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In Electro- (EEG) and Magnetoencephalography (MEG), one important requirement of

source reconstruction is the forward model. The continuous Galerkin finite element

method (CG-FEM) has become one of the dominant approaches for solving the forward

problem over the last decades. Recently, a discontinuous Galerkin FEM (DG-FEM)

EEG forward approach has been proposed as an alternative to CG-FEM (Engwer

et al., 2017). It was shown that DG-FEM preserves the property of conservation of

charge and that it can, in certain situations such as the so-called skull leakages, be

superior to the standard CG-FEM approach. In this paper, we developed, implemented,

and evaluated two DG-FEM approaches for the MEG forward problem, namely a

conservative and a non-conservative one. The subtraction approach was used as

source model. The validation and evaluation work was done in statistical investigations

in multi-layer homogeneous sphere models, where an analytic solution exists, and in

a six-compartment realistically shaped head volume conductor model. In agreement

with the theory, the conservative DG-FEM approach was found to be superior to the

non-conservative DG-FEM implementation. This approach also showed convergence

with increasing resolution of the hexahedral meshes. While in the EEG case, in presence

of skull leakages, DG-FEM outperformed CG-FEM, in MEG, DG-FEM achieved similar

numerical errors as the CG-FEM approach, i.e., skull leakages do not play a role for

the MEG modality. In particular, for the finest mesh resolution of 1 mm sources with a

distance of 1.59 mm from the brain-CSF surface, DG-FEM yielded mean topographical

errors (relative difference measure, RDM%) of 1.5% and mean magnitude errors (MAG%)

of 0.1% for the magnetic field. However, if the goal is a combined source analysis of

EEG and MEG data, then it is highly desirable to employ the same forward model

for both EEG and MEG data. Based on these results, we conclude that the newly
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presented conservative DG-FEM can at least complement and in some scenarios even

outperform the established CG-FEM approaches in EEG or combined MEG/EEG source

analysis scenarios, which motivates a further evaluation of DG-FEM for applications in

bioelectromagnetism.

Keywords: discontinous Galerkin, finite element methods, conservation properties, magnetoencephalography

(MEG), electroencephalography (EEG), dipole, subtraction method, realistic head modeling

1. INTRODUCTION

Together with electroencephalography (EEG),
magnetoencephalography (MEG) is a technique used to
investigate brain activity. EEG and MEG are devoted to
detect the electric potential distribution and the magnetic
field generated by the brain, respectively, with a unique time
resolution (Brette and Destexhe, 2012). An important topic in
many applications of EEG andMEG is the source reconstruction,
i.e., the identification of the sources in the brain responsible
for the signals recorded at the head surface (EEG) or in a
small distance from the head surface (MEG). Moreover, it has
been shown (Fuchs et al., 1998; Aydin et al., 2015, 2017) that
combined MEG/EEG employs the complementary information
of both modalities providing source reconstructions that
outperform the ones provided by each single modality. In order
to compute MEG/EEG source reconstructions, i.e., to solve a
related ill-posed inverse problem of MEG/EEG, the forward
problem has to be solved. Since the accuracy of MEG/EEG
inverse problem solutions depends strongly on the forward
solution, it is fundamental to increase the accuracy of the latter
(Brette and Destexhe, 2012). Furthermore, in a multi-modal
MEG/EEG reconstruction it is desirable to use the same forward
model for both EEG and MEG data. In the EEG case, the
forward problem consists of the evaluation of the electric
potential generated by a source located in the brain by solving
an elliptic partial differential equation of second order (Wolters
et al., 2007). In the MEG case, the magnetic field needs to
be computed exploiting Biot-Savart’s law, which depends on
the EEG solution (Brette and Destexhe, 2012). In simplified
scenarios, such as multi-layer sphere models with piecewise
homogeneous conductivity, analytical solutions are available
(Brette and Destexhe, 2012). In more realistic scenarios, e.g.,
realistically shaped head models, numerical methods have to
be adopted. There is a large variety of numerical methods that
can be employed, among them are boundary element methods
(Mosher et al., 1999; Acar and Makeig, 2010; Gramfort et al.,
2011; Stenroos and Sarvas, 2012), finite volume methods (Cook
and Koles, 2006), finite difference methods (Wendel et al.,
2008; Vatta et al., 2009; Montes-Restrepo et al., 2014) and
finite element methods (FEMs) (Bertrand et al., 1991; Marin
et al., 1998; Schimpf et al., 2002; Drechsler et al., 2009; Nüßing
et al., 2016; Pursiainen et al., 2016). In this work, we deal with
FEMs, which have shown high numerical accuracies with the
possibility to model complex geometries and bioelectromagnetic
properties (e.g., anisotropic conductivity) of the head. In more
realistic simulations, an aspect that should be more carefully
studied is the fulfilling of the conservation of charge law and its

