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Abstract

Alzheimer's disease (AD) is the most common type of dementia. The exact cause and treatment of the disease are still
unknown. Different neuroimaging modalities, such as magnetic resonance imaging (MRI), positron emission
tomography, and single-photon emission computed tomography, have played a significant role in the study of AD.
However, the effective diagnosis of AD, as well as mild cognitive impairment (MCI), has recently drawn large attention.
Various technological advancements, such as robots, global positioning system technology, sensors, and machine
learning (ML) algorithms, have helped improve the diagnostic process of AD. This study aimed to determine the
influence of implementing different ML classifiers in MRI and analyze the use of support vector machines with various
multimodal scans for classifying patients with AD/MCI and healthy controls. Conclusions have been drawn in terms of
employing different classifier techniques and presenting the optimal multimodal paradigm for the classification of AD.
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Introduction

Modern technology has modified civilization in many alter-
native ways. Humans have nearly always been on a path of
progression; however, due to technology, the twentieth and
twenty-first centuries have seen many advancements that
revolutionized individual's work and living areas [1-3]. One
of the spheres where technology has shown great develop-
ment is in the field of machine learning (ML) [4-7]. ML is
not just one technique or technology; however, it is a field
of procedure science that includes various technologies to
create systems that may learn from the information in their
setting and then make predictions and perform actions
once confronted with a replacement scenario [8—10]. ML is
powerfully grounded in trendy arithmetic, drawing on ex-
perience in performing analysis, applied mathematics, set
theory, chaos and dynamic systems, and calculus of varia-
tions among different areas [8, 11, 12].
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One of the areas where ML is most important is
healthcare. Healthcare is a part of life that we all con-
sider to be something we are entitled to [13]. Healthcare
is the diagnosis, treatment, prevention, and management
of disease, illness, and injury and, therefore, the preser-
vation of physical and mental well-being in humans.
Mental health is a satisfactory functioning level of emo-
tional and behavioral adjustments or absence of mental
illness. Mental illness is a mental pattern that causes
vital distress or impairment of personal functioning.
Such features may be persistent, reversible, and remit-
ting or occur as a single episode. Many disorders present
signs and symptoms that vary widely between specific
disorders. There is a large type of disturbance, and one
of them is a chronic neurodegenerative disorder that
typically starts slowly and worsens gradually, which is
known as Alzheimer’s disease (AD).

AD is a general type of neurological disorder identified
by continuous memory and cognitive decline. The dis-
ease is related to amyloid depositions and hyperpho-
sphorylation of structural proteins that destroy the
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metabolic activity and lead to structural alterations in
the brain [14]. Approximately 5.7 million American indi-
viduals have AD, and in 2015, AD was ranked as the
sixth leading cause of death in the United States. In
2017, more than 16 million family members, as well as
other unpaid caregivers, provided approximately 18.4
billion hours of care to patients with AD or other de-
mentias. This care is valued at more than $232 billion
and contributes as a factor of extended risk of emotional
anxiety and negative mental and physical health issues of
caregivers. However, a mathematical model estimates
that early and accurate diagnosis of AD could help save
up to $7.9 trillion in medical and care expenses [15]. Al-
though, the indispensable treatment for AD has not been
established yet, some medical and non-medical ap-
proaches can be used to reduce the developing symp-
toms based on the initial diagnosis of AD [16, 17]. The
detection stage includes structural and functional neuro-
imaging techniques that allow interpretation of brain
pathologies. One such technique is magnetic resonance
imaging (MRI), which includes the utilization of strong
magnetic fields and radio waves. Structural MRI (sMRI)
is used to examine the anatomical irregularities of the
brain that are induced by a traumatic event. In contrast,
functional MRI (fMRI) is used to obtain a functional
image of the brain based on blood flow and oxygen level.
Its fundamental use is to collect pertinent data on the
utilization of oxygen by the tissues. fMRI can trace the
image of the brain’s functioning area by selecting the in-
ordinate blood referred to as blood oxygen level depend-
ence. Briefly, MRI provides anatomical structure of the
brain, while fMRI provides metabolic performance of the
brain. Single-photon emission computed tomography
(SPECT) is one of the functional brain imaging tech-
niques that provide knowledge on the regional cerebral
blood flow (rCBF) and recognizes pathologic deviations
in internal tissues and organs before the development of
observable anatomical and structural changes [16, 18].
Positron emission tomography (PET) provides the rate
of glucose metabolism using the tracer 18F fluorodeoxy-
glucose. The bilateral regions in the temporal and par-
ietal lobes of the brain, posterior cingulate gyri, and
precunei along with the frontal cortex and whole brain
show a decrement in the rate of glucose metabolism in
patients critically affected by AD [16, 19]. ML techniques
are used in the identification of complex neuroimaging
data as either the presence or absence of the disease in
various neuropsychiatric disorders [20, 21]. Neural net-
work, support vector machine (SVM), k-nearest neigh-
bor (KNN) algorithm, ensemble, and regression models
are the various ML techniques that are used to distin-
guish patients with AD and mild cognitive impairment
(MCI) and healthy controls (HCs) [22-24]. Previously,
there have been numerous efforts to evaluate the result
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using a monoclassifier, but due to some factors, satisfac-
tory accuracy was not obtained, so various experiments
were performed to evaluate the accuracy using a multi-
classifier or ensemble method of the classifier [22, 25].

SVM is a multivariate, supervised data classification
approach. Its main purpose is to provide the optimal hy-
perplane that divides data points of one class from an-
other class [20, 26, 27].

The utilization of SVM techniques in neuroimaging
scans has depicted the potential to predict future cogni-
tive deterioration and transformation from MCI to AD
[20, 28]. It can conceivably be employed in multimodal
neuroimaging scans to improve the accuracy of AD diag-
nosis [20, 29, 30].

KNN is a nonparametric, lazy learning and feature
similarity-based algorithm. It is an efficient algorithm for
pattern recognition. It is a simple classifier, where data
points are categorized based on the class of their nearest
neighbor. KNN could probably be a good choice for a
classification study where databases of high volume are
used. Generally, medical databases naturally have a high
volume; thus, KNN can effectively help predict the class of
a new sample point. Studies have shown that the novel di-
mensionality reduction-based KNN classification algo-
rithm outperforms the existing probabilistic neural
network scheme in terms of the high average accuracy,
sensitivity, specificity, precision, recall, and Jaccard and
Dice coefficients and reduced data dimensionality and
computational complexity [31].

The state-of-the-art ML approach of deep learning has
exhibited notable execution over traditional ML approaches
in classifying complex structures in complicated high-
dimensional data. It is a promising diagnostic classification
method for AD using multimodal neuroimaging data.
Moreover, when neuroimaging data are limited, hybrid
methods using deep learning approaches for feature extrac-
tion can yield better AD classification performance [32].

This study aimed to present the effects of using various
technological advancements on AD diagnosis and assist-
ance to patients with AD. The main focus of this study was
to compare the accuracies of different ML classifier algo-
rithms when applied to MRI scans for AD classification
and further examine the diagnostic efficiency of SVM in
distinguishing patients with AD from HCs based on differ-
ent multimodal imaging scans, thus identifying the optimal
combination of imaging modalities. This study also reviews
two distinct case studies on AD diagnosis using ML tech-
niques. The first case study depicts the significance of KNN
and SVM classifiers with MRI scans, whereas the second
case study shows the utilization of SVM classifiers in MRI
and FDG-PET/rCBE-SPECT multimodal paradigm. Fur-
thermore, the challenges and future scope of using such
techniques have been discussed. Relevant conclusions have
been made regarding applying different ML classifier
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techniques and presenting the optimal multimodal para-
digm for the classification of AD.

Impacts of technology in assisting patients with
AD and AD diagnosis

Technology has various potential applications in the
treatment and assistance of patients with AD. These in-
clude the socially assistive robots (SARs), global posi-
tioning system (GPS)-based tracking of patients, use of
sensors and wearables, ML algorithms in the detection
and diagnosis of AD [33, 34].

Traditionally, in the absence of technological methods,
individuals with AD were cared for by their family mem-
bers. Reviews show that 68% of caregivers of patients
with dementia have burden and stress in the procedure
of caregiving and 65% develop symptoms of depression.
Alternatives to augment care with the use of robots can
help reduce this stress. There are SARs: Robots that are
trained to assist patients with AD by the means of social
interactions are used [35, 36], and the rehabilitation
process that they follow involves the crucial factor of
assessing the patient’s movement rate and intensity, as-
sociated with their involvement with the robots [35, 37—
39]. Besides SARs, there are some humanoid robots that
have activity monitoring functions, which learn by
matching algorithmic parameters with a gesture viewed
through its camera and repeatedly executed by different
persons to permit variations. Aberrations from the set
parameters can hence be identified as abnormal, and sig-
nals are issued. The robots are trained to follow a tech-
nique in which they detect whether a person forgets to
take their medication at the prescribed time and thus
perform necessary actions, such as investigating their
state of current mental state, generating necessary alerts
and reminders to the patient or even notifying relatives
about the patient’s condition in case of danger. Despite
the potential advantages that the robots can serve to as-
sist and help alleviate the problems related to patients
with AD, it has several implementations and ethical limi-
tations in its use. The major barriers pertaining to the
adoption of SARs can be an inconsistency between the
requirements and solutions provided by the robots, some
factors related to service and usability, and lack of famil-
iarity with technology [40]. The reason behind the reluc-
tance toward the use of humanoid robots in the care of
elderly patients is the robot appearance [41-43]. Other
common factors that hinder the implementation of ro-
bots is the area that it occupies due to the size of its sys-
tem [44, 45], robot bearing an adverse portrayal of
proposed users because of a stigmatizing aesthetic [46,
47], and some safety issues, such as lack of faith in the
robot [44]. Six chief ethical issues related to the use of
robots in assisting elderly individuals include (1) decep-
tion and infantilization; (2) loss of individual freedom;
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(3) situations in which elderly individuals should be per-
mitted to manage robots; (4) likely decrease in the dur-
ation of human associations; (5) increase in the feelings
of objectification and lack of control; and (6) loss of
privacy [48].

Disorientation and wandering are the most common
traits shown by an individual with memory and cognitive
impairment. A patient with AD may not recognize their
location and identity or the time and date. Presently, a
technology known as GPS is used to accumulate data on
the spatial motion of individuals. The primary function of
the GPS receiver is to receive the signal that is transmitted
by the GPS, which is used to determine the exact position
by the amalgamation of four different signals from the sat-
ellite [49]. It tracks the patient’s regular routes, character-
ized by frequent destinations, in a graph form. Then, a
developed algorithm studies the deviations from usual
paths and sends out alerts to help the user get back on
track. The major factor that limits the use of GPS technol-
ogy in assisting patients with AD is the accuracy that it
provides. The GPS signals weaken and are distorted when
some obstacles such as walls or buildings come in its path.
This even makes the GPS incapable of indoor positioning
[50]. Additionally, patients with advanced dementia will
be incapable of remembering to carry the monitoring de-
vice or handle it in case it is misplaced [51].

Apart from these, a technology powerful in communica-
tion and computational assistance is used to detect psycho-
logical alterations and psychomotor agitation using
portable devices, such as wearable individual monitoring
systems. A notable evolution has been found in the field of
wearable sensors, which works on the mechanisms that in-
tegrate the sensors with wireless communication, thereby
integrating the sensors in tissues [52]. Before these acquired
signals can be employed in the detection of psychomotor
agitation, they need to be preprocessed to remove unneces-
sary disturbances [52]. This primarily necessitates the use
of ML. Feature selection is performed on the acquired sig-
nals instead of using the raw signals by utilizing classifiers,
such as Naive Bayes, decision trees, discriminant analysis,
SVMs, and KNN. To detect or record abnormal activities
of patients with AD, an integrated technique of wearable
systems, sensors, and ML that reduce the number of fea-
tures that are extracted from the acquired signals can be
employed. However, wearable technology alone shows bar-
riers in application with product and design-related issues.
Capturing early-stage activities becomes essential for devel-
opers to address these issues. Other factors that limit the
use of wearables include the need to clean and maintain
the devices regularly and replacement of the batteries at ap-
propriate periods [51].

