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Purpose: The purpose of this study was to develop an unsupervised feature learning
approach that automatically measures Meibomian gland (MG) atrophy severity from
meibography images and discovers subtle relationships betweenmeibography images
according to visual similarity.

Methods:One of the latest unsupervised learning approaches is to apply feature learn-
ing based on nonparametric instance discrimination (NPID), a convolutional neural
network (CNN) backbone model trained to encode meibography images into 128-
dimensional feature vectors. The network aims to learn a similarity metric across all
instances (e.g. meibography images) and groups visually similar instances together. A
total of 706 meibography images with corresponding meiboscores were collected and
annotated for the use of network learning and performance evaluation.

Results: Four hundred ninety-sevenmeibography images were used for network learn-
ing and tuning, whereas the remaining 209 images were used for network model
evaluations. The proposed nonparametric instance discrimination approach achieved
80.9% meiboscore grading accuracy on average, outperforming the clinical team by
25.9%. Additionally, a 3D feature visualization and agglomerative hierarchical clustering
algorithms were used to discover the relationship between meibography images.

Conclusions: The proposed NPID approach automatically analysesMG atrophy severity
frommeibography images without prior image annotations, and categorizes the gland
characteristics through hierarchical clustering. This method provides quantitative infor-
mation on the MG atrophy severity based on the analysis of phenotypes.

Translational Relevance: The study presents a Meibomian gland atrophy evaluation
method for meibography images based on unsupervised learning. This methodmay be
used to aid diagnosis and management of Meibomian gland dysfunction without prior
image annotations, which require time and resources.

Introduction

Meibomian gland dysfunction (MGD) is the most
common underlying cause of dry eye syndrome where
Meibomian glands (MGs) do not secrete enough lipids
into the tears. The transillumination and infrared light
are used to appreciate MG characteristics (i.e. measur-
ing the percent of MG atrophy defined as the ratio
of MG loss area to the total tarsal plate area) for
MGD diagnosis.1,2 Standardized MG atrophy grading
scales have been developed to assess the severity of MG
atrophy.3,4

In recent years, artificial intelligence (AI) in
computer vision has arisen with deep convolutional
neural networks (CNNs), which learned predicted
features via supervised learning on a large dataset
of labeled images.5,6 AI has shown huge progress in
the field of medicine, including cancer diagnosis, lung
segmentation, and tumor detection,7–9 especially in the
ophthalmic domain. For example, AI has been applied
to build models to detect subclinical Keratoconus,10,11
which is the leading cause of corneal transplanta-
tion. Different AI systems were developed to detect
the cases of glaucoma and have achieved promis-
ing performance.12,13 AI has also benefited the MG
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Figure 1. Overview of the approach. The nonparametric instance discrimination (NPID) is applied to learn a metric by feeding unlabeled
meibography images, then to discriminate them according to their visual similarity. This approach aims for both measuring the atrophy
severity and discovering subtle relationships between meibography images. There is no required image labelling, serving as ground truth
for training.

atrophy evaluation frommeibography images and have
shown significantly improved performance.14 However,
it is costly, or sometimes even impossible for training
CNNs on large labeled data sets because most of them
have imbalanced label classes (i.e. one class accounts
for almost 90% of the data, whereas other classes
have far fewer samples). Additionally, vision data sets
may contain labeling errors, leading to training issues
for CNN models, especially for the class with a few
samples.

Unsupervised representation learning aims to learn
a robust embedding space from data without human
annotation. Recently, discriminative approaches
especially contrastive learning-based approaches, such
as (nonparametric instance discrimination [NPID],15
MoCo,16 SimCLR,17 etc) have gainedmost ground and
achieved the state-of-the-art on standard large-scale
image classification benchmarks with increasingly
more computation and data augmentations. Based
on our experience from extensive experimentation

(cross-level discrimination [CLD]18), NPID remains
competitive, especially on small data sets.

