of oropharyngeal
colonization was shown to be effective in preventing VAP development [215,216]. Due
to the high frequency of multi-drug resistant isolates, both pathogens are prime targets
for the development of monoclonal antibodies to treat and prevent respiratory infections.
Gremubamab (MEDI3902; AstraZeneca) is a bispecific human IgG1 mAb that selectively
binds to the P. aeruginosa exopolysaccharide Psl and the type 3 secretion system (T3SS)
protein PcrV, both highly conserved virulence factors, and was developed to prevent noso-
comial P. aeruginosa pneumonia in high-risk patients [206,217,218]. Binding to Psl promotes
complement fixation and opsonophagocytic bacterial killing by neutrophils as well as
preventing the attachment of P. aeruginosa to airway epithelial cells whereas targeting
PcrV inactivates the T3SS and enhances intracellular killing bacteria following phagocyto-
sis [206,219]. Prophylactic as well as therapeutic administration of Gremubamab proved
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highly protective in rodent models of acute P. aeruginosa pneumonia as well as a rabbit
model of VAP [206,220–222]. The effectiveness of MEDI3902 as a preventive measure
for VAP in adult P. aeruginosa-colonized ICU patients was assessed in a phase 2 proof-of-
concept study. Although the primary efficacy endpoint of reduction in Pa VAP incidence
was not met in the total study population, risk reduction was observed in patients with
lower baseline inflammation [223]. In addition to Gremubamab, the monoclonal human
IgM antibody panobacumab (AR-101, Aerumab; Aridis Pharmaceuticals) is in clinical
development for counteracting P. aeruginosa HAP. Panobacumab targets lipopolysaccharide
from the highly prevalent P. aeruginosa serotype O11, which accounts for more than 20% of
all nosocomial P. aeruginosa pneumonia cases [224]. Binding of Panobacumab to surface LPS
results in complement-mediated clearance of P. aeruginosa by host phagocytes in vitro and
the therapeutic administration of Panobacumab reduced bacterial burden and alleviated
lung inflammation in a mouse model of acute P. aeruginosa lung infection [225,226]. Fol-
lowing promising results from a phase IIa study, Panobacumab is currently in late clinical
development as an adjunctive therapy to standard of care antibiotics for hospital-acquired
pneumonia [227].

Two antibodies are currently under clinical investigation for the prevention and treat-
ment of nosocomial S. aureus pneumonia. Suvratoxumab (MEDI4893; AstraZeneca, outli-
censed to Aridis Pharmaceuticals) specifically binds to and neutralizes the pore-forming
alpha-toxin of S. aureus, a highly conserved key virulence factor which is expressed in
a vast majority of clinical respiratory S. aureus isolates [228]. Suvratoxumab was shown
to confer potent protection in animal models of lethal S. aureus pneumonia, and no se-
vere adverse events were reported upon administration in healthy human adults in a
phase 1 placebo-controlled trial [207,229,230]. Efficacy and safety of Suvratoxumab for
the prophylaxis of S. aureus VAP in mechanically ventilated ICU patients colonized with
S. aureus were further assessed in a phase 2 trial. While the study failed to meet its pri-
mary endpoint of a 50% reduction in S. aureus pneumonia in the Suvratoxumab versus
the placebo control group, subgroup analyses of patients younger than 65 years showed
significant reduction (47%) in the Suvratoxumab-treated group and an associated reduction
in the duration of hospitalization and ICU stay [231,232]. A planned phase 3 study will
further assess the efficacy of Suvratoxumab in VAP prevention in under 65 year old pa-
tients. Another human monoclonal antibody targeting S. aureus alpha-toxin, Tosatoxumab
(AR-301, Salvecin; Aridis Pharmaceuticals), is currently in phase 3 clinical development
for adjunctive therapeutic treatment of S. aureus VAP in combination with standard of care
antibiotics [233]. In addition, several antibacterial human mAbs for the potential treatment
of respiratory disease are in pre-clinical and early clinical development including AR-401
(Aridis Pharmaceuticals) and ASN-5 (Arsanis, outlicensed to BB200) targeting A. baumannii
and K. pneumoniae, respectively [208].