However, the barriers shown by various technologies
can be overcome using ML techniques. AD demands an
early and efficient diagnostic process. This can easily be
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facilitated using ML classifiers. These classifiers follow
effective and powerful algorithms that work on the
principle of learning. Contrary to other technologies,
ML provides assistance and treatment of AD with ease-
of-use and ensures good accuracy results. These results
are reliable and secure. The chief barrier regarding the
security and privacy of the patients that existed in the
use of other technologies is removed by the introduction
of ML techniques in AD diagnosis and treatment.

ML classifiers, such as SVM, KNN, and Naive Bayes
classifiers, can also be employed to provide optimal AD
diagnosis results by combining neurofunctional and neu-
rostructural scans such as MRI, PET, SPECT, and cere-
brospinal fluid (CSF) analysis in different combinations.

Comparing the use of various ML classifiers in the
diagnosis using MRI

Zhou et al. [53] recommended the combination of MRI
and neuropsychological tests and the mini-mental state
examination (MMSE) in the classification of AD using an
SVM. The study consisted of 59 patients with AD, 127 cog-
nitively normal (CN) individuals, 67 patients with amnestic
MCIL, and 56 patients with nonamnestic MCIL. MMSE
scores play a vital role in discriminating patients with AD
from normal individuals. Image analysis is conducted using
FreeSurfer to produce volumetric variables. The study was
twofold; that is, the data were divided into two parts: one
part for training and another part for testing. To limit the
error percentage in detecting the accuracy of the proposed
method, it was implemented 50 times, and the overall aver-
age accuracy was calculated for the accurate result. An
SVM classifier was used in the study along with kernel
function to build a maximum margin classifier. The com-
bination of the MMSE score and volumetric MR images
shows an improvement of 10% in the accuracy rate, and the
analysis displayed an accuracy of 92.4%.

Zhou et al. [54] suggested a method for classification
of AD from the HCs based on the MR images using the
Naive Bayes classifier by selecting wavelet entropy as the
selected feature. Wavelet transform is a function that
aimed to represent the image into multiple scales, such
as one and two dimensions by filtering the original MR
images and representing the image along the x and y
orientation. The wavelet transform is used in each di-
mension to obtain the detailed segments of the MR im-
ages. A total of 64 subjects (18 HCs, 46 patients with
AD) underwent T2 MRI for the classification method-
ology. Thus, the detection rates in the classification of
patients with AD and HCs was 92.60%. Although the
flaw of the proposed model is that the interpretation of
the wavelet entropy is difficult, multidisease classification
could be one of the areas for advancement.

Belmokhtar and Benamrane [55] intended to create a
method for discriminating between AD, MCI, and CS by
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combining multiple binary SVM classifiers based on
whole-brain voxel-based morphometry analysis applied
to MR images in the OASIS database. The selection of
features is performed using the VBM technique [56]
along with the MMSE and Clinical Dementia Rating
(CDR) tests for improving the AD detection rates. More-
over, the Java Agent Development Framework is used to
decrease the classification time. To estimate the per-
formance of each binary SVM model, fivefold validation
was implemented; that is, test data were obtained from
five subjects, while training data were obtained from the
remaining 25 subjects, and finally, the average of all
SVM models was calculated as a result of 100% accuracy
for classification of patients with AD.

Ali et al. [57] suggested a novel classification technique
TANNN in MRI based on the module of preprocessing
using filtration and segmentation using content-based
image retrieval. Feature extraction is conducted by ana-
lyzing the threshold and disease classification to identify
the AD shape in MRI and classification time and accur-
acy of the different classifiers. The OASIS dataset was
obtained in the study, which consisted of 416 images
from individuals aged < 18years, for estimation and
comparison. The result of the study was that the deci-
sion tree had the best accuracy of 96.19%, but the KNN
proved to be more appropriate in terms of detection rate
and classification time. From this study, TANNN ap-
pears to be important for real-time classification because
of its high accuracy rate.

Rueda et al. [58] introduced an image analysis that is
based on selecting the salient brain patterns for classifi-
cation. This classification is not about the specific salient
points but selecting the whole region as a salient region.
This image analysis is capable of mapping any brain re-
gion that has been already associated with brain condi-
tions, which is validated using two datasets, that is, MIRI
AD and OASIS in four groups of patients with AD. The
good deed of the model is that the model can be inter-
preted as patterns are mapped into the brain images and
used to determine the significance of the selected region
for the classification of patients with AD and HCs. Sali-
ent brain patterns in the classification technique dis-
played better performance than the traditional feature-
based morphometry, and such a technique has not been
studied in characterizing and classifying patients with
AD based on MR images. The accuracies of the four
groups were 86.05%, 80.16%, 76.47%, and 70.2% for G1,
G2, G3, and G4, respectively.

Aruchamy et al. [59] proposed a two-stage method for
detection in brain MRI: the first stage involves prepro-
cessing, segmentation, and skull stripping of MR images
accompanied by the application of various fractal ana-
lysis techniques, fractal Brownian motion, box-counting
method, and differential box-counting method, and then
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one fractal analysis technique was selected based on the
results. Image preprocessing utilizes the technique con-
trast limited adaptive histogram, which intensifies the MR
images by increasing the contrast [60], which is performed
by splitting the MR image into small equal size boxes and
then performing the histogram equalization technique in
each box. The fractal analysis technique is used to differ-
entiate between normal and abnormal conditions. In the
box-counting analysis, the MR image is overlaid with
boxes, whereas, in differential analysis, the image is split
into a smaller size grid. The accuracy of box-counting
analysis was 85.287%, which is better than the differential
box-counting method accuracy of 76.725%. The fractal
Brownian motion accuracy was 88.774%, which is more
reliable than those in both analyses.

Zhang et al. [61] developed a new ML classification sys-
tem based on eigenbrain for establishing a computer-aided
diagnosis (CAD) technique for the detection of AD. First,
preprocessing was performed on the volumetric data, all
data were motion corrected, and thereafter, a 3D MR image
which was then normalized to the Talairach coordinate
space. CDR score was obtained as a label for quantifying
the intensity of the symptoms of AD [62]. In the assessment
of the patient, six different areas were selected, including
personal care, memory, home and hobbies, orientation,
community affair, judgment, and problem-solving. In the
study, the subjects with a CDR score of O were recognized
as normal controls (NCs), whereas the subjects with a CDR
score > 0 were identified as patients with AD [63]. Visual
representation of eigenbrain was utilized to differentiate be-
tween patients with AD and NC subjects. The SVM classi-
fier was employed in the study, which was trained because
of its simplicity and fast speed with the help of Sequential
Minimal Optimization [64]. Kernel function was applied
using the kernel SVMs (KSVMs), which expand the linear
SVM to a nonlinear SVM classifier to substitute the dot
product form in the SVM classifier [65]. The results
showed an accuracy of 92.36%.

Beheshti et al. [66] introduced an automatic CAD sys-
tem utilizing the sMRI data based on the feature ranking
mechanisms for the identification of AD. The selected
system consists of four stages, and the purpose is to
recognize the variations in the gray matter as the volume
of interest, and so the variations in the gray matter of
AD were compared to those of HCs with the help of a
voxel-based technique. In the second step, the voxel in-
tensity values of the volume of interest are drawn as fea-
tures. Further, in the third step, these selected features
are then ranked based on seven feature ranking
methods, namely, Gini index, mutual information, Pear-
son’s correlation coefficient, Fisher’s criterion, informa-
tion gain, statistical dependency, and t-test score. The
classification is carried out using the SVM classifier in
the last stage. For the investigation, a total of 260
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Alzheimer’s disease neuroimaging initiative (ADNI)
datasets were examined with tenfold cross-validation.
The outcome of the study was 92.48% for the classifica-
tion of AD. The result of the study shows that the exe-
cution of the utilized system is analogous to the state of
classification methods.

Salvatore et al. [67] proposed an ML technique that ex-
tracts the multivariate biomarker from the sMRI for the
classification of AD. In the study on 162 NC patients, 76
MCI patients who convert to AD within 18 months, i.e.,
MCI convert (MClc), 134 MCI patients who did not con-
vert to AD within 18 months, ie, MCI non convert
(MClnc), and 137 patients with AD were taken into con-
sideration. T1-weighted sMR images, which underwent
geometry correction and intensity correction, were ob-
tained. As a part of preprocessing by coregistration, spatial
normalization was conducted in all MR images, which in-
cluded various steps, such as image re-orientation, crop-
ping, skull stripping, and normalization. Each image was
divided into the gray matter and white matter, which were
then smoothed with the help of Gaussian kernel. The clas-
sification steps include two phases: feature extraction from
the MR images with the help of principal component Ana-
lysis amalgamated with Fisher’s discriminant ratio was ex-
ecuted in the first phase, and in the second phase, each
subject was classified based on the predictive model,
which is utilized in classifying the subjects. The imple-
mented classifier manifested an accuracy of 66% for MClc
vs MClnc, 76% for AD vs CN, and 72% for MClIc vs CN.

Westman et al. [68] exhibited a multivariate tool or-
thogonal partial least square for determining the type of
normalization, which is more suitable for different parts
of MR, to determine the best combination that yields
the highest accuracy for classifying patients with AD.
This multivariate tool was implemented on 699 subjects
(AD, 187; MCI, 287; and CTL, 225), which were ob-
tained from the ADNI database. Preprocessing of the
MR images was conducted using mean centering and
unit variance scaling, so the data are more understand-
able, and images were repositioned around the origin as
the data were three-dimensional. This multivariate tool
was able to provide 91.50% accuracy in the classification
of patients with AD and HC but 75.90% accuracy in the
classification of patients with MCI and AD. This study
also suggested that the combination of raw cortical
thickness and subcortical volumes yielded the best de-
tection accuracy rates for distinguishing patients with
AD from HCs.

Islam and Zhang [69] presented a convolutional neural
network (CNN) model and framework that classifies
three stages of AD by analyzing the MR images based on
various hyperparameters. The OASIS data of 416 sub-
jects aged between 18 and 96 years were collected to im-
plement the CNN. The model is based on the Inception-
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v4 network, which includes several convolution layers,
and the pre-processed MR images are obtained as an in-
put and passed through the stem layer from which the
data are passed to the convolution layers in the flow as
Inception-A, Reduction-A, Inception-B, Reduction-B,
Inception-C, and Reduction-C. The data of all these layers
are collected and combined and then put into the softmax
layer, which classifies the data into non-dementia and very
mild, mild, and moderate AD. The current accuracy of the
method is 73.75%, which displays better accuracy than
those of all traditional methods previously used. The pro-
posed CNN demonstrated faster performance to classify
the brain MRI for AD.

Gulhare et al. [70] proposed a deep neural network
(DNN) classification for studying the MR scans of AD,
MCI, and HC. MR images are preprocessed and seg-
mented to exclude the information that is not suitable for
better understanding and select different features from the
segmented images. Several attributes are extricated from
the image, and then DNN classification was applied to the
MR images for efficient and accurate results. The ventricle
region was selected as an attribute using the watershed
method. The DNN having several hidden layers is intro-
duced to the extracted images for classification. The study
outcomes showed that DNN displayed the highest accur-
acy of 96.6% for specific pairs of selected attributes com-
pared to 90.3% when all the attributes were selected. The
study proved the utility of the DNN classifier, which is
better than the SVM classifier [71].

Comparative study

Zhou et al. [53] used SVM for the classification com-
bined with variables affecting classification along with
the MMSE score that was selected rankwise. However,
all possible combinations of variables were not selected,
and thus a combination might be ignored, which could
have provided better results. Zhou et al. [54] used a sin-
gle wavelet entropy transform along with Naive Bayes
classifier. This proved to be slightly more accurate and
less complex than the study of Zhou et al. [53]. How-
ever, it did not prove to be powerful for multidisease
classification because the interpretation of the wavelet
transform was difficult and different brain pathologies
were considered as single abnormal.