Furthermore, some unsupervised methods could be
extended to the semisupervised learning (i.e. LLP,19
and CPC version 2),20 by first learning in an unsuper-
vised way and then fine-tuning with few labeled data.
Note that more details are provided in the Discussion
section.

In this paper, NPID15 was applied for image analysis
of MG from meibography to investigate MG features
based on visual phenotypes. Furthermore, the visual-
ization and hierarchical clustering algorithms were
applied to show the feature clustering of meibography
images. Whereas completely ignoring class labels, this
unsupervised network discriminates between individ-
ual instances (e.g. meibography images) and automati-
cally learns the similarity between instances, as shown
in Figure 1. This approach automatically measures
MG atrophy severity from meibography images,
as well as discovers subtle relationships between
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Table 1. Subject Demographics and Meiboscores of the Meibography Image Data Sets

Train Validation Test

Images, N 398 99 209
Patient demographics
Unique individuals, N 308 77 191
Age, average ± SD 25.5 ± 10.9 27.0 ± 12.6 26.4 ± 11.6
Female/total patients, % 63.5 66.6 68.3

Atrophy severity distribution, n (%)
Meiboscore 0 73 (18.3) 18 (18.2) 38 (18.2)
Meiboscore 1 267 (67.1) 67 (67.7) 142 (67.9)
Meiboscore 2 53 (13.3) 13 (13.1) 27 (12.9)
Meiboscore 3 5 (1.3) 1 (1.0) 2 (1.0)

meibography images according to visual similarity.
Additionally, an extensive experimental design was
implemented to assess performance of evaluating MG
atrophy by comparing the results obtained by the
unsupervised learning method with those from a team
of clinicians as well as a supervised learning method.

Method

Development and Test Dataset

Based on a previous study,14 University of Califor-
nia, Berkeley Clinical Research Center recruited adult
human subjects for a single-visit ocular surface evalu-
ation, which included MG imaging for gland atrophy
assessment, during the period from 2012 to 2017. Clini-
cians used the OCULUS Keratograph 5M (OCULUS,
Arlington,WA), a clinical instrument that uses infrared
light with wavelength 880 nm for MG imaging21 to
capture MG images of patients’ upper and lower
eyelids for both eyes. In this study, only upper eyelid
images were used. A total of 706 images were collected
after prescreening to rule out images that did not
capture the entire upper eyelid. Each examining clini-
cian assigned an MG atrophy severity score during
the examination, namely the meiboscore. A previously
published clinical grading criterion3 was applied to
define the MG percent atrophy and corresponding
meiboscores. For example, the percent MG atrophy
0% is regarded as meiboscore 0, less than 33% as
meiboscore 1, less than 66% as meiboscore 2, and the
percent atrophy higher than 66% as meiboscore 3. The
meiboscores were assigned by trained clinicians and
were referred to as “clinical meiboscore.” The subject
demographics are shown in Table 1. Some samples of

meibography image with corresponding meiboscores
are shown in Figure 2.

Nonparametric Instance Discrimination

Figure 3 shows the overall pipeline for the proposed
NPID approach. A standard CNN was utilized to
form a feature vector through each image embed-
ding, which was then normalized with Euclidean
norm (L2-norm) to avoid overfitting and passed to
a nonparametric softmax classifier for discriminating
instances. The concept of attention layer and mask22
were applied to form a scalar matrix representing the
relative importance of layer activations at different 2D
spatial locations with respect to the target task. The
feature embedding was trained to learn a similarity
metric across all instances and group visually similar
instances closer together. This approach does not rely
on image annotation, enabling efficient applications on
real-world datasets without time-consuming labelling.
It therefore scaled well to large data sets and deeper
networks by using noise-contrastive estimation (NCE)
to handle the computation cost that other approaches
struggled with.