3.2.2. Bacteriophages and Phage Lysins

Bacteriophages are viruses that specifically infect bacteria by attaching to bacterial
target cells, penetrating the bacterial cell membrane and injecting their genetic material
into the host cytoplasm. Obligately lytic phages, which are predominantly used for phage-
based therapeutics, then hijack the host’s transcriptional and translational machinery
and replicate intracellularly. The newly-assembled virions mature and, after reaching
a critical mass, phage-derived lytic enzymes (lysins), dissolve the bacterial cell wall to
release the phage progeny into the environment [234]. Bacteriophages have been used as
early as 1919 to treat bacterial dysentery but have been widely disregarded in Western
medicine upon the discovery of antibiotics in the 1940s [234]. Meanwhile, phage-based
therapeutics persisted in Eastern Europe and the former Soviet Union to treat, among others,
respiratory infections with S. aureus, P. aeruginosa, K. pneumoniae and E. coli [234,235]. With
the increase in drug-resistant bacterial isolates and the search for alternative intervention
strategies, phage therapy has received renewed clinical interest in Western countries to
treat respiratory infections with MDR bacterial pathogens. A clear advantage of using
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phages over antibiotics is their defined bacterial host range which allows them to selectively
eradicate target bacteria without adversely affecting the host microbiota. In addition, their
ability to penetrate and disrupt bacterial biofilms, as well as their compatibility with
antibiotics and low immunogenicity renders them an attractive alternative to traditional
antibiotics. Furthermore, phages have been shown to restore antibiotic-sensitivity to MDR
bacteria and features of natural phages such as breadth of strain coverage and resistance
development can be modified by genetic engineering to generate highly versatile synthetic
phages [236]. Furthermore, nonlytic genetically engineered bacteriophages as a vehicle
to selectively deliver genetic material encoding bactericidal proteins are currently in pre-
clinical development by Phico Therapeutics to target P. aeruginosa-mediated VAP (SASPject
PT3.9), S. aureus (SASPject PT1.2), K. pneumonia (SASPject PT4) and E. coli (SASPject PT5).
Phage formulations exhibited potent efficacy in the treatment of P. aeruginosa, K. pneumoniae,
A. baumannii or E. coli and in mouse models of lung infection and are currently being
evaluated in the clinic for the treatment of human respiratory infections [237–246]. AP-
PA01 (Armata Pharmaceuticals), a cocktail of four obligately lytic bacteriophages targeting
P. aeruginosa respiratory infections, was used under the FDA expanded access program
to successfully treat a CF patient suffering from an MDR P. aeruginosa infection as well
as a patient with ventilator-associated pneumonia and empyema [247,248]. A second-
generation phage cocktail, AP-PA02 (Armata Pharmaceuticals), with improved host range
and increased potency, is currently being evaluated for safety, tolerability and preliminary
efficacy in inhaled form in a Phase 1b/2a study (SWARM-Pa) in individuals with chronic
P. aeruginosa lung infections and CF [249].

Besides using whole bacteriophage preparations, the use of phage-derived endolysins
or engineered lysins was suggested to combat bacterial infections. Lysins exhibit several
advantages over antibiotics and whole phage preparations, as resistance is unlikely to
develop due to the conserved nature of their cell wall targets. Purified phage-derived and
bioengineered chimeric endolysins show potent in vitro bactericidal activity against Gram-
positive as well as Gram-negative respiratory pathogens including planktonic cultures and
biofilms of S. pneumoniae, S. aureus, P. aeruginosa and K. pneumoniae [250]. Importantly, ad-
ministration of phage endolysins drastically reduced S. pneumoniae titers in a mouse model
of nasopharyngeal colonization and protected mice from fatal pneumococcal pneumonia
or P. aeruginosa lung infection, respectively, underlining their potential to prevent and treat
respiratory bacterial infections [177,251,252].

4. Conclusions and Future Outlook

Multi-drug resistant bacterial infections are on the rise and it is predicted that 10 mil-
lion people will succumb to untreatable infections annually by 2050, estimated to surpass
cancer and cardiovascular diseases combined [4]. In 2019 alone, 1.27 million deaths world-
wide were directly attributable to infections with MDR pathogens, while 4.95 million deaths
were associated with infections [253]. With 400,000 directly attributable deaths globally,
lower respiratory infections are the leading cause of death among all MDR infections and
are often associated with the priority pathogens S. aureus, K. pneumoniae, S. pneumoniae,
A. baumannii and P. aeruginosa. Meanwhile, hundreds of millions of individuals globally
suffer from chronic lung disease and respiratory viral infections that are becoming increas-
ingly difficult to manage due to the emergence of novel viral variants. Hence, there is a
critical need for novel therapeutic and preventive strategies, and due to the key role of lung
and gut dysbiosis in lower airway disease, modulation of the microbiome has emerged as
one potential intervention avenue.

Dietary supplementation with prebiotics, probiotics or postbiotics to deliberately alter
the gut-lung axis would be a relatively simple approach for managing lower airway disease.
Nevertheless, apart from a clear correlation of increased dietary fiber intake with lung
health, there is limited evidence that intake of probiotics or postbiotics results in clinical
improvement of lower respiratory conditions. This may at least in part be due to the high
interindividual variability in response to colonization with probiotic strains where some
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individuals were shown to be more permissive, while others are resistant and host pathways
were differentially affected upon colonization [254–256]. In addition, the effects of probiotics
are generally transient, even in permissive individuals and only observed during or shortly
after consumption [254,257–261]. The use of microbiome-specific tailored probiotics or
purified microbial products and metabolites, such as SCFAs, could potentially overcome
these issues. However, while SCFAs and SCFA receptor agonists were successfully used to
treat and prevent lower respiratory infections and allergic airway inflammation in animal
models, no efficacy was observed in the clinic so far [65,76,78,83,86,98,100,117,156,158,161].

Future research to better understand the complex host-microbiome crosstalk as well
as interactions between individual members of the microbiota are needed and will aid
in developing personalized strategies to modulate the microbiota in individual patients
in order to achieve the highest possible treatment outcome. Promising results have been
obtained from using antibacterial antibodies or bacteriophages in the prevention and
treatment of nosocomial respiratory tract infections with opportunistic priority pathogens
in at-risk patient populations. Further clinical evaluation is currently underway, and
with innovations in phage and mAb technologies such as the generation of multivalent
molecules with different modes of action and potential combined approaches of several
mAbs to target multiple respiratory pathogens, they represent a viable and urgently needed
alternative to current antibiotics [208,217].
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