Belmokhtar and Benamrane [55] used a binary SVM
with voxel-based morphometry and Java Agent Develop-
ment Framework to analyze the classification process
and minimize the computational time, respectively. As a
result, the accuracy obtained was 100%, but it varied ac-
cording to the change in the number of MRI datasets. In
addition to such techniques, Ali et al. [57] proposed the
use of TANNN for the microlevel classification pattern
finding. This proved to be more suitable because of its
faster execution rate, but it could be more robust if it
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had the capability of mining the different components of
the image like shape and texture. A similar pattern-
finding method was also proposed by Rueda et al. [58], in
which the bottom-up and top-down approaches were used
to extract information. However, this approach was lim-
ited to a localized difference and failed to discover a com-
plex interrelation among these local differences. In
contrast, fractal analysis proposed by Aruchamy et al. [59],
not only could find changes in the internal structure but
was also precise and time efficient. Fractal Brownian mo-
tion was more accurate than the other two fractal analysis
methods as it was measured by calculating the difference
in pixel intensity of row and column pixel pairs.

Zhou et al. [54] proposed CAD in which the eigenbrain
for the selected slice of 3D data was classified using KSVM
and particle swarm optimization for better results. How-
ever, Beheshti et al. [66] proposed an automatic CAD
using the statistical feature ranking selection that proved
to minimize the error. All of such brain pattern-finding
approaches failed to detect the spatially distributed pattern
of brain anatomy. Thus, the need for the multivariate tool
for finding the pattern was considered.

Salvatore et al. [67] and Westman et al. [68], both pro-
posed the multivariate tool. Salvatore et al. [67] ex-
tracted the spatially distributed biomarkers from the
MRI, whereas Westman et al. [68] included 259 variables
for the orthogonal partial least squares to latent struc-
tures (OPLS) analysis. The combination of regional cor-
tical thickness and cortical and subcortical volumes
proved to be more accurate.

In the last 15 years, the amount of data generated is in-
creasing exponentially, which is also known as big data.
The rise in data leads to replacement of traditional ML
algorithms with deep learning. Deep learning has taken
over the traditional ML methods because of its capability
to learn from its hidden architecture of any complexity.

Islam and Zhang [69] implemented the deep CNN model
for the classification of AD. This work could be more en-
hanced by transfer learning and exploring more hidden
convolution layers, whereas the DNN proposed by Gulhare
et al. [70] using the Niblack thresholding algorithm proved
to be more accurate, having an accuracy rate of 96.6%.

Table 1 represents a brief review of similar studies
conducted using various ML classifiers for AD diagnosis
based on MRI scans. However, using only one imaging
modality cannot serve the purpose of classification as
every modality has its own strengths and shortcomings,
and so for optimizing the models and making them
more robust, the need for multiple modalities increases.

Authors assume that SVM could be better than the
other classifiers as SVM can easily provide more reliable
search accuracy for image classification. It uses a mech-
anism known as kernels, which determine the distance
between two objects almost accurately. SVM is also
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Table 1 Use of different ML classifiers for AD diagnosis using MRI scans
Technique Classifier used Modality Data Accuracy References
Region growing Artificial neural network MRI KHMC  (100%) [72]
3D inception CNN MRI ADNI  AD/NC (93.30%) [73]
AD/MCI (86.70%)
MCI/NC (73.30%)
Fractal analysis KNN, SVM (linear), SYM MRI OASIS  SET-1: KNN (61.76%), SVM (linear) (59.41%), SVM [74]
(RBF), HLP (polynomial) (RBF) (64.71%), HLP (polynomial) (65.29%)
SET-2: KNN (72.31%), SVM (linear) (75.38%), SYM
(RBF) (76.15%), HLP (polynomial) (86.15%)
SET-3: KNN (59.00%), SVM (linear) (64.00%), SVYM
(RBF) (68.00%), HLP (polynomial) (67.50%)
Salient brain patterns SVM, NN MRI OASIS  SVM (84.21%) [75]
NN (65.78%)
K-OPLS, OPLS Multivariate data analysis ~ MRI ADNI  K-OPLS (88.70%) [76]
OPLS (88.40%)
Hippocampal shape feature SVM MRI ADNI  CASE 1 (90.40%) [77]
CASE 2 (89.40%)
CASE 3 (90.40%)
CASE 4 (93.60%)
ROI Naive Baye, SVM, KNN MRI OASIS  Naive Baye (90.00%) [78]
SVM (95.00%)
KNN (95.00%)
Hippocampus volume, tensor-based LDA MRI ADNI  HC vs AD (89.00%) [79]
morphometry, cortical thickness HC vs P-MCI (84.00%)
S-MCl vs P-MCI (68.00%)
Multivariate techniques Logistic regression MRI Self AD vs HC (83.00%) [80]
Gray-level co-occurrence matrix Adaboost, KNN MRI OASIS AD vs NC: Adaboost (100%), KNN (92.75%) [81]

AD vs MCl: Adaboost (100%), KNN (92.31%)
MCI vs NC: Adaboost (90.28%), KNN (83.33%)

robust against overfitting. It proves to be efficient in sit-
uations where the number of dimensions is higher than
the number of samples.

Comparing diagnostic efficiency of various
multimodal scans using SVM classifier

Dukart et al. [82] employed a classification algorithm
utilizing FDG-PET and MRI data for two distinctive
datasets. Two different datasets, such as Leipzig and
ADNI datasets, were obtained and then compared for
better accurate rates. Moreover, the number of subjects
of ADNI was more than Leipzig, so the number of sub-
jects was restrained to evade classification inclination to-
ward ADNI. Preprocessing of the images was performed
by incorporating PET and MRI images to a resolution of
Imm® x 1 mm?® x 1 mm®. Gaussian kernel was used to
smooth the images as a part of preprocessing, followed
by excluding the voxels in the images for obtaining the
binary mask. Finally, all images were normalized, and
SVM was applied to the modalities. Multiple modalities
displayed better accuracy rates than the single modality
for both the datasets, that is, 85.7% and 100% for ADNI
and Leipzig, respectively. Moreover, the accuracy of the
combined modality is 90% for the combined dataset of
ADNI and Leipzig subjects.

Dinesh et al. [83] introduced a novel approach based
on nonnegative matrix factorization (NMF) and SVM
for the CAD in determining AD. The classification is
performed with the database of fMRI, PET, and SPECT
images. The images are labeled based on information
stored in each voxel of the brain. The relevant informa-
tion is labeled as AD, whereas the information that is
not relevant is labeled as NOR. Furthermore, on the la-
beled voxels, Fisher’s discriminant ratio is used for the
feature selection variables from the voxels, and then
NMEF is used for feature reduction for the fMRI images
where all the selected variables contain only positive
values, followed by the application of the SVM classifier
for determining the detection rates for AD. The NMF-
SVM approach generated an accuracy of 91% in classify-
ing patients with AD for both datasets.

Dyrba et al. [84] examined the multimodal data re-
ceived from the 53 subjects, from which there were 28
patients with AD and 25 HCs. The multimodalities in-
cluded in the determination of the classification of AD
were DTI, gray matter, and resting-state (RS) fMRI.
SVM as a classifier was included in the process of deter-
mining and comparing the accuracy of the single modal-
ities vs. multimodalities. The areas under the curve
(AUCs) were 87% for the DTI, 86% for the gray matter,
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and 80% for the RS fMRI, while the combination of the
modalities manifests an AUC of 82%, which did not dis-
play any major difference compared to the single modal-
ity. Further, the average ratios of SVM were
approximately 52% for GM, 67% for RS-fMRI, and 99%
for DTI.

Westman et al. [14] utilized a multivariate analysis
OPLS for classification of the AD from the CTL and
MCI by combining MRI and CSF on the dataset of 369
subjects classified as follows: 162, MCL; 96, AD; and 111,
CTL. Preprocessing is performed using the FreeSurfer
pipeline to generate the regional cortical thickness and
subcortical volumetric measures, followed by the use of
watershed to eliminate the non-brain tissue that is not
relevant to the study [85]. The modalities MRI and CSF
were combined for the classification of AD from CTL
and MCI from CTL. The combined modalities mani-
fested better accuracy compared to the performance of
the single modality, and the accuracy of the combined
modality was approximately 91.8% for the classification
of AD vs CTL. Regarding MCI vs CTL, the accuracy de-
creased to 77.6% at baseline. Thus, the approach of using
combined modalities in the multivariate model for de-
tection of AD was beneficial compared to a single modal
approach for distinguishing AD from CTL.

Liu et al. [86] suggested a multi-task training that works
on the principle of selecting the features from MRI and
PET images and thereby maintaining the intermodality
link after the prediction of the selected vectors. The fea-
ture selection technique that includes the intermodality
link is generated by operating the technique as a multi-
task regression problem followed by the application of a
multi-KSVM method to unite the features selected from
the PET and MRI. Based on the selected features, the ker-
nel is determined by the application of SVM, followed by
combining all corresponding linear kernels to form a
multi-KSVM for various modalities. The methodology
defeated the compared method in distinguishing AD from
NC and MCI from NC with accuracy rates of 94.37% for
AD classification and 78.8% for MCI classification.

Young et al. [87] presented a Gaussian process to clas-
sify AD from MCI. This process works by selecting fea-
tures in the single modality and thereby finding the
corresponding kernel and combining the various kernels
of MR, PET, and APOE genotype, forming a mixed ker-
nel, and lastly utilizing the GP classifier for classification
accuracy. The outcome of the Gaussian process ranged
from 0 to 1, which depicted the determined probability
that a subject is classified to which group, followed by
binarizing these outcomes with the help of threshold.
The outcomes of the Gaussian process classifier are then
compared with those of SVM. The Gaussian process
classifier displayed 74.1% accuracy for the combined mo-
dalities (MRI + PET + APOE) but 67.8% accuracy for the
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SVM classifier, suggesting that the application of the
Gaussian process is better than SVM for multimodal
classification.

Davatzikos et al. [88] studied the patterns of MRI
combined with the CSF for the classification of AD
along with MCI. For the study, data of 239 patients were
examined, and based on the CDR, the MCI dataset was
split into two parts: converters (MCIc) and non-
converters (MClInc). The MR images consisted of T1-
weighted images, which were acquired using volumetric
3D MPRAGE, which then underwent calibration, correc-
tion, and skull stripping. Further CSF samples were in-
cluded with the help of ADNI. The first step for image
processing was to align the anterior commissure plane;
then, cerebellum tissues and skull were removed. The
images were then divided into ventricles, gray matter,
sulcal CSF, and white matter. In the study, SPARE-AD
was employed as a biomarker as it manifested better pre-
diction for the conversion of MCI to AD [89]. The score
of SPARE-AD for the classification of AD and CN was
in the predicted range. Weka software was used with the
CSF biomarkers and SPARE-AD as inputs for the evalu-
ation. Subsequently, a linear SVM was employed in the
framework. The results manifested that the biomarker
showed a slightly less predictive result compared to
SPARE-AD.

Vemuri et al. [90] presented a study that showed that
the implementation of the SVM classifier on an individ-
ual sSMRI compared to more scans can provide essential
data for classification of AD. This study aimed to train a
model for classification of AD and CN based on MRI
scans of 280 subjects along with the genetic and demo-
graphic information. The MR images were executed on
12 different scanners, which underwent standard quality
calibration of all axes. The model for classification was
developed in a hierarchical manner. Model I includes
the utilization of the SVM classifier for classifying 280
training datasets of sSMRI as an output structural abnor-
mality index (STAND) score was produced. Further-
more, in Model II, the STAND score was augmented by
including demographic information and also the known
genotype for increasing or decreasing the risk of generat-
ing AD. APOE is also included in Model II. Lastly, in
Model III, the tissue density and demographic variables
were decreased. As a result, the STAND scores of Model
II and Model III were 88.5% and 89.3% respectively.

Ritter et al. [91] examined the foresight of MCI to AD
based on multimodal data. For the study, all patients di-
agnosed with NL or MCI until the age of 3 years were
included in the MCI stable group, whereas the patients
who had progression to AD within 3 years were classi-
fied as the MCI converter group. A total of 237 patients
were included: 151 in the MCI stable group and 86 in
the MCI converter group. Furthermore, for the study,
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features were selected from 10 different modalities (total
of 288 features). PET, CSF, and MRI were some of the
modalities from which features were obtained. Then, the
selected features were classified with the help of the
SVM classifier, and the performance was compared with
random forest and single classification tree. To compare
the performance between all three classifiers, cross-
validation was performed. First, the data were divided
into three parts, and the other two parts were the valid-
ation parts. Based on the validation parts, a tenfold
cross-validation was executed and repeated 30 times to
obtain more stable results. Based on the modalities and
selected features, SVM outperformed all classifiers in
terms of accuracy.