implications on the application at hand. For the EEG, this has
been studied in Engwer et al. (2017), where it was shown that
the phenomenon of skull leakages, which occur as a consequence
of violating the conservation of charge law, can be overcome
by using a discontinuous Galerkin FEM (DG-FEM) instead
of a classical, continuous Galerkin FEM (CG-FEM). Leakage
effects occur when a low conductive compartment of the head,
i.e., the skull, is modeled too coarsely. This leads to scalp and
cerebrospinal fluid elements being erroneously connected via
single skull vertices or edges, a frequent case when segmenting,
for example, children heads with thin skull compartments.
Note that such skull leakage effects can also compromise the
accuracy of transcranial electrical stimulation simulations
(Miranda et al., 2006; Datta et al., 2013; Windhoff et al., 2013;
Wagner et al., 2014), in a reciprocal sense (Wagner et al., 2016).
As a further motivation, DG-FEM provides the basis for the
implementation of a further improved method, the so-called
unfitted discontinuous Galerkin FEM (Nüßing et al., 2016).
This method combines the advantages of using a hexahedral
mesh, whose generation pipeline is less complex than for the
tetrahedral case, with a smooth representation of head tissue
compartments.

In this work, we introduce the first application of DG-FEM for
solving the MEG forward problem. As MEG solutions depend on
EEG solutions, we implement a setup where the same method
(CG- or DG-FEM) is adopted for both modalities, allowing
for a combined EEG and MEG source reconstruction study.
We analyze the accuracy of DG-FEM results in comparison
to the CG-FEM results and investigate the propagation of the
effects of conservation properties on the MEG results, as these
effects have been proven to play an important role for EEG
forward simulations in leaky scenarios. We will show that,
in contrast to the EEG, the accuracy of the forward solution
for the MEG is basically not affected by skull leakage effects.
In fact, the accuracy of DG-FEM forward modeling is in the
same range as for standard CG-FEM. However, because of
the advantages on the EEG side, DG-FEM is an interesting
new approach for combined MEG/EEG source reconstruction
scenarios.

2. THEORY

In this section, after a summary of the EEG and MEG
background, the theory of Discontinuous Galerkin- (DG-)
FEM for solving the MEG forward problem will be presented.
As the MEG forward problem is build on the solution of
the EEG forward problem, a brief section will be about the
latter.
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2.1. Background
Following Hämäläinen et al. (1993) and Brette and Destexhe
(2012), the electric potential distribution and the resulting
magnetic induction generated in the brain can be modeled
through the quasistatic approximation of Maxwell’s equations,
when assuming that the permeability of the tissue in the head is
that of the free space, i.e., µ = µ0,

∇ × E = 0, (1a)

∇ · E =
ρ

ǫ0
, (1b)

related to the electrical part, and

∇ × B = µ0 j, (2a)