Nonparametric Instance Discrimination

Traditionally, most real-world applications (e.g.
animal and car detection) can be developed by provid-
ing labeled data, which reduces it down to a classifi-
cation problem. However, for tasks like MG atrophy
evaluation of meibography images, such labeled data
are not easily generated. The image annotation-related
issues can be solved by learning a feature embedding
function f : X �→ Rd, which maps images to a feature
space of dimension d. The aim was to construct the



Unsupervised Meibography Phenotyping and Classification TVST | February 2021 | Vol. 10 | No. 2 | Article 4 | 4

Figure 2. Meibography images with ground-truth percent atrophy (%) and ground-truth meiboscore (MS). Given a meibography image,
the area of gland atrophy and eyelid are compared to estimate the percent atrophy, and are then converted to meiboscore based on the
criteria in Table 1.

feature embedding in such a way that similar images
ended up close to each other.

The feature embedding was constructed from a
convolutional neural network, fθ parameterized by
θ . To achieve the desired property of having similar
images close to each other, NPID was adopted to train
the network, according to the previous work by Wu et
al.18 Each image in the training data set X was consid-
ered to be a distinct class and the feature outputs of
the network were used to differentiate between image
instances.

The model was trained using a nonparametric
softmax, rather than a more traditional parametric
version, on the output features. The probability of an
image x belonging to the i: th class was then given by:

P (i|v) = exp ( fθ (xi) fθ (x) /τ )∑n
j=1 exp

(
fθ

(
xj

)
fθ (x) /τ

) , (1)

where τ is the parameter to control the density of the
data distribution. The learning objective was given by

minimizing the log-likelihood:

arg−
n∑

i=1

logP(i| fθ (xi)) , (2)

The training loss could interpret how far each
fθ (xi) was formed from all other feature vectors. The
approach aimed tominimize the log-likelihood in order
to force the fθ (xj), which activated the same convolu-
tional filters to be located in such same area in unit
128 dims hypersphere. During the learning process, all
network parameter θ and the feature vector fθ (xi) were
updated via stochastic gradient descent (SGD).23

Weighted KNN Classification

To classify an instance, x̂ denoted in the valida-
tion set with the feature v̂ = fθ (x̂) was computed and
compared with all of the feature vectors fθ (xi) using
cosine similarity: fθ (xi) fθ (x̂). The top k nearest neigh-
bors Nk was then used to predict the class of x̂ via
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Figure 3. Thepipeline for the nonparametric instance discrimination (NPID). A CNNbackbonemodel, which encodesmeibography images
into 128-dimensional feature vectors during the learning procedure. The network aims to learn a similarity metric across all instances and
grouped visually similar instances together. The attention layer and mask are applied to make the network model focus on significant parts
of meibography image.

weighted voting. The class c obtained a total weight:

wc =
∑
i∈Nk

exp
(
fθ (xi) fθ (x̂)

τ

)
· 1 (ci = c) , (3)

Here, exp ( fθ (xi ) fθ (x̂)
τ

) contributes to the weight of
neighbor xi, depending on cosine similarity.Note that τ
= 0.07 was chosen during network learning to carefully
assess for picking the optimal k via the validation
dataset (i.e. the best performance of NPID over the
validation set was with k = 25). We follow the unsuper-
vised as well as self-supervised representation learn-
ing literatures,15–18,24 where cosine similarity has been
used as a metric to describe the distance between two
features on a unit sphere space.

Experiment

Experiments were extensively conducted to demon-
strate the performance of the NPID approach. In
the first experiment, the NPID network model with
different structures, learning processes, techniques were
evaluated. For the second experiment, the NPID
network was compared against the performance of
clinical grading and supervised learning algorithm.

Experimental Protocol

It is essential to evaluate the performance of the
learned network model. The model was first evalu-
ated on the validation set to select the hyperparame-
ters that achieved the best performance. After fixing the
optimal hyperparameters performed on the validation
set, further evaluation was performed on the test set.