Zhang et al. [92] implemented the multi-modal meth-
odology for classification of AD, MCI, and HCs by com-
bining MRI, PET, and CSF on the ADNI database (51,
AD; 99, MCI; and 52, HC). Image preprocessing and fea-
ture extraction are conducted before the addition of the
SVM. Preprocessing is a process of correction of images
in the anterior commissure and posterior commissure,
followed by skull stripping using the brain surface ex-
tractor [93]. After the pre-processing and skull stripping
is performed, the images are segmented into gray matter,
white matter, and CSF. A total of 93 regions of interest
(ROIs) are selected as a feature of MRI and PET images,
and features selected for the CSF are their original
values. The outcome of the classification methodology
was 93.2% when all three modalities were combined,
while the single modality manifested the highest classifi-
cation rate of 86.5% for AD. Likewise, for MCI, the clas-
sification accuracy rate was 76.4% for the combined
modalities but only 72% for single modality.

Kavitha and Thyagharajan [94] focused on the applica-
tion of combined images of MRI and PET or SPECT for
classifying AD from the normal conditions using the bin-
ary SVM classifier based on feature selection and deter-
mining the accuracy of the combined images and
comparing them to the single modality. In this study, a
total of 120 images were used from which 86 were used
for training purposes, while 34 were used for testing pur-
poses. Preprocessing involves the process of removing the
artifacts from the images. Images were combined with the
help of the redundant discrete wavelet transform. The
outcomes of the study manifested classification accuracy
of 94.1% for the fused images, which was better than the
classification rates of the single modalities.

Comparative study

Ritter et al. [91] predicted the conversion of MCI to AD
using multiple modalities involving MRI, PET, and CSF.
The imputation was performed with the help of the EM
algorithm. The features were selected by automatic and
manual selections. SVM was used as a classifier to train
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and test the data. The replacement of missing data, man-
ual selection of the features, and training and testing on
the same data are considered limitations because the
manually selected features vary according to the level of
expertise. Compared to that in the study by Zhang et al.
[92], extracted features from the MRI, PET, and CSF
were individually fed into the kernel matrix. For the clas-
sification, all three individual kernel matrices were fused
into one kernel combination. As the study of Zhang
et al. [92] did not involve any missing value and manual
feature selection, it proves to be more accurate and reli-
able than the study of Ritter et al. [91].

Among all discussed studies involving SVM based
multimodalities, the study by Kavitha and Thyagharajan
[94] can be considered more accurate and reliable be-
cause it has the minimum false-positive error rate com-
pared to other multimodal techniques. The utilization of
the redundant discrete wavelet transform technique to
combine the different brain modalities into one proved
to be beneficial as it manifested an accuracy rate of
94.1%.

Table 2 below shows a brief review of similar studies
conducted using SVM classifier for AD diagnosis based
on multi-modal imaging scans.

Authors interpret that multimodal imaging techniques
are favorable than single modality techniques as they
play a crucial part in the classification of ADs by
empowering the clinician skill to provide better out-
comes by performing screening, monitoring, prediction,
outlining, treatment supervision, healing efficiency, and
recurrence prediction. Moreover, accuracy of the multi-
modal imaging techniques are improving and becoming
more reliable than that of single modality techniques
when it comes to classifying patients with AD.

Case studies

Case study 1: classification of AD using KNN and SVM
based on selected slices from 3D MRI

Dataset

Gad et al. [100] presented the classification accuracy of
KNN and SVM modalities using selected slices from 3D
MRL The study used data of 120 subjects aged 57-91 years.
These 120 subjects included 40 HCs, 40 patients with MCI,
and 40 patients with AD. These data were procured from
the National Alzheimer’s Coordinating Center.

Preprocessing

Next, preprocessing was performed to ensure high accur-
acy. Ten slices of the brain that consisted of the highest
information were extracted from all subjects by 3D-T1
MRI and used. The selected slices were separated to re-
move noise; then, all datasets were normalized by applying
the ROI to exclude the black space outside the brain.



Naik et al. Visual Computing for Industry, Biomedicine, and Art

(2020) 3:26

Page 10 of 18

Table 2 Use of SYM classifier for AD diagnosis using different multimodal imaging scans

Technique Classifier used

Modality

Accuracy References

Pattern recognition
autoencoder

Pattern recognition  Random forest algorithm

APOE

Pattern recognition  Multi kernel learning

Whole-brain SVM
parcellation

Multi-task feature Multi KSVM

selection

Convolutional neural network and sparse  MRI and PET

MRI, PET, CSF, and

sMRI and DTI

MRI and DTI

MRI'and PET

AD vs NC: 3x 3 %3 (90.30%), 5% 5% 5 (91.10%), [95]
7% 7% 7 (89.80%)

MCI vs NC: 3 X 3% 3 (87.90%), 5% 5 x5 (89.10%),

7 X7 X7 (89.20%)

AD vs NC (91.80%) [96]
AD vs MCl vs NC (60.20%)
MCI vs NC (79.50%)

AD vs NC (90.20%) [97]
MCI vs NC (79.42%)
AD vs MCI (76.63%)

Multimodal with 73 features (72.40%) [98]
Multimodal with 15 univariate features (72.11%)
Multimodal with 15 multivariate features (99.60%)

AD vs NC (94.37%) [99]
MCI vs NC (78.80%)

Feature extraction

Feature extraction is a process of making data compact,
redundant free, and significant. Following the feature ex-
traction process, few features were selected from the
dataset for finding the optimal subset of features that in-
creases the efficiency by decreasing the measurement
cost of the learning algorithm and used in the training
method of the learning algorithm. Different features
considered in the study were mean, entropy, energy,
contrast, correlation, homogeneity, skewness, kurtosis,
total brain area, total black area, gradient mean, and
image symmetry.

Classification

Classification of the images provides the knowledge re-
garding the appearance of abnormality in the brain
image that is to be trained and tested by distinguishing
the various abnormal brain images based on an optimal
feature set.

SVM classification

For nonlinearly separable patterns, SVM kernels are
used. The SVM classifier works in two steps. The first
step includes distinguishing HCs from abnormal con-
trols, and the second step includes further classifying the
abnormal controls into patients with either MCI or AD
using the polynomial kernel function according to the
following equation [100, 101]:

k(x,y) = (x'y 4+ i)

where x and y are two feature vectors and i is a free par-
ameter trading off the influence of higher-order vs
lower-order terms in the polynomial.

KNN classification

Unlike SVM, KNN uses only one-step classification pro-
cedure to distinguish all subjects as either HC or MCI
or AD. The key strategy of this method includes classify-
ing unlabeled testing data points based on the K value,
i.e, the number of nearest neighbors to the testing ex-
ample. The testing set examples can be classified by vari-
ous distance measures, such as Euclidean and
Riemannian. This review depicts the use of Euclidean
distance for determining the nearest distance [100, 102].

The Euclidean distance formula is as follows:

a=/> -0

where x; and y; are two feature vectors used in classifica-
tion using a variable number of neighbors to classify all
subjects with different values for K=4, 5, 6, 7.

Results

Twelve features were extracted from 10 selected slices
for each slice. Subsequently, permutations and combina-
tions of these features were applied to both classifiers
separately, to find the best accuracy for each class. The
120 subjects were bifurcated as 72 training subjects and
48 testing subjects.

The training subjects were further divided into 24
HCs, 24 patients with MCI, and 24 patients with AD.
The testing subjects were further classified into 16 HCs,
16 patients with MCI, and 16 patients with AD. For the
KNN classifier, the value of K varied, and data were
tested for 212 permutations of all features, and then the
best number of features was selected that have the high-
est accuracy for each class. For the SVM classifier, a
total of 212 permutations of all features are examined
for different values of SVM polynomial order, and ultim-
ately the most suitable combination of features having
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the greatest accuracy has been selected for AD, HC, and
MCI for the polynomial orders 3 and 4.

The accuracy results achieved from the KNN and
SVM classifiers are summarized in Table 3 and Figs. 1, 2
and 3.

Inference

The study reveals that SVM has 97.92% accuracy with
polynomial order 3. The selected features mean, con-
trast, kurtosis, and total brain area are the best selected
features for recognizing normal cognition. Mean, en-
tropy, contrast, homogeneity, kurtosis, and image sym-
metry are best used for identifying MCI. Energy,
homogeneity, and skewness are optimal for identifying
AD. KNN employs combinations of various features that
are extracted from the image. With permutation for
these features, 95.83% accuracy was obtained using KNN
with K=6 and K=7. Thus, this study classified AD ac-
cording to averaging of features selected from 10 slices
rather than extracting all features extracted from 10
slices. Therefore, Gad et al. [100] proposed that these ac-
curacies were the best compared to previous studies.

Case study 2: SVM-based classification of neuroimages in
AD: straight comparison of FDG-PET, rCBF-SPECT, and

MRI data collected from the same individuals

Dataset

Ferreira et al. [20] analyzed 21 patients with mild AD
and a group of 18 elderly HCs to present the investiga-
tion on the classification of AD for the multimodal tech-
nique that uses SVM in MRI and PET/SPECT images.

Methods

A whole-brain approach comprising a mask to eliminate
voxels outside the brain has been employed. As a result,
the feature vectors of 219727 voxels for all modalities have
been obtained. Cerebellar normalization and global uptake
normalization both have been utilized in this study [20,
103, 104].

SVM is applied [20, 26, 27, 105, 106] using the LIBSVM
software [20, 107] (accessible in the PRoNTo toolbox) [20,
30] to differentiate HCs from patients with AD. The neu-
roimaging information was adjusted for the impact of age
and education. Linear algebra operations including matrix
transformation to eliminate confounding impacts from

Table 3 Accuracy of KNN and SVM classifiers
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kernels using a residual matrix [20, 108, 109] was con-
ducted, which showed that AD class were older and had
fewer years of education than the control class. The data-
set was partitioned into training and testing sets to esti-
mate the generalization capability of the model. An
estimate of the generalization error of the model can be
made by repeatedly repartitioning the data. A leave-one-
out cross-validation approach [20, 110, 111] has been used
in which a single example (ie., one patient with AD or
HC) was left out of testing in each iteration.

Results

Figure 4 illustrates the predictions for each single modal-
ity classification (MRI, FDG-PET, and rCBE-SPECT).
Subjects classified as HCs are plotted below the horizon-
tal line (i.e., with negative SVM projections), while sub-
jects above the horizontal line presented positive SVM
projections and therefore classified as having AD.

Figure 5 shows the receiver operating characteristic
curves for each combination of modalities, and Table 4
shows the outcomes of investigations with a combin-
ation of modalities.

The accuracy achieved using PET and SPECT data
were the same. The PET accuracy rate was 68%—71%
and AUC was 0.77-0.81, and the SPECT accuracy was
68%—74%, and AUC was 0.75—0.79. Moreover, both had
better performance than analysis with T1-MRI data with
an accuracy of 58% and AUC of 0.67. The inclusion of
FDG-PET/rCBF-SPECT in MRI showed higher accuracy
parameters (accuracy, 68%—74%; AUC, 0.74—0.82) than
T1-MRI being used solely, but these were not better
than the individual neurofunctional modalities.

Inference
Based on the observations, Ferreira et al. [20] proposed
that FDG-PET and rCBF-SPECT produced better classi-
fication accuracies compared to MRI alone, and the
addition of PET/SPECT to MRI provided higher
accuracy.

Challenges and future scope

Modern advancements and future scope of ML tech-
niques offer encouraging applications in medical im-
aging. The use of imaging techniques, such as MRI,
PET, and SPECT, has increased in the detection of

KNN SVM
Number of nearest neighbour Accuracy Polynomial order Accuracy
4 85.42% 3 97.92%
91.67%
4 90%

5
6 95.83%
7 95.33%
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inherent unfavorable effects of AD that initially might be
clinically invisible because of the degree of patient’s cog-
nitive impairment and confusion [112, 113]. Moreover,
the challenge lies in finding the optimal method of inte-
gration of the imaging modality to generate the most ef-
fective diagnostic method for AD.