∇ · B = 0, (2b)

related to the magnetic part.
In Equation (2a) j represents the total current density

produced by neuronal activity, which, in bioelectromagnetism
(Hämäläinen et al., 1993; Brette and Destexhe, 2012), is split into
two contributions,

j(r) = jp(r)+ js(r), (3)

where jp is the so called primary current, js the secondary or
volume current and r ∈ R3. In neuromagnetism, the primary
current is widely represented as a mathematical point dipole
(De Munck et al., 1988; Murakami and Okada, 2006),

jp(r) = M · δ(r− r0), (4)

where M ∈ R3 stands for the dipolar moment and δ is the
Dirac delta distribution, centered in the dipole position r0 ∈ R3.
The volume current is a passive current that is the result of the
macroscopic electric field on charge carriers in the conducting
medium (Hämäläinen et al., 1993; Brette and Destexhe, 2012),
and

js = σE (5)

holds true (Ohm’s law), where σ indicates the conductivity
profile of the conductive medium. While, for the mathematical
point dipole, the primary current is present only at the source
position, the secondary current flows passively everywhere in the
medium.

2.1.1. The Forward Problem of EEG
To derive the EEG forward problem, we have to consider
Equations (1a) and (2a). FromEquation (1a) we deduce that there
exists a potential u such that

E = −∇u, (6)

so that Equation (5) can be written as

js = −σ∇u. (7)

Applying the divergence to Equation (2a), we obtain

∇ · j = 0. (8)

Combining Equations (3), (7), and (8), we get an inhomogeneous
Poisson equation that, together with the homogeneous Neumann
boundary condition, models the EEG forward problem:

∇ · (σ∇u) = ∇ · jp, in Ω ⊆ R3 (9)

σ∇u · n = 0, on ∂Ω (10)

whereΩ is the volume conductor and n is the unit outer normal
vector on ∂�.

2.1.2. Conservation Properties
A fundamental physical property of the EEG forward problem is
the conservation of charge:

∫

∂K
js · n ds =

∫

K
f dK, ∀K ⊂ �, (11)

where f = −∇ · jp and K is a control volume in�.
For FEMs this property carries over to the discrete solution

only if the test space contains the characteristic function, which
is one in K and zero everywhere else. In general, a conforming
discretization, like CG-FEM, does not guarantee this property,
while the DG-FEM fulfills a discrete analog, see Remark 3.

2.1.3. The Forward Problem of MEG
The solution of the MEG forward problem consists in the
computation of the magnetic induction (flux), Φ , generated by a
dipolar source in the brain. The magnetic flux is computed from
the magnetic field B (B-field):

Φ =

∫

S
B · ds, (12)

where S is the surface of the sensor.
Furthermore, following Biot-Savart’s law, the B-field at a point

r ∈ R3 outside the domain� can be computed as

B(r) =
µ0

4π

∫

�

j(r′)×
r− r′

|r− r′|3
d3r′, (13)

(Hämäläinen et al., 1993; Brette and Destexhe, 2012).
When combining Equations (3), (13), and (4), one obtains

(Hämäläinen et al., 1993; Brette and Destexhe, 2012):

B(r)
(3,13)
=

µ0

4π

∫

�

(

jp(r′)+ js(r′)
)

×
r− r′

|r− r′|3
d3r′

(4)
=

µ0

4π
M×

r− r0

|r− r0|3
−
µ0

4π

∫

�

σ∇u(r′)×
r− r′

|r− r′|3
d3r′

= Bp(r)+ Bs(r).

(14)

Namely, the B-field can be split into two contributions as well,
the primary B-field Bp, which is calculated analytically for a
mathematical point dipole in Equation (13), and the secondary
B-field Bs, which has to be computed numerically when the
electrical potential is computed numerically (since it depends on
the electrical potential u inside the domain�).
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2.1.4. The Forward Problem of MEG for Multi-layer

Homogeneous Sphere Model
In simplified geometries, similarly to the EEG forward problem
(Brette and Destexhe, 2012), there exist analytical solutions for
the MEG forward problem (Sarvas, 1987; Ilmoniemi, 1995).
Sarvas (1987) showed that the magnetic field outside a spherically
symmetric conductor due to internal current sources does not
depend on the profile of conductivity along the radius. He
derived the following analytical MEG solution for a multi-layer
homogeneous sphere model:

B(r) =
µ0

4πF2
(FM× r0 −M× r0 · r∇F), (15)

where a = r − r0, a = |a|, r = |r|, F = a(ra + r2 − r · r0) and
∇F = (r−1a2 + a−1a · r+ 2a+ 2r)r− (a+ 2r + a−1a · r)r0.