As illustrated in Figure 4, when the adapted thresh-

Figure 4. Relaxed meiboscore conversion rule with the adapted
threshold. The percent atrophy to the meiboscore conversion crite-
ria is relaxed with an adapted threshold near the grading transi-
tion limits (0%, 33%, and 66%). The threshold is set to be 0.25%.
Percent atrophy falls in 0% to 0.25%, 32.75% to 33.25%, or 65.75%
to 66.25% is acceptable to have both its ground-truth and adjacent
meiboscores as correct prediction. The colors of the central dots refer
to the ground-truth labels, whereas the colors of the outlines refer
to the appended labels after applied the adapted threshold, which
relaxes the criteria.

old was set to be 0.25%, the classifications for the
images with percent atrophy of 0% to 0.25%, 32.75% to
33.25%, and 65.75% to 66.25% remained ambiguous.
For further clarification, labels of meibography were
defined by using the dot plot as illustrated in Figure 4.
The color of the central dot point refers to the ground-
truth label, whereas the color of the outline refers to the
appended label after the applied adapted threshold.

Because the ground-truth meiboscores were
obtained from converting the percent atrophy of
annotated meibography images using the conver-
sion criteria (i.e. 0–33% = Meiboscore 1; 33–66% =
Meibosore 2; and > 66% = Meibosore 3), the meibog-
raphy images near the grading transition limits (0%,
33%, and 66%) were visually similar and difficult to
classify due to small differences. For instance, when
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Table 2. Checklist of the NPID Approach with Different Network Model Structures, Learning Processes, Data
Argumentations, and Evaluation Techniques (Three Protocols are Illustrated in the Following Experiment)

ResNet 50 Data Argumentation Adapted Threshold Attention Mechanism

Protocol 1
√ √

Protocol 2
√ √ √

Protocol 3
√ √ √ √

Table 3. The Performance of NPID with Three Different Protocols

Protocol 1 Protocol 2 Protocol 3

Evaluation Top 1 (%) Top 5 (%) Top 1 (%) Top 5 (%) Top 1 (%) Top 5 (%)

250 epochs 42.7 ± 0.4 86.3 ± 1.2 56.1 ± 0.5 86.2 ± 2.2 66.6 ± 0.8 91.8 ± 2.1
350 epochs 47.1 ± 0.7 87.3 ± 1.5 57.3 ± 1.3 84.8 ± 1.4 67.3 ± 1.6 93.3 ± 1.3
400 epochs 36.9 ± 1.1 83.7 ± 1.6 52.1 ± 0.9 85.6 ± 1.8 65.2 ± 0.5 90.9 ± 1.7

Thebest performance (protocol 3) achieves the top-1 accuracyof 68.4%and the top-5 accuracyof 6%byadding theadapted
threshold, the attention mechanism and the network model learned with 350 epochs. Noted that the top-1 accuracies are
reported in average accuracy ± standard deviation.

two meibography images are with 32.9% and 33.1%
atrophy, they could be classified as with meiboscore 1
or 2, respectively. Therefore, an adapted threshold was
warranted to reduce classification errors as suggested
previously.15

Network Training Details

ResNet 5025 was adopted as backbone network,
which encoded the output as 128-dimensional vectors
in all of the experiments. The network was trained
using SGD with momentum 0.9 with a batch size of
32 and set the weight decay hyperparameter to 4 ×
105. Learning-rate drop policy was carefully adjusted
to obtain the best performance of the network on
the validation data set. Data-augmentation techniques
were adapted to each meibography image: 400 × 400
pixels were randomly cropped out froma givenmeibog-
raphy image with 420 × 420 pixels, while a center crop
of 400 × 400 pixels was made to meibography images
for both validation and test data sets.