The application of SVM, KNN, and other ML algo-
rithms demands a high level of technical expertise and
clinical resources and knowledge. A huge acquisition of
data-derived information is needed by a machine to
function as an autonomous image interpreter [114], but
several investigations have been conducted on only a
small number of members, and it is therefore not rea-
sonable to form specific conclusions on the diagnostic

In case of serious stages of AD, the treatment plan has
to be decided promptly by a clinician. This aspect
throws a great challenge to the application of SVM in
neuroimaging as it can take several days to develop the
reports because of some inherent SVM tasks, such as
image preprocessing. Thus, it would be ineffective and
potentially dangerous to patients to delay a clinical
decision.

SVM would not be proper for those cases, which are
recognized as having a gross neuroanatomical abnormal-
ity that is comorbid to their neurological disease [21].
Nevertheless, ML-based data processing methods could
help shorten imaging time [115]. Further, such imaging
methods could minimize unnecessary imaging, improve

and prognostic significance of neuroimaging at the indi-  positioning, and assist in improvement of the
vidual level. characterization of the findings.
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combination of imaging modalities

Another area in medical imaging where ML has an
immediate impact is in the automated detection of
findings. Moreover, CNN witnesses a great scope in
the post-processing tasks of MRI, PET, and SPECT
[116]. These tasks involve image registration, segmen-
tation, and quantification. While SVM provides reli-
able classification of different classes, there are also
probabilistic ML methods that provide an estimation

of the probability that a provided data pertains to
each category (e.g., 70% responder, 30% nonre-
sponders) and hence propose to quantify the uncer-
tainty in each prognostication. Gaussian processes
[21, 117] and relevance vector machines [21, 118] are
two such promising probabilistic classification
methods that are currently used in applications in
neuroimaging [21, 119, 120].
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Table 4 Classification accuracy for individual and combined image modalities

T-1 FDG-PET

rCBF-SPECT (GN) rCBF-SPECT (CN) T-1 MRI+FDG-PET T-1 MRI + rCBF-SPECT (GN)

T-1 MRI + rCBF-SPECT

MRI (CN)
(GN) (CN) PVE No PVE PVE No PVE (GN) (CN) PVE No PVE PVE No PVE
AUC 067 081 077 075 0.76 0.75 0.79 0.81 0.82 0.78 0.78 0.74 0.76
TP (%) 5000 7000 7000 6000  70.00 60.00  70.00 75.00 700 75.0 80.00 70.00 75.00
TN (%) 6667 6667 7222 7778 6667 8333 7778 66.67 7222 7222 66.67 66.67 7222
BA (%) 5833 6833 71.11 6889 6833 7167 7389 70.83 7 7361 7333 6833 7361
p-value* 0.1379 0.0242 00157 00210 00214 00071 00043 00198 0.0014 0.0008 0.0011 0.0253 0.0003

BA Balanced accuracy, TN True negative, TP True positive, CN Cerebellar normalization, GN Global normalization, PVE Partial volume effect correction

*Nonparametric statistical significance

The application of regression methods to neuroimag-
ing data has also shown a drastic development, which
aimed to predict a continuous outcome (e.g., symptom
severity) rather than a categorical class label. Certainly,
pattern regression methods are presently being
employed in neuroimaging data in health [121] and dis-
ease [122].

The essential benefit of such methods over traditional
analytical procedures is that they enable conclusions to
be made at the level of the individual and hence could
be utilized in making treatment decisions in individual
cases. Although there are remarkable theoretical and
practical challenges in the application of ML approaches
in neuroimaging, the results produced so far by various
studies have proved to be encouraging toward the evolu-
tion of ML techniques for clinical detection, diagnosis,
and prognosis.

Conclusions

Various classification techniques for distinguishing pa-
tients with AD from HCs based on MRI findings have
been evaluated in this study. According to the authors,
the SVM classifier seems to manifest better accuracy
rates when it comes to a clear margin of divisions among
the classes compared to other classifiers. Moreover, it
could provide reliable foresight about the test data due
to the optimal boundary gap among the departing hy-
perplanes. SVM is more effective than other classifiers in
the prediction of high-dimensional data due to its more
limited parameter, making it operational and having
high accuracy rates producing classifiers. Moreover,
when it comes to dual problems, SVM manifest better
results due to the utilization of kernel in solving the
problem. As the risk of overfitting is less in SVM, it is
more generalized. Lastly, SVM is also better as it can be
employed for classification and regression problems.

To further increase the classification accuracy rates of
the SVM classifier based on the single modality, that is,
MR, the addition of the PET/SPECT/CSF modality to
MRI vyielded better accuracy compared to MRI alone.
Hence, according to the interpretation made from the

study, the accuracy of the classifier is increased when a
single modality is combined with other modalities.
Multimodal approaches exhibit more relevant informa-
tion, which is hidden when the single modality is exam-
ined, and they could display novel and different
properties of the data by recognizing various correlations
among the data.

Abbreviations

AD: Alzheimer’s disease; MRI: Magnetic resonance imaging; MCl: Mild
cognitive impairment; GPS: Global positioning system; ML: Machine learning;
sMRI: Structural MRI; fMRI: Functional MRI; SPECT: Single-photon emission
computed tomography; rCBF: Regional cerebral blood flow; PET: Positron
emission tomography; SYM: Support vector machine; KNN: K-nearest
neighbor; HCs: Healthy controls; SARs: Socially assistive robots;

CSF: Cerebrospinal fluid; MMSE: Mini-mental state examination;

CN: Cognitively normal; CAD: Computer-aided diagnosis; NCs: Normal
controls; ADNI: Alzheimer’s disease neuroimaging initiative; MClc: MCl
convert; MCInc: MCI non convert; CNN: Convolutional neural network;
DNN: Deep neural network; KSVMs: Kernel SVYMs; OPLS: Orthogonal partial
least squares to latent structures; NMF: Nonnegative matrix factorization;
RS: Resting-state; AUC: Area under the curve; ROI: Region of interest;
STAND: Structural abnormality index

Acknowledgements

The authors are grateful to Department of Computer Engineering, Indus
University, Department of Chemical Engineering School of Technology,
Pandit Deendayal Petroleum University for the permission to publish this
research.

Authors’ contributions

All the authors make a substantial contribution to this manuscript. BN, AM,
and MS participated in drafting the manuscript. BN and AM wrote the main
manuscript. All the authors discussed the results and implication on the
manuscript at all stages.

Funding
Not applicable.

Availability of data and materials
All relevant data and material are presented in the main paper.

Competing interests
The authors declare that they have no competing interests.

Author details

'Department of Computer Engineering, Indus University, Ahmedabad,
Gujarat 382115, India. “Department of Chemical Engineering, School of
Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat
382007, India.



Naik et al. Visual Computing for Industry, Biomedicine, and Art

Received: 14 May 2020 Accepted: 16 October 2020
Published online: 05 November 2020

References

1.

20.

Shah D, Dixit R, Shah A, Shah P, Shah M (2020) A comprehensive analysis
regarding several breakthroughs based on computer intelligence targeting
various syndromes. Augment Hum Res 5(1):14. https://doi.org/10.1007/
s41133-020-00033-z

Patel H, Prajapati D, Mahida D, Shah M (2020) Transforming petroleum
downstream sector through big data: a holistic review. J Pet Explor Prod
Technol 10(6):2601-2611. https://doi.org/10.1007/513202-020-00889-2
Ahir K, Govani K, Gajera R, Shah M (2020) Application on virtual reality for
enhanced education learning, military training and sports. Augment Hum
Res 5:7. https://doi.org/10.1007/541133-019-0025-2

Talaviya T, Shah D, Patel N, Yagnik H, Shah M (2020) Implementation of
artificial intelligence in agriculture for optimisation of irrigation and
application of pesticides and herbicides. Artif Intell Agric 4:58-73. https.//
doi.org/10.1016/j.aiia.2020.04.002

Jha K, Doshi A, Patel P, Shah M (2019) A comprehensive review on

automation in agriculture using artificial intelligence. Artif Intell Agric 2:1-12.

https://doi.org/10.1016/j.aiia.2019.05.004

Kakkad V, Patel M, Shah M (2019) Biometric authentication and image
encryption for image security in cloud framework. Multiscale Multidiscip
Model Exp Des 2(4):233-248. https://doi.org/10.1007/541939-019-00049-y
Pathan M, Patel N, Yagnik H, Shah M (2020) Artificial cognition for
applications in smart agriculture: a comprehensive review. Artif Intell Agric
4:81-95. https://doi.org/10.1016/}.aiia.2020.06.001

Pandya R, Nadiadwala S, Shah R, Shah M (2020) Buildout of methodology
for meticulous diagnosis of K-complex in EEG for aiding the detection of
Alzheimer's by artificial intelligence. Augment Hum Res 5(1):3. https://doi.
0rg/10.1007/541133-019-0021-6

Sukhadia A, Upadhyay K, Gundeti M, Shah S, Shah M (2020) Optimization of
smart traffic governance system using artificial intelligence. Augment Hum
Res 5(1):13. https://doi.org/10.1007/541133-020-00035-x

Patel D, Shah Y, Thakkar N, Shah K, Shah M (2020) Implementation of
artificial intelligence techniques for cancer detection. Augment Hum Res
5(1):6. https://doi.org/10.1007/541133-019-0024-3

Kundalia K, Patel Y, Shah M (2020) Multi-label movie genre detection from a
movie poster using knowledge transfer learning. Augment Hum Res 5(1):11.
https://doi.org/10.1007/541133-019-0029-y

Jani K, Chaudhuri M, Patel H, Shah M (2020) Machine learning in films: an
approach towards automation in film censoring. J Data Inf Manag 2(1):55-
64. https://doi.org/10.1007/542488-019-00016-9

Parekh V, Shah D, Shah M (2020) Fatigue detection using artificial
intelligence framework. Augment Hum Res 5:5. https://doi.org/10.1007/
s41133-019-0023-4

Westman E, Muehlboeck JS, Simmons A (2012) Combining MRI and CSF
measures for classification of Alzheimer's disease and prediction of mild
cognitive impairment conversion. Neurolmage 62(1):229-238. https://doi.
0rg/10.1016/j.neuroimage.2012.04.056

Alzheimer's Association (2018) 2018 Alzheimer's disease facts and figures.
Alzheimers Dement 14(3):367-429. https;//doi.org/10.1016/}jalz.2018.02.001
Chaves R, Ramirez J, Gérriz JM, Puntonet CG, for the Alzheimer's Disease
Neuroimaging Initiative (2012) Association rule-based feature selection
method for Alzheimer's disease diagnosis. Expert Syst Appl 39(14):11766-
11774. https//doi.org/10.1016/j.eswa.2012.04.075

Ito K (2006) PET/SPECT for dementia-early diagnosis of Alzheimer's disease.
Int Congr Ser 1290:123-127. https.//doi.org/10.1016/j.ics.2005.11.113
Ramirez J, Gorriz JM, Salas-Gonzalez D, Romero A, Lépez M, Alvarez | et al
(2013) Computer-aided diagnosis of Alzheimer's type dementia combining
support vector machines and discriminant set of features. Inf Sci 237:59-72.
https://doi.org/10.1016/}.ins.2009.05.012

Il1an 1A, Gorriz JM, Lopez MM, Ramirez J, Salas-Gonzalez D, Segovia F et al
(2011) Computer aided diagnosis of Alzheimer's disease using component
based SVM. Appl Soft Comput 11(2):2376-2382. https://doi.org/10.1016/j.
as0c.2010.08.019

Ferreira LK, Rondina JM, Kubo R, Ono CR, Leite CC, Smid J et al (2017)
Support vector machine-based classification of neuroimages in Alzheimer's
disease: direct comparison of FDG-PET, rCBF-SPECT and MRI data acquired
from the same individuals. Br J Psychiatry 40(2):181-191. https://doi.org/10.
1590/1516-4446-2016-2083

(2020) 3:26

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Page 16 of 18

Orrl G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A (2012) Using
support vector machine to identify imaging biomarkers of neurological and
psychiatric disease: a critical review. Neurosci Biobehav Rev 36(4):1140-1152.
https://doi.org/10.1016/j.neubiorev.2012.01.004