Ilmoniemi (1995) could even demonstrate that radial
anisotropy added to a spherically symmetric conductor does not
affect the external magnetic field due to internal sources.

From Equation (15), one can deduce three important features
of the analytical MEG solution for a multi-layer homogeneous
sphere model and a point outside the model:

REMARK 1. Three main properties of analytical MEG solution
for a multi-layer homogeneous sphere model and a measurement
point outside the model (Sarvas, 1987):

1. the solution does not depend on the conductivity profile of the
spherical model

2. if the source is radial, then the B-field outside� vanishes
3. the normal projection of the secondary component of the B-field

gives a null contribution to the total B-field, i.e., Bs(r) · n = 0,
for r outside� (Sarvas, 1987).

2.2. The EEG Forward Problem
In this section we will recall the concepts of CG- andDG-FEM for
the EEG forward problem that are then needed in section 2.3 for
the derivation of the two FEM based MEG forward approaches.

2.2.1. The Subtraction Approach
The mathematical point dipole model introduces a singularity
on the right hand side of the PDE in Equation (9) that can be
treated with the so-called subtraction approach (Bertrand et al.,
1991; Awada et al., 1997; Marin et al., 1998; Wolters et al., 2007;
Drechsler et al., 2009). The subtraction approach assumes that
a non-empty neighborhood �∞ around the source in r0 can
be found with homogeneous conductivity σ∞. The conductivity
tensor σ is then split into two parts,

σ = σ∞ + σ corr , (16)

where σ corr vanishes in�∞. The potential u can also be split into
two contributions,

u = u∞ + ucorr . (17)

The so-called singularity potential u∞ is the solution of the
Poisson equation in an unbounded and homogeneous conductor
with constant conductivity σ∞, and it can be computed

analytically. The correction potential ucorr becomes the unknown
of a new Poisson equation:

−∇ · (σ∇ucorr) = ∇ · (σ corr∇u∞), in Ω ⊆ R3 (18)

σ∇ucorr · n = −σ∇u∞ · n, on ∂Ω (19)

after embedding Equations (16) and (17) in Equations (9)
and (10).

The conforming weak formulation of (18) and (19) presented
in Wolters et al. (2007) reads: Find ucorr

h
∈ Wh ⊂ H1 such that

∫

�

σ∇ucorrh · ∇vhdx = −

∫

�

σ corr∇u∞ · ∇vhdx

−

∫

∂�

σ∞∇u∞ · nvhds (20)

holds true, ∀vh ∈ Wh. Choosing Wh as the space of piecewise
linear, continuous functions give the classical CG-FEM.

The subtraction approach is theoretically well understood. A
deep numerical analysis of the subtraction approach including
proofs for uniqueness and existence has been carried out in
Wolters et al. (2007) and Drechsler et al. (2009).

2.2.2. DG-FEM for the EEG Forward Problem
A discontinuous Galerkin- (DG-) FEM forward modeling
approach has recently been proposed for the EEG by Engwer
et al. (2017). In order to prepare our DG-FEM derivation for the
MEG forward problem in section 2.3, we now recall some main
properties of DG-FEM for the EEG. First, we introduce a volume
triangulation Th(�), which is a a finite collection of disjoint and
open subsets forming a partition of�, where h corresponds to the
mesh-width. Furthermore, the triangulation induces the internal
skeleton