Algorithm Performance

Tables 2 and 3 show different protocol setups and
the performance of each protocol, respectively. ResNet
50 was used as a backbone CNN with an embedded
128 dimensions feature vector. As noted, τ = 0.07 and
k = 25, with an initial learning rate of 0.005 were used
as parameters. The prevalent hyperparameter selection
approach has been applied for unsupervised as well

as self-supervised learning,15,18 where the hyperpa-
rameters are selected according to the labeled data
in the downstream classification task. It can also be
selected according to some criteria, such as normal-
ized mutual information or image retrieval accuracy
in the unlabeled validation set.18 The downstream
classification performance is dependent on a
particular data set and may be sensitive to tau.
However, in the present study, we applied the same tau
value of 0.07 for unsupervised representation learning
over the ImageNet data set as reported in the published
code.15

The network model was trained from scratch
without using any pretrained model in this experiment.
The best performance achieved top-1= 68.4% and top-
5 = 93.6% by adding the adapted threshold and the
attention mechanism. In addition, the network model
is learned with 350 epochs. The training stops when
there is a convergence of loss (i.e. loss is not decreas-
ing much or stabilizing). This implies that the correct
number of the epoch has been achieved. The training
of the network ResNet 50 with 400 epochs maximum
reached a steady level after 400 epochs. The training
was also stopped after 400 epochs in order to prevent
overfitting.

The top-1 accuracy is noted as the conventional
accuracy, referring to the expectedmodel prediction for
the label of the nearest neighbor in the feature space;
whereas the top-5 accuracy refers to the model predic-
tion taking the label of 5 closest neighbors as reference.
It is also worth noting that an epoch was defined as an
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Figure 5. Meiboscore grading performance of clinicians and
algorithm (%). The NPID approach was compared against the clini-
cal team (clinicalmeiboscore),14 the lead clinical investigator,14 and a
supervised learning approach.14 The NPID approach achieves 80.9%
overall grading accuracy with ImageNet pretrained model.

entire data set passing forward and backward through
the neural network in one cycle.

Further investigation found that the best perfor-
mance (protocol 3; see Table 3) achieved top-1 =
67.3 ± 1.6% and top-5 = 93.3 ± 1.3% by adding
the adapted threshold and attention mechanism. The
network model was learned with 350 epochs.

In Figure 5, the NPID approach was compared
against the clinical team (clinical meiboscore), the lead
clinical investigator (LCI), and a supervised learn-
ing approach.14 The NPID approach achieved 80.9%
overall grading accuracy with ImageNet pretrained
model, which outperformed the clinical team grading
by 25.9% and lead clinical investigator by 1.3%. The
NPID approach accuracy without using ImageNet
pretrained model was also provided to show that the
pretrainedmodel benefited the performance by gaining
around 14% accuracy. The ImageNet pretrained
model26 was used on a large set of real-world images,
providing a useful starting point for restoring a
pretrained model. The ImageNet model already had
the ability to adapt features from many tasks or

different kinds of images. It is important to note
that the ground-truth meiboscores were obtained from
the percent MG atrophy, calculated from human-
annotated segmentation masks.

Additional experiments were conducted to show the
grading performance of the proposed method by each
class and the instance average accuracy from 10 runs of
each protocol (see Table 4). These results suggested that
200 epochs were needed to conduct a fair comparison
with the supervised learning approach.14

T-test Analysis

To compare the 10 runs accuracies among differ-
ent settings (LCI, clinical team, and our NPID), t-
tests on the comparisons were performed. The entire
data D (706 images) was divided into train, validation,
and test sets according to 56% / 14% / 30%, respec-
tively. Specifically, images were randomly picked from
each meiboscore based on the meiboscore distribution
(see Table 1 in the manuscript) to avoid data imbalance.
This process was repeated for 10 times and the perfor-
mance of NPID, LCI, and clinician teamwas evaluated
over 10 different test sets.

Accuracies for NPID, LCI, and clinicians are
reported in Table 5. The difference in performance was
statistically significant only between NPID and clini-
cians.