Kruthika KR, Rajeswari, Maheshappa HD, Alzheimer’s Disease Neuroimaging Initiative
(2019) Multistage classifier-based approach for Alzheimer's disease prediction and
retrieval. Inform Med Unlocked 14:34-42. https//doiorg/10.1016/jimu.2018.12.003
Adaszewski S, Dukart J, Kherif F, Frackowiak R, Draganski B, Alzheimer's
Disease Neuroimaging Initiative (2013) How early can we predict
Alzheimer’s disease using computational anatomy? Neurobiol Aging 34(12):
2815-2826. https://doi.org/10.1016/j.neurobiolaging.2013.06.015

Kiéppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD et al
(2008) Automatic classification of MR scans in Alzheimer's disease. Brain
131(3):681-689. https://doi.org/10.1093/brain/awm319

Trapeznikov K, Saligrama V, Castandn D (2012) Multi-stage classifier design.
Paper presented at the Asian conference on machine learning, Singapore
Management University, Singapore, 4-6 November 2012

Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin
classifiers. Paper presented at the fifth annual workshop on computational leamning
theory, ACM, Pittsburgh, 27-29 July 1992. https//doi.org/10.1145/130385.130401
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273-
297. https://doi.org/10.1007/BF00994018

Zhang DQ, Shen DG, Alzheimer’s Disease Neuroimaging Initiative (2012) Predicting
future clinical changes of MCl patients using longitudinal and multimodal
biomarkers. PLoS One 7(3):33182. https//doi.org/10.1371/journal pone0033182
Dyrba M, Ewers M, Wegrzyn M, Kilimann 1, Plant C, Oswald A et al (2012)
Combining DTl and MRI for the automated detection of Alzheimer's disease
using a large European multicenter dataset. In: Yap PT, Liu TM, Shen DG,
Westin CF, Shen L (eds) Multimodal brain image analysis. Springer, Berlin,
pp 18-28. https://doi.org/10.1007/978-3-642-33530-3_2

Schrouff J, Rosa MJ, Rondina JM, Marquand AF, Chu C, Ashburner J et al
(2013) PRoNTo: pattern recognition for neuroimaging toolbox.
Neuroinformatics 11(3):319-337. https://doi.org/10.1007/512021-013-9178-1
Balamurugan M, Nancy A, Vijaykumar S (2017) Alzheimer's disease diagnosis
by using dimensionality reduction based on KNN classifier. Biomed
Pharmacol J 10(4):1823-1830. https://doi.org/10.13005/bpj/1299

Jo T, Nho K, Saykin AJ (2019) Deep learning in Alzheimer's disease:
diagnostic classification and prognostic prediction using neuroimaging
data. Front Aging Neurosci 11:220. https://doi.org/10.3389/fnagi.2019.00220
Gandhi M, Kamdar J, Shah M (2020) Preprocessing of non-symmetrical
images for edge detection. Augment Hum Res 5:10. https://doi.org/10.1007/
s41133-019-0030-5

Panchiwala S, Shah M (2020) A comprehensive study on critical security
issues and challenges of the loT world. J Data Inf Manag. https://doi.org/10.
1007/542488-020-00030-2

Langer A, Feingold-Polak R, Mueller O, Kellmeyer P, Levy-Tzedek S (2019) Trust
in socially assistive robots: considerations for use in rehabilitation. Neurosci
Biobehav Rev 104:231-239. https://doi.org/10.1016/j.neubiorev.2019.07.014
Feil-Seifer D, Mataric MJ (2005) Defining socially assistive robotics. Paper
presented at the 9th international conference on rehabilitation robotics,
IEEE, Chicago, 28 June-1 July 2005

Ward NS, Brander F, Kelly K (2019) Intensive upper limb neurorehabilitation in
chronic stroke: outcomes from the queen square programme. J Neurol
Neurosurg Psychiatry 90(5):498-506. https;//doi.org/10.1136/jnnp-2018-319954
Blank AA, French JA, Pehlivan AU, O'Malley MK (2014) Current trends in
robot-assisted upper-limb stroke rehabilitation: promoting patient
engagement in therapy. Curr Phys Med Rehabil Rep 2(3):184-195. https//
doi.org/10.1007/540141-014-0056-z

Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ (2014) Robot-assisted movement
training for the stroke-impaired arm: does it matter what the robot does? J
Rehabil Res Dev 43(5)619-630. https//doi.org/10.1682/JRRD.2005.03.0056

Pino M, Boulay M, Jouen F, Rigaud AS (2015) “Are we ready for robots that
care for us?” attitudes and opinions of older adults toward socially assistive
robots. Front Aging Neurosci 7:141. https://doi.org/10.3389/fnagi.2015.00141
Arras KO, Cerqui D (2005) Do we want to share our lives and bodies with
robots? A 2000-people survey. Autonomous Systems Lab, Swiss Federal
Institute of Technology, Lausanne, pp 1-38

Dautenhahn K, Woods S, Kaouri C, Walters ML, Koay KL, Werry | (2005) What
is a robot companion-friend, assistant or butler? Paper presented at IEEE/RSJ
international conference on intelligent robots and systems, IEEE, Edmonton,
2-6 August 2005. https://doi.org/10.1109/IR0S.2005.1545189


https://doi.org/10.1007/s41133-020-00033-z
https://doi.org/10.1007/s41133-020-00033-z
https://doi.org/10.1007/s13202-020-00889-2
https://doi.org/10.1007/s41133-019-0025-2
https://doi.org/10.1016/j.aiia.2020.04.002
https://doi.org/10.1016/j.aiia.2020.04.002
https://doi.org/10.1016/j.aiia.2019.05.004
https://doi.org/10.1007/s41939-019-00049-y
https://doi.org/10.1016/j.aiia.2020.06.001
https://doi.org/10.1007/s41133-019-0021-6
https://doi.org/10.1007/s41133-019-0021-6
https://doi.org/10.1007/s41133-020-00035-x
https://doi.org/10.1007/s41133-019-0024-3
https://doi.org/10.1007/s41133-019-0029-y
https://doi.org/10.1007/s42488-019-00016-9
https://doi.org/10.1007/s41133-019-0023-4
https://doi.org/10.1007/s41133-019-0023-4
https://doi.org/10.1016/j.neuroimage.2012.04.056
https://doi.org/10.1016/j.neuroimage.2012.04.056
https://doi.org/10.1016/j.jalz.2018.02.001
https://doi.org/10.1016/j.eswa.2012.04.075
https://doi.org/10.1016/j.ics.2005.11.113
https://doi.org/10.1016/j.ins.2009.05.012
https://doi.org/10.1016/j.asoc.2010.08.019
https://doi.org/10.1016/j.asoc.2010.08.019
https://doi.org/10.1590/1516-4446-2016-2083
https://doi.org/10.1590/1516-4446-2016-2083
https://doi.org/10.1016/j.neubiorev.2012.01.004
https://doi.org/10.1016/j.imu.2018.12.003
https://doi.org/10.1016/j.neurobiolaging.2013.06.015
https://doi.org/10.1093/brain/awm319
https://doi.org/10.1145/130385.130401
https://doi.org/10.1007/BF00994018
https://doi.org/10.1371/journal.pone.0033182
https://doi.org/10.1007/978-3-642-33530-3_2
https://doi.org/10.1007/s12021-013-9178-1
https://doi.org/10.13005/bpj/1299
https://doi.org/10.3389/fnagi.2019.00220
https://doi.org/10.1007/s41133-019-0030-5
https://doi.org/10.1007/s41133-019-0030-5
https://doi.org/10.1007/s42488-020-00030-2
https://doi.org/10.1007/s42488-020-00030-2
https://doi.org/10.1016/j.neubiorev.2019.07.014
https://doi.org/10.1136/jnnp-2018-319954
https://doi.org/10.1007/s40141-014-0056-z
https://doi.org/10.1007/s40141-014-0056-z
https://doi.org/10.1682/JRRD.2005.03.0056
https://doi.org/10.3389/fnagi.2015.00141
https://doi.org/10.1109/IROS.2005.1545189

Naik et al. Visual Computing for Industry, Biomedicine, and Art

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Wu YH, Fassert C, Rigaud AS (2012) Designing robots for the elderly:
appearance issue and beyond. Arch Gerontol Geriatr 54(1):121-126. https://
doi.org/10.1016/j.archger.2011.02.003

Scopelliti M, Giuliani MV, Fornara F (2005) Robots in a domestic setting: a
psychological approach. Univ Access Inf Soc 4(2):146-155. https://doi.org/
10.1007/510209-005-0118-1

Young JE, Hawkins R, Sharlin E, Igarashi T (2009) Toward acceptable
domestic robots: applying insights from social psychology. Int J Soc Robot
1(1):95. https://doi.org/10.1007/512369-008-0006-y

Hirsch T, Forlizzi J, Hyder E, Goetz J, Kurtz C, Stroback J (2000) The ELDer
project: social, emotional, and environmental factors in the design of eldercare
technologies. Paper presented at the 2000 conference on universal usability,
ACM, Arlington, 16-17 November 2000. https//doi.org/10.1145/355460.355476
Neven L (2010) ‘But obviously not for me”. robots, laboratories and the
defiant identity of elder test users. Sociol Health llin 32(2):335-347. https://
doi.org/10.1111/j.1467-9566.2009.01218x

Sharkey A, Sharkey N (2012) Granny and the robots: ethical issues in robot
care for the elderly. Ethics Inf Technol 14(1):27-40. https://doi.org/10.1007/
$10676-010-9234-6

Shoval N, Auslander GK, Freytag T, Landau R, Oswald F, Seidl U et al (2008)
The use of advanced tracking technologies for the analysis of mobility in
Alzheimer's disease and related cognitive diseases. BMC Geriatr 8:7. https//
doi.org/10.1186/1471-2318-8-7

Esfahani OT, Moshayedi AJ (2014) Accuracy of the positioning systems for
the tracking of Alzheimer’s patients-a review. Int J Appl Electron Phys Rob
2(2):10-16. https.//doi.org/10.7575/aiac.jjaepr.v.2n.2p.10

Mahoney EL, Mahoney DF (2010) Acceptance of wearable technology by people
with Alzheimer's disease: issues and accommodations. Am J Alzheimers Dis
Other Dement 25(6):527-531. https//doi.org/10.1177/1533317510376944

Pedro S, Quintas J, Menezes P (2014) Sensor-based detection of Alzheimer's
disease-related behaviors. In: Zhang YT (ed) The international conference on
health informatics. Springer, Cham, pp 276-279. https://doi.org/10.1007/978-
3-319-03005-0_70

Zhou Q, Goryawala M, Cabrerizo M, Wang J, Barker W, Loewenstein DA et al
(2014) An optimal decisional space for the classification of Alzheimer's
disease and mild cognitive impairment. [EEE Trans Biomed Eng 61(8):2245—
2253. https://doi.org/10.1109/TBME.2014.2310709

Zhou XX, Wang SH, Xu W, Ji GL, Phillips P, Sun P et al (2015) Detection of
pathological brain in MRI scanning based on wavelet-entropy and naive
Bayes classifier. In: Orturio F, Rojas | (eds) Bioinformatics and biomedical
engineering, vol 9043. Springer, Cham, pp 201-209. https://doi.org/10.1007/
978-3-319-16483-0_20

Belmokhtar N, Benamrane N (2012) Classification of Alzheimer's disease
from 3D structural MRI data. Int J Comput Appl 47(3):40-44. https.//doi.org/
10.5120/7171-9798

Chyzhyk D, Savio A (2010) Feature extraction from structural MRI images
based on VBM: data from OASIS database. http://www.ehu.eus/ccwintco/
uploads/3/38/GIC-UPV-EHU-RR-2010-10-14. Accessed 11 May 2020

Ali EM, Seddik AF, Haggag MH (2016) Automatic detection and classification
of Alzheimer's disease from MRI using TANNN. Int J Comput Appl 148(9):
30-34. https://doi.org/10.5120/ijca2016911320

Rueda A, Gonzdlez FA, Romero E (2014) Extracting salient brain patterns for
imaging-based classification of neurodegenerative diseases. IEEE Trans Med
Imaging 33(6):1262-1274. https.//doi.org/10.1109/TMI1.2014.2308999
Aruchamy S, Bhattacharjee P, Nanditha N, Sanyal G (2016) Detection of
Alzheimer's disease in brain MRI using fractal analysis. Int J Comput Technol
Appl 9(40):275-283

Zuiderveld K (1994) Contrast limited adaptive histogram equalization. In:
Heckbert PS (ed) Graphics gems IV. Academic Press, San Diego, pp 474-485.
https://doi.org/10.1016/B978-0-12-336156-1.50061-6

Zhang YD, Dong ZC, Phillips P, Wang SH, Ji GL, Yang JQ et al (2015)
Detection of subjects and brain regions related to Alzheimer’s disease using
3D MRI scans based on eigenbrain and machine learning. Front Comput
Neurosci 9:66. https://doi.org/10.3389/fncom.2015.00066

Williams MM, Storandt M, Roe CM, Morris JC (2013) Progression of Alzheimer's
disease as measured by clinical dementia rating sum of boxes scores.
Alzheimer's Dement 9(S1):539-544. https://doi.org/10.1016/}jalz.2012.01.005
Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2007)
Open access series of imaging studies (OASIS): cross-sectional MRI data in
young, middle aged, nondemented, and demented older adults. J Cogn
Neurosci 19(9):1498-1507. https://doi.org/10.1162/jocn.2007.19.9.1498

(2020) 3:26

64.