Ŵint := {γe,f = ∂Ee ∩ ∂Ef |Ee,Ef ∈ Th(�),Ee 6= Ef , |γe,f | > 0}
(21)

and the skeleton Ŵ := Ŵint ∪ ∂�. Let V
l
h
be the so-called broken

polynomial space, that is defined as piecewise polynomial space
on the partition Th(�):

V l
h
:= {v ∈ L2(�) : v|E ∈ Pl(E),∀E ∈ Th(�)}, (22)

where Pl denotes the space of polynomial functions of degree l ∈
N. They describe functions that exhibit element-wise polynomial
behavior but may be discontinuous across element interfaces. In
the following we will assume that σ is constant on each element
Ei and denote its value by σi.

Furthermore we recall the definition of jump of a function
u on the intersection between two elements Ee and Ef of the

triangulation Th(�) with outer normal ne ∈ R3 and nf ∈ R3,
respectively:

JuK := u|Eene + u|Ef nf ∈ R3. (23)

Note that the normals ne and nf are opposing vectors, i.e., ne =
−nf . In addition, the weighted average of u on the interface is
defined as

{u} :=
σf

σe + σf
u|Ee +

σe

σe + σf
u|Ef . (24)
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The DG-FEM for solving Equations (18) and (19) then reads:
Find ucorr

h
∈ V l

h
such that

a(ucorrh , vh)+ J(ucorrh , vh) = l(vh),∀vh ∈ V l
h, (25)

with

a(ucorrh , vh) =

∫

�

σ∇ucorrh · ∇vhdx−

∫

Ŵint

{σ∇ucorrh } · JvhKds

−

∫

Ŵint

{σ∇vh} · Ju
corr
h Kds,

J(ucorrh , vh) = η

∫

Ŵint

σ̂γ

hγ
Jucorrh K · JvhKds,

and

l(vh) = −

∫

�

σ corr∇u∞ · ∇vhdx−

∫

∂�

σ∞∇u∞ · nvhds

+

∫

Ŵint

{σ corr∇u∞} · JvhKds, (26)

where hγ and σ̂γ denote local definitions of the mesh width and
the electric conductivity on an edge γ , respectively; while η is a
penalty parameter.

If Equation (25) has been solved toward the correction
potential ucorr

h
, then the full potential uh can be computed as

uh = ucorr
h

+ u∞.

REMARK 2. (Discrete Properties) The proposed discretization
Equation (25) is consistent and adjoint-consistent with the strong
problem Equations (18) and (19), and for a sufficiently large
constant η > 0 it has a unique solution.

REMARK 3. (Conservation Property) For any control volume K ∈

Th(�), Equation (25) fulfills a discrete conservation property

∫

∂K
jcorr,DG
h

· nds =

∫

K
f corrdx, (27)

with the discrete electric flux jcorr,DG
h

=
{

σ∇ucorr
h

}

− η
σ̂γ
hγ

Jucorr
h

K

and f corr = −∇ ·σ corr∇u∞. For h → 0, the jump Jucorr
h

K vanishes

and the discrete flux jcorr,DG
h

converges to the flux jcorr = σ∇ucorr.

As we will see in more detail in section 2.3.3, for the MEG
problem the main quantity of interest is the electric flux, needed
to compute the B-field. This flux, again, is closely related to the
conservation of charge property.

2.3. The MEG Forward Problem
In this section, CG- and DG-FEM formulations for the
MEG forward problem are derived, when a conservative or
a non-conservative flux expression is adopted along with the
subtraction approach.

2.3.1. The Subtraction Approach in the MEG Case
In this section, we will focus on the expression of the secondary
B-field Bs, as the primary B-field Bp is analytically computable.

When inserting Equation (17) into Biot-Savart’s law Equation
(14), we obtain the following expression for the secondary B-field:

Bs(r) = −
µ0

4π

∫

�

(

σ∇(u∞ + ucorr)(r′)
)

×
r− r′

|r− r′|3
d3r′

= −
µ0

4π

∫

�

σ∇u∞(r′)×
r− r′

|r− r′|3
d3r′

−
µ0

4π

∫

�

σ∇ucorr(r′)×
r− r′

|r− r′|3
d3r′

= Bs
∞(r)+ Bs

corr(r). (28)

Both Bs
∞ and Bs

corr are computed by numerical integration on the
volumeΩ .