Multiclass Classification

The K-class classification is to categorize the
meibography (MG) data, which is graded by clinicians
based on the atrophy severity (i.e. meiboscore 0= none,
1 = mild, 2 = moderate, and 3 = severe). For 2-class
classification, none and mild MG data are categorized
together, whereas moderate and severe MG data are
grouped. For 3-class classification, only moderate and
severe MG data are assigned to be in the same class,
and contrast to none, mild MG data. The evaluation
protocols are defined in Table 6.

Table 4. Meiboscore Grading Performance of the Proposed Algorithm (%) by Each Class and Instance Average
Accuracy ± Standard Deviation Over 10 Runs

NPID (w/o Pretrained Model) NPID (Pretrained Model)
Top 1 (%) Top 1 (%)

Meiboscore 0 58.0 ± 0.8 71.1 ± 1.1
Meiboscore 1 63.4 ± 1.1 82.4 ± 0.5
Meiboscore 2 74.0 ± 0.6 85.2 ± 1.7
Meiboscore 3 50.0 ± 0.0 50.0 ± 0.0
Instance avg. 63.6 ± 2.3 80.4± 2.1
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Table 5. The Accuracies (%) for Our NPID, LCI, and Clinicians

Confidence P Value (NPID vs.
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Interval (CI) LCI or Clinician)

NPID 74.1 76.5 73.9 81.8 82.1 72.6 83.3 79.8 81.7 80.4 [75.8 – 81.4]
LCI 73.1 77.4 72.4 78.9 76.6 74.4 80.7 76.8 81.9 82.4 [75.0 – 80.0] 0.498
Clinicians 53.4 54.5 52.1 57.9 52.8 58.6 59.3 56.8 58.7 56.4 [54.2 – 58.0] <0.001

Note that P1 to P10 were referred to as our “10 random processes of data selection.” The last column lists the associated
P values from paired t-test between the row approach and NPID. The P value between LCI and the clinician team is < 0.001.
These results demonstrate that our NPID is on par with LCI and significantly better than the clinician team.

Table 6. Evaluation Protocols of 2-, 3-, and 4-Class Classification

2-Class Classification 3-Class Classification 4-Class Classification

Protocol Setting [none, mild] vs.
[moderate, severe]

[none] vs. [mild] vs.
[moderate, severe]

[none] vs. [mild] vs.
[moderate] vs. [severe]

Table 7. The Top-1 Average ± Standard Deviation Accuracy (%) for 2-, 3-, and 4-Class Classification by Each class
of Meiboscore and the Class Average Accuracy

2-Class 3-Class 4-Class

Class of meiboscore 0 92.7 ± 0.5 73.7 ± 1.2 71.1 ± 1.3
Class of meiboscore 1 80.9 ± 0.7 82.4 ± 0.7
Class of meiboscore 2 86.2 ± 1.8 89.7 ± 1.6 81.5 ± 1.8
Class of meiboscore 3 50.0 ± 0.0
Class avg. accuracy 89.5 ± 1.0 82.3 ± 1.2 71.3 ± 1.0
Instance avg. accuracy 85.2 ± 1.9 81.3 ± 2.1 80.8 ± 2.3

Table 7 reported the top-1 accuracy by each class
of meiboscore and the class average accuracy. In the
4-class classification, most wrong predictions of none
were classified as mild, and most wrong predictions of
moderate were misclassified as severe.

By combining these similar atrophy severities (e.g.
moderate and severe) into one superclass, our approach
delivers better performance at coarse-grained catego-
rization.