65.

66.

67.

68.

69.

70.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

Page 17 of 18

Zhang YD, Wu L (2012) An MR brain images classifier via principal
component analysis and kernel support vector machine. Prog Electromagn
Res 130:369-388. https://doi.org/10.2528/PIER12061410

Gomes TAF, Prudéncio RBC, Soares C, Rossi ALD, Carvalho A (2012)
Combining meta-learning and search techniques to select parameters for
support vector machines. Neurocomputing 75(1):3-13. https://doi.org/10.
1016/j.neucom.2011.07.005

Beheshti |, Demirel H, Farokhian F, Yang CL, Matsuda H, Alzheimer's Disease
Neuroimaging Initiative (2016) Structural MRI-based detection of Alzheimer’s
disease using feature ranking and classification error. Comput Methods Prog
Biomed 137:177-193. https//doi.org/10.1016/j.cmpb.2016.09.019

Salvatore C, Cerasa A, Battista P, Gilardi MC, Quattrone A, Castiglioni | (2015)
Magnetic resonance imaging biomarkers for the early diagnosis of
Alzheimer’s disease: a machine learning approach. Front Neurosci 9:307.
https://doi.org/10.3389/fnins.2015.00307

Westman E, Aguilar C, Muehlboeck JS, Simmons A (2013) Regional
magnetic resonance imaging measures for multivariate analysis in
Alzheimer’s disease and mild cognitive impairment. Brain Topogr 26(1):9-23.
https://doi.org/10.1007/510548-012-0246-x

Islam J, Zhang YQ (2017) A novel deep learning based multi-class
classification method for Alzheimer's disease detection using brain MRI
data. In: Zeng Y, He Y, Kotaleski JH, Martone M, Xu B, Peng HC et al (eds)
Brain informatics, vol 10654. Springer, Cham, pp 213-222. https://doi.org/10.
1007/978-3-319-70772-3_20

Gulhare KK, Shukla SP, Sharma LK (2017) Deep neural network classification
method to Alzheimer's disease detection. Int J Adv Res Comput Sci Softw
Eng 7(6):1-4. https.//doi.org/10.23956/ijarcsse/V716/0259

Matoug S (2015) Predicting Alzheimer's disease by segmenting and
classifying 3D-brain MRI images using clustering technique and SVM
classifiers. Dissertation, Laurentian University

Al-Naami B, Gharaibeh N, Kheshman AA (2013) Automated detection of
Alzheimer disease using region growing technique and artificial neural
network. World Acad Sci Eng Technol Int J Biomed Biol Eng 7(5):204-208
Khvostikov A, Aderghal K, Benois-Pineau J, Krylov A, Catheline G (2018) 3D
CNN-based classification using sSMRI and MD-DTI images for Alzheimer
disease studies. arXiv preprint arXiv:1801.05968

Kaewaramsri Y, Alfarozi SAl, Woraratpanya K, Kuroki Y (2016) Fractal
dimension for classifying 3D brain MRI using improved triangle box-
counting method. Paper presented at 8th international conference on
information technology and electrical engineering, IEEE, Yogyakarta, 5-6
October 2016. https://doi.org/10.1109/ICITEED.2016.7863304

Sunny D, George MM (2015) Alzheimer's disease classification by extracting
salient brain patterns. Int J Eng Res Technol 4(11):584-591. https://doi.org/
10.17577/1JERTVAIST110500

Asrami FF (2012) Alzheimer's disease classification using K-OPLS and MRI.
Dissertation, Linképing University

Rajeesh J, Moni RS, Palanikumar S, Gopalakrishnan T (2012) Discrimination of
Alzheimer’s disease using hippocampus texture features from MRI. Asian
Biomed 6(1):87-94

Yadav R, Gautam A, Mishra RB (2018) Classification of Alzheimer using fMRI
data and brain network. Comput Sci Inf Technol 2018:109-119. https//doi.
0rg/10.5121/csit.2018.80609

Wolz R, Julkunen V, Koikkalainen J, Niskanen E, Zhang DP, Rueckert D et al
(2011) Multi-method analysis of MRI images in early diagnostics of Alzheimer's
disease. PLoS One 6(10):e25446. https://doi.org/10.1371/journal.pone.0025446
Teipel SJ, Born C, Ewers M, Bokde ALW, Reiser MF, Moller HJ et al (2007)
Multivariate deformation-based analysis of brain atrophy to predict
Alzheimer’s disease in mild cognitive impairment. Neurolmage 38(1):13-24.
https://doi.org/10.1016/j.neuroimage.2007.07.008

Kamathe RS, Joshi KR (2017) A robust optimized feature set based
automatic classification of Alzheimer's disease from brain MR images using
K-NN and ADA-boost. ICTACT J Image Video Process 8(3):1665-1672.
https://doi.org/10.21917/ijivp.2017.0234

Dukart J, Mueller K, Barthel H, Villringer A, Sabri O, Schroeter ML et al (2013) Meta-
analysis based SVM classification enables accurate detection of Alzheimer's
disease across different clinical centers using FDG-PET and MRI. Psychiatry Res
Neuroimaging 212(3):230-236. https.//doi.org/10.1016/}.pscychresns.2012.04.007
Dinesh E, Kumar MS, Vigneshwar M, Mohanraj T (2013) Instinctive classification
of Alzheimer's disease using FMRI, pet and SPECT images. Paper presented at
7th international conference on intelligent systems and control, IEEE,
Coimbatore, 4-5 January 2013. https//doi.org/10.1109/1SCO.2013.6481189


https://doi.org/10.1016/j.archger.2011.02.003
https://doi.org/10.1016/j.archger.2011.02.003
https://doi.org/10.1007/s10209-005-0118-1
https://doi.org/10.1007/s10209-005-0118-1
https://doi.org/10.1007/s12369-008-0006-y
https://doi.org/10.1145/355460.355476
https://doi.org/10.1111/j.1467-9566.2009.01218.x
https://doi.org/10.1111/j.1467-9566.2009.01218.x
https://doi.org/10.1007/s10676-010-9234-6
https://doi.org/10.1007/s10676-010-9234-6
https://doi.org/10.1186/1471-2318-8-7
https://doi.org/10.1186/1471-2318-8-7
https://doi.org/10.7575/aiac.ijaepr.v.2n.2p.10
https://doi.org/10.1177/1533317510376944
https://doi.org/10.1007/978-3-319-03005-0_70
https://doi.org/10.1007/978-3-319-03005-0_70
https://doi.org/10.1109/TBME.2014.2310709
https://doi.org/10.1007/978-3-319-16483-0_20
https://doi.org/10.1007/978-3-319-16483-0_20
https://doi.org/10.5120/7171-9798
https://doi.org/10.5120/7171-9798
http://www.ehu.eus/ccwintco/uploads/3/38/GIC-UPV-EHU-RR-2010-10-14
http://www.ehu.eus/ccwintco/uploads/3/38/GIC-UPV-EHU-RR-2010-10-14
https://doi.org/10.5120/ijca2016911320
https://doi.org/10.1109/TMI.2014.2308999
https://doi.org/10.1016/B978-0-12-336156-1.50061-6
https://doi.org/10.3389/fncom.2015.00066
https://doi.org/10.1016/j.jalz.2012.01.005
https://doi.org/10.1162/jocn.2007.19.9.1498
https://doi.org/10.2528/PIER12061410
https://doi.org/10.1016/j.neucom.2011.07.005
https://doi.org/10.1016/j.neucom.2011.07.005
https://doi.org/10.1016/j.cmpb.2016.09.019
https://doi.org/10.3389/fnins.2015.00307
https://doi.org/10.1007/s10548-012-0246-x
https://doi.org/10.1007/978-3-319-70772-3_20
https://doi.org/10.1007/978-3-319-70772-3_20
https://doi.org/10.23956/ijarcsse/V7I6/0259
https://doi.org/10.1109/ICITEED.2016.7863304
https://doi.org/10.17577/IJERTV4IS110500
https://doi.org/10.17577/IJERTV4IS110500
https://doi.org/10.5121/csit.2018.80609
https://doi.org/10.5121/csit.2018.80609
https://doi.org/10.1371/journal.pone.0025446
https://doi.org/10.1016/j.neuroimage.2007.07.008
https://doi.org/10.21917/ijivp.2017.0234
https://doi.org/10.1016/j.pscychresns.2012.04.007
https://doi.org/10.1109/ISCO.2013.6481189

Naik et al. Visual Computing for Industry, Biomedicine, and Art

84.

85.

86.

87.

88.

89.

90.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

Dyrba M, Grothe M, Kirste T, Teipel SJ (2015) Multimodal analysis of functional
and structural disconnection in Alzheimer's disease using multiple kernel SVM.
Hum Brain Mapp 36(6):2118-2131. https://doi.org/10.1002/hbm.22759
Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK et al (2004) A
hybrid approach to the skull stripping problem in MRI. Neurolmage 22(3):
1060-1075. https://doi.org/10.1016/j.neuroimage.2004.03.032

Liu F, Wee CY, Chen HF, Shen DG (2013) Inter-modality relationship
constrained multi-task feature selection for AD/MCI classification. In: Mori K,
Sakuma 1, Sato Y, Barillot C, Navab N (eds) Medical image computing and
computer-assisted intervention - MICCAI 2013, vol 8149. Springer, Berlin, pp
308-315. https://doi.org/10.1007/978-3-642-40811-3_39

Young J, Modat M, Cardoso MJ, Mendelson A, Cash D, Ourselin S et al
(2013) Accurate multimodal probabilistic prediction of conversion to
Alzheimer's disease in patients with mild cognitive impairment. Neurolmage
Clin 2:735-745. https.//doi.org/10.1016/j.nicl.2013.05.004

Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ (2011)
Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern
classification. Neurobiol Aging 32(12):2322.e19-2322.e27. https://doi.org/10.
1016/j.neurobiolaging.2010.05.023

Misra C, Fan Y, Davatzikos C (2009) Baseline and longitudinal patterns of
brain atrophy in MCl patients, and their use in prediction of short-term
conversion to AD: results from ADNI. Neurolmage 44(4):1415-1422. https.//
doi.org/10.1016/j.neuroimage.2008.10.031

Vemuri P, Gunter JL, Senjem ML, Whitwell JL, Kantarci K, Knopman DS et al
(2008) Alzheimer's disease diagnosis in individual subjects using structural
MR images: validation studies. Neurolmage 39(3):1186-1197. https://doi.org/
10.1016/j.neuroimage.2007.09.073

Ritter K, Schumacher J, Weygandt M, Buchert R, Allefeld C, Haynes JD et al
(2015) Multimodal prediction of conversion to Alzheimer's disease based on
incomplete biomarkers. Alzheimers Dement Diagn Assess Dis Monit 1(2):
206-215. https://doi.org/10.1016/j.dadm.2015.01.006