Since we are dealing with numerical integration, both u∞ and
ucorr are projected in a discrete space,Wh, i.e.,

u∞h =
∑

i

u∞i ϕi, (29)

and

ucorrh =
∑

i

ucorri ϕi, (30)

where (ϕi)i represent a basis of the discrete space Wh, while
u∞
h

and ucorr
h

are the discrete representations of u∞ and ucorr ,
respectively. Note that u∞ has an analytical expression. The
description of the discretization process in both the CG- and
DG-FEM schemes is the content of the following sections.

2.3.2. CG-FEM MEG Forward Problem
In a CG-FEM approach the following expression of the electric
flux (jcorr,CG

h
) is considered:

jcorr,CG
h

= σ∇ucorrh (31)

=
∑

i

ucorri ∇ϕi.

where (ϕi)i is a collection of hat functions, basis ofWh.
The discretization of Bs

∞ and Bs
corr (i.e., B

s
∞,h and Bs

corr,h) are
then:

Bs
∞,h(r) = −

µ0

4π

∑

i

u∞i

∫

�

σ∇ϕi(r
′)×

r− r′

|r− r′|3
d3r′, (32)

and

Bs
corr,h(r) = −

µ0

4π

∑

i

ucorri

∫

�

σ∇ϕi(r
′)×

r− r′

|r− r′|3
d3r′, (33)

respectively. Note that (ucorri )i are given from the EEG forward
computation.
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If we call cn the center of the nth coil, then the discrete Bs
∞,h

and Bs
corr,h evaluated in cn are:

Bs
∞,h(cn) =

∑

i

u∞i

(

−
µ0

4π

) ∫

�

σ∇ϕi(r
′)×

cn − r′

|cn − r′|3
d3r′

︸ ︷︷ ︸

:=S∞ni

,

(34)
and

Bs
corr,h(cn) =

∑

i

ucorri

(

−
µ0

4π

) ∫

�

σ∇ϕi(r
′)×

cn − r′

|cn − r′|3
d3r′

︸ ︷︷ ︸

:=Scorr,CGni

,

(35)
respectively.

S∞ =
(

S∞ni
)

n,i and Scorr,CG =
(

Scorr,CGni

)

n,i
are the secondary

magnetic field integration matrices. Equations (34) and (35) can
be rewritten into matrix equations,

Bs
∞,h = S∞u∞, (36)

and

Bs
corr,h = Scorr,CGucorr , (37)

respectively.
An alternative treatment of Bs

corr involves the already
mentioned conservation of charge property, whose fulfillment is
not guaranteed for the flux in Equation (31). Section 2.3.3 is
dedicated to the description of this alternative.

2.3.3. Conservative Flux DG-FEM MEG Forward

Problem
Following Equation (31), we can consider the analogous formula
for the electric flux in the DG-FEM scheme, i.e.,

σ∇ucorrh =
∑

i

ucorri ∇ϕi, (38)

where (ϕi)i is a basis of V1
h
.

As already mentioned, in general this discrete formulation
of the flux does not verify the conservation of charge property.
Conversely and despite the CG-FEM case, in the DG-FEM
approach we can consider another expression of the discrete
electric flux, i.e.,

jcorr,DG
h

=
{

σ∇ucorrh

}

− η
σ̂γ

hγ
Jucorrh K (39)

that verifies the conservation of charge law, as described in
Remark 3.