Feature Visualization

Figure 6 shows the 2D t-SNE27 visualization of
the proposed best feature embedding with ImageNet
pretrained model (see Fig. 5). A total of 209 meibog-
raphy images were used to pass through the network
model and the feature was then squeezed from 128D to
2D. It is easy to find out that some types of meibog-
raphy features were grouped closely or located in the
same area in the unit hypersphere. For example, the
meibography images with a yellow central dot outlined
by red, and red dots are located in the same area in

Figure 6. The 2D t-SNE visualization. A total of 209 meibography
images in the test data are used to pass through the network model
and the feature is collapsed from 128D to 2D. A color is designated
to each feature dot of the meibography image based on the pheno-
types listed in the manuscript.

the unit hypersphere because they have visually similar
phenotypes. Specifically, it is observed that most yellow
dots are located closely in the center of the plot.
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Figure 7. The agglomerative hierarchical clustering is an abstract representation of how images of meibography types are separated in
the feature vector space. Note that the leaves (e.g. meibography images) represent feature vector centroids of 40 training images of each
meibography phenotype (e.g. meiboscore 0, 1, 2, and 3).

Unsupervised Learning of Visual Hierarchies
and Clustering

The agglomerative hierarchical clustering in
Figure 7 was based on the generated feature by
applying a clustering algorithm.28 The leaves represent
feature vector centroids of around 40 training images
of each meibography phenotype (e.g. meiboscores 0,
1, 2, and 3). The agglomerative clustering tree is an
abstract representation of how meibography image
types are separated in the feature vector space. It
also illustrates how visually similar the eight types
(see Fig. 4) of meibography images are to the trained
NPID model. By investigating the clustering tree, it
is easy to see that meibography images with the blue
(meiboscore of 1) and green dot (meiboscore of 0) were
grouped together in the first stage, whereas images with
meiboscore 2 and 3 images were connected. Hierar-
chical clustering from 14 clusters to 4 clusters was
observed through the clustering tree.

Discussion

The present work develops an unsupervised feature
learning approach that automatically measures MG
atrophy severity from meibography images and discov-
ers relationships between meibography images accord-

ing to visual similarity. To the best of our knowledge,
the proposed work is among the first to use unsuper-
vised feature learning to measureMG atrophy severity,
which is distinctive to many of other approaches (e.g.
supervised learning) in evaluating MG atrophy.

Our experiments on the test data set (see Table 1)
confirm the effectiveness of our framework and its
superiority over clinical assessments. The proposed
NPID approach achieved 80.9% meiboscore grading
accuracy on average, outperforming the clinical team
by 25.9% and the LCI by 1.3%. Additionally, another
advantage is that a 3D feature visualization and an
agglomerative hierarchical clustering algorithm are
provided to discover subtle relationships between
meibography images.

In future work, the proposed method could be
extended to the semi-supervised learning by first learn-
ing from the big unlabeled data (706 images in our case)
and then fine-tuning the network on a small fraction
(e.g. 10% of the entire data set) of labeled data. LLP19

suggests that such scenarios can benefit the unsuper-
vised learning and can give an extra boost of perfor-
mance. CPC version 220 shows representation learn-
ing can be used in semi-supervised learning schemes to
drastically reduce the number of labeled images. TVOS
also demonstrates the concept to videos.29

In real-world applications, learned features from
deep learning methods via supervised learning on a
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large annotated data have shown promising perfor-
mance.14 However, obtaining annotated information
on the meibomian gland structure for network learn-
ing is time consuming.2 The advantage of the proposed
work (e.g. unsupervised discriminative feature learn-
ing) is to analyze theMG atrophy and potentially other
features (future work) by incorporating the appropriate
algorithms for analyzing raw and unprocessed images
so that doctors could gain timely impression of MG
features and prognosis of MGD immediately after
image capture. This image analysis technology could
also be applied to other ophthalmic conditions, such
as keratoconus (KC) and glaucoma.10,11 However, in
the proposed work, other factors (e.g. age, gender, and
race) are not considered for analyzing theMG atrophy.
Therefore, future work can investigate how the discov-
ered relationships between meibography images using
theNPID approachmay be influenced by demographic
data and other ocular health-related information to
further our understanding about the potential risk
factors of MGD.
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