Zhang DQ, Wang YP, Zhou LP, Yuan H, Shen DG, the Alzheimer's Disease
Neuroimaging Initiative (2011) Multimodal classification of Alzheimer’s
disease and mild cognitive impairment. Neurolmage 55(3):856-867. https.//
doi.org/10.1016/j.neuroimage.2011.01.008

Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM
(2001) Magnetic resonance image tissue classification using a partial volume
model. Neurolmage 13(5):856-876. https://doi.org/10.1006/nimg.2000.0730
Kavitha S, Thyagharajan KK (2015) A classification system for fused brain
images using support vector machine. Int J Appl Eng Res 10(8):6289-6293
Vu TD, Yang HJ, Nguyen VQ, Oh AR, Kim MS (2017). Multimodal learning
using convolution neural network and sparse autoencoder. Paper presented
at IEEE international conference on big data and smart computing, IEEE,
Jeju, 13-16 February 2017. https://doi.org/10.1109/BIGCOMP.2017.7881683
Tong T, Gray K, Gao QQ, Chen L, Rueckert D, The Alzheimer's Disease
Neuroimaging Initiative (2017) Multi-modal classification of Alzheimer's
disease using nonlinear graph fusion. Pattern Recogn 63:171-181. https://
doi.org/10.1016/j.patcog.2016.10.009

Ahmed OB, Benois-Pineau J, Allard M, Catheline G, Amar CB, for the
Alzheimer's Disease Neuroimaging Initiative (2017) Recognition of
Alzheimer's disease and mild cognitive impairment with multimodal image-
derived biomarkers and multiple kernel learning. Neurocomputing 220:98-
110. https://doi.org/10.1016/j.neucom.2016.08.041

Mesrob L, Sarazin M, Hahn-Barma V, De Souza LC, Dubois B, Gallinari P et al
(2012) DTl and structural MRI classification in Alzheimer's disease. Adv Mol
Imaging 2(2):12-20. https://doi.org/10.4236/ami.2012.22003

Liu F, Wee CY, Chen HF, Shen DG (2014) Inter-modality relationship
constrained multi-modality multi-task feature selection for Alzheimer’s
disease and mild cognitive impairment identification. Neurolmage 84:466—-
475. https://doi.org/10.1016/j.neuroimage.2013.09.015

Gad AR, Hassan NMH, Seoud RAA, Nassef TM (2016) Automatic machine
learning classification of Alzheimer's disease based on selected slices from
3D magnetic resonance imagining. Int J Biomed Sci Eng 4(6):50-54. https://
doi.org/10.11648/}.ijbse.20160406.11

Aguilar C, Westman E, Muehlboeck JS, Mecocci P, Vellas B, Tsolaki M et al
(2013) Different multivariate techniques for automated classification of MRI
data in Alzheimer’s disease and mild cognitive impairment. Psychiatry Res
Neuroimaging 212(2):89-98. https//doi.org/10.1016/j.pscychresns.2012.11.005

. Burges CJ (1998) A tutorial on support vector machines for pattern

recognition. Data Min Knowl Disc 2(2):121-167. https;//doi.org/10.1023/A:
1009715923555

(2020) 3:26

103.

109.

110.

113.

114.

116.

Page 18 of 18

Dukart J, Mueller K, Horstmann A, Barthel H, Méller HE, Villringer A et al (2011)
Combined evaluation of FDG-PET and MRI improves detection and differentiation
of dementia. PLoS One 6(3)e18111. https//doiorg/10.1371/journalpone.0018111

. Horn JF, Habert MO, Kas A, Malek Z, Maksud P, Lacomblez L et al (2009)

Differential automatic diagnosis between Alzheimer's disease and
frontotemporal dementia based on perfusion SPECT images. Artif Intell Med
47(2):147-158. https://doi.org/10.1016/j.artmed.2009.05.001

. Davatzikos C, Shen DG, Gur RC, Wu XY, Liu DF, Fan Y et al (2005) Whole-

brain morphometric study of schizophrenia revealing a spatially complex
set of focal abnormalities. Arch Gen Psychiatry 62(11):1218-1227. https://doi.
0rg/10.1001/archpsyc.62.11.1218

. Magnin B, Mesrob L, Kinkingnéhun S, Pélégrini-Issac M, Colliot O, Sarazin M

et al (2009) Support vector machine-based classification of Alzheimer's
disease from whole-brain anatomical MRI. Neuroradiology 51(2):73-83.
https://doi.org/10.1007/500234-008-0463-x

. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM

Trans Intell Syst Technol 2(3):27. https://doi.org/10.1145/1961189.1961199

. Chu C, Ni YZ, Tan G, Saunders CJ, Ashburner J (2011) Kernel regression for

fMRI pattern prediction. Neurolmage 56(2):662-673. https://doi.org/10.1016/
j.neuroimage.2010.03.058

Rondina JM, Squarzoni P, Souza-Duran FL, Tamashiro-Duran JH, Scazufca M,
Menezes PR et al (2014) Framingham coronary heart disease risk score can
be predicted from structural brain images in elderly subjects. Front Aging
Neurosci 6:300. https://doi.org/10.3389/fnagi.2014.00300

Fu WJ, Carroll RJ, Wang SJ (2005) Estimating misclassification error with
small samples via bootstrap cross-validation. Bioinformatics 21(9):1979-1986.
https;//doi.org/10.1093/bioinformatics/bti294

. Rondina JM, Hahn T, De Oliveira L, Marquand AF, Dresler T, Leitner T et al

(2014) SCoRS-a method based on stability for feature selection and
mapping in neuroimaging. IEEE Trans Med Imaging 33(1):85-98. https://doi.
0rg/10.1109/TMI1.2013.2281398

. Johnson KA, Fox NG, Sperling RA, Klunk WE (2012) Brain imaging in

Alzheimer disease. Cold Spring Harb Perspect Med 2(4):a006213. https://doi.
0rg/10.1101/cshperspect.a006213

Salloway S, Sperling R, Gilman S, Fox NC, Blennow K, Raskind M et al (2009)
A phase 2 multiple ascending dose trial of bapineuzumab in mild to
moderate Alzheimer disease. Neurology 73(24):2061-2070. https.//doi.org/
10.1212/WNL.0b013e3181c67808

Velikova M, Lucas PJF, Samulski M, Karssemeijer N (2013) On the interplay of machine
learning and background knowledge in image interpretation by Bayesian networks.
Artif Intell Med 57(1).73-86. https//doiorg/10.1016/jartmed 201212004

. Golkov V, Dosovitskiy A, Sperl JI, Menzel MI, Czisch M, Sdmann P et al (2016) g-

space deep learmning: twelve-fold shorter and model-free diffusion MRI scans. IEEE
Trans Med Imaging 35(5):1344-1351. https.//doi.org/10.1109/TMI.2016.2551324
Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS et al (2018)
Current applications and future impact of machine learning in radiology.
Radiology 288(2):318-328. https://doi.org/10.1148/radiol.2018171820

. Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning.

The MIT Press, Cambridge. https://doi.org/10.7551/mitpress/3206.001.0001

. Tipping ME (2001) Sparse Bayesian learning and the relevance vector

machine. J Mach Learn Res 1:211-244

. Marquand A, Howard M, Brammer M, Chu C, Coen S, Mourdo-Miranda J

(2010) Quantitative prediction of subjective pain intensity from whole-brain
fMRI data using Gaussian processes. Neurolmage 49(3):2178-2189. https://
doi.org/10.1016/j.neuroimage.2009.10.072

. Phillips CL, Bruno MA, Maquet P, Boly M, Noirhomme Q, Schnakers C et al

(2011) "Relevance vector machine” consciousness classifier applied to
cerebral metabolism of vegetative and locked-in patients. Neurolmage
56(2):797-808. https://doi.org/10.1016/j.neuroimage.2010.05.083

. Franke K, Ziegler G, Kioppel S, Gaser C, the Alzheimer's Disease Neuroimaging

Initiative (2010) Estimating the age of healthy subjects from T1-weighted MRI
scans using kernel methods: exploring the influence of various parameters.
Neurolmage 50(3):883-892. https://doi.org/10.1016/j.neuroimage.2010.01.005

. Stonnington CM, Chu C, Kloppel S, Jack CR Jr, Ashburner J, Frackowiak RSJ

et al (2010) Predicting clinical scores from magnetic resonance scans in
Alzheimer’s disease. Neurolmage 51(4):1405-1413. https:;//doi.org/10.1016/].
neuroimage.2010.03.051

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


https://doi.org/10.1002/hbm.22759
https://doi.org/10.1016/j.neuroimage.2004.03.032
https://doi.org/10.1007/978-3-642-40811-3_39
https://doi.org/10.1016/j.nicl.2013.05.004
https://doi.org/10.1016/j.neurobiolaging.2010.05.023
https://doi.org/10.1016/j.neurobiolaging.2010.05.023
https://doi.org/10.1016/j.neuroimage.2008.10.031
https://doi.org/10.1016/j.neuroimage.2008.10.031
https://doi.org/10.1016/j.neuroimage.2007.09.073
https://doi.org/10.1016/j.neuroimage.2007.09.073
https://doi.org/10.1016/j.dadm.2015.01.006
https://doi.org/10.1016/j.neuroimage.2011.01.008
https://doi.org/10.1016/j.neuroimage.2011.01.008
https://doi.org/10.1006/nimg.2000.0730
https://doi.org/10.1109/BIGCOMP.2017.7881683
https://doi.org/10.1016/j.patcog.2016.10.009
https://doi.org/10.1016/j.patcog.2016.10.009
https://doi.org/10.1016/j.neucom.2016.08.041
https://doi.org/10.4236/ami.2012.22003
https://doi.org/10.1016/j.neuroimage.2013.09.015
https://doi.org/10.11648/j.ijbse.20160406.11
https://doi.org/10.11648/j.ijbse.20160406.11
https://doi.org/10.1016/j.pscychresns.2012.11.005
https://doi.org/10.1023/A:1009715923555
https://doi.org/10.1023/A:1009715923555
https://doi.org/10.1371/journal.pone.0018111
https://doi.org/10.1016/j.artmed.2009.05.001
https://doi.org/10.1001/archpsyc.62.11.1218
https://doi.org/10.1001/archpsyc.62.11.1218
https://doi.org/10.1007/s00234-008-0463-x
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1016/j.neuroimage.2010.03.058
https://doi.org/10.1016/j.neuroimage.2010.03.058
https://doi.org/10.3389/fnagi.2014.00300
https://doi.org/10.1093/bioinformatics/bti294
https://doi.org/10.1109/TMI.2013.2281398
https://doi.org/10.1109/TMI.2013.2281398
https://doi.org/10.1101/cshperspect.a006213
https://doi.org/10.1101/cshperspect.a006213
https://doi.org/10.1212/WNL.0b013e3181c67808
https://doi.org/10.1212/WNL.0b013e3181c67808
https://doi.org/10.1016/j.artmed.2012.12.004
https://doi.org/10.1109/TMI.2016.2551324
https://doi.org/10.1148/radiol.2018171820
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.1016/j.neuroimage.2009.10.072
https://doi.org/10.1016/j.neuroimage.2009.10.072
https://doi.org/10.1016/j.neuroimage.2010.05.083
https://doi.org/10.1016/j.neuroimage.2010.01.005
https://doi.org/10.1016/j.neuroimage.2010.03.051
https://doi.org/10.1016/j.neuroimage.2010.03.051

	Abstract
	Introduction
	Impacts of technology in assisting patients with AD and AD diagnosis
	Comparing the use of various ML classifiers in the diagnosis using MRI
	Comparative study

	Comparing diagnostic efficiency of various multimodal scans using SVM classifier
	Comparative study

	Case studies
	Case study 1: classification of AD using KNN and SVM based on selected slices from 3D MRI
	Dataset
	Preprocessing
	Feature extraction
	Classification
	SVM classification
	KNN classification
	Results
	Inference

	Case study 2: SVM-based classification of neuroimages in AD: straight comparison of FDG-PET, rCBF-SPECT, and MRI data collected from the same individuals
	Dataset
	Methods
	Results
	Inference


	Challenges and future scope
	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