The main idea is to embed this conservative current (or
conservative flux, i.e., flux fulfilling the property of conservation
of charge) in the computation of Bs

corr . We have to notice that

jcorr,DG
h

is defined only on the internal skeleton Ŵint (Equation 21)

and not in the entire volume�. In order to integrate jcorr,DG
h

when
computing Bs

corr (Equation 28), we need to project the current

into the volume. One way to do so is to interpolate jcorr,DG
h

in the

space of the lowest-order Raviart Thomas function (RT0). RT0 is
H(div)- conforming and its degrees of freedom (DOFs) are the
evaluations of the basis functions along the projections normal
to the faces of each element, exactly where jcorr,DG

h
is defined. The

space H(div;�) is defined as:

H(div;�) := {v ∈ L2(�)3 :∇ · v ∈ L2(�)}, (40)

and RT0 as (Nédélec, 1980; Fortin and Brezzi, 1991):

RT0(Th(�)) := {v ∈ H(div;�) : (∇ · v )|E ∈ P0(E),∀E ∈ Th(�)}.
(41)

As we are considering hexahedral elements, Pl(E) in Equation
(22) is Ql(E), defined as:

Ql(E) = span{53
i=1x

αi
i : x ∈ E,α ∈ N3, maxαi ≤ l}, (42)

therefore also in Equation (41), we have P0 = Q0. For a regular,
hexahedral mesh with edge length h, as in our case, a RT0 basis
functionψψψk is supported on the two hexahedral elements Ee,Ef ∈
Th(�) sharing the face fk = Ee ∩ Ef with normal vector nk and
centroid x̄k. It can be defined by

ψψψk(x) =

{(

1+ (x−x̄k)·nk
h

)

nk, if x ∈ Ēe ∩ Ēf

0, otherwise.
(43)

For more insights see Fortin and Brezzi (1991) and Nédélec
(1980), and Figure 1, where the basis function ψψψk has been
visualized.

For the discretization of Bs
corr we can start from observing

that the conservative flux999(ucorr
h

) is a function of L2(Ŵint) which
depends on the potential ucorr

h
:

999(ucorrh ) = jcorr,DG
h

=
{

σ∇ucorrh

}

− η
σ̂γ

hγ
Jucorrh K ∈ L2(Ŵint). (44)

If (ϕi)i is a basis of V1
h
, then the correction potential can be

written as

ucorrh =
∑

i

ucorri ϕi, (45)

and, due to linearity, we have

999(ucorrh ) =
∑

i

ucorri 999(ϕi). (46)

If we now apply the projection5RT0 into RT0 to999(ucorr
h

) and we
exploit again linearity, we obtain:

5RT0(999(ucorrh )) =
∑

i

ucorri 5RT0
(

999(ϕi)
)

∈ L2(�). (47)

Finally, Bs
corr can be then approximated as follows:

Bs
corr(r) ≃ −

µ0

4π

∑

i

ucorri

∫

�

5RT0(999(ϕi))(r
′)×

r− r′

|r− r′|3
d3r′.

(48)
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FIGURE 1 | Visualization of a zeroth-order Raviart-Thomas basis function (Right) and its support (Left). The support is made of two hexahedral elements Ee and Ef ,

which are sharing the face fk with unit outer normal nk . The vector valued function is equal to 1 · nk on the face fk and it decays when reaching the other parallel faces.

If we call cn the center of the nth coil, then the discretization of
Bs
corr evaluated in cn reads,

Bs
corr(cn) ≃

∑

i

ucorri

(

−
µ0

4π

) ∫

�

5RT0(999(ϕi))(r
′)×

cn − r′

|cn − r′|3
d3r′

︸ ︷︷ ︸

:=Scorr,DGni

.

(49)

Scorr,DG =
(

Scorr,DGni

)

n,i
is the secondary magnetic field

integration matrix related to the DG-FEM scheme. Equation (49)
can be rewritten into a matrix equation,

Bs
corr,h = Scorr,DGucorr , (50)

where Bs
corr,h represents the discretization of Bs

corr .

REMARK 4. The projection of the ith basis function of the space V1
h

can be described as:

5RT0 (999(ϕi)) =
∑

k

αkiψψψk, (51)

where (ψψψk)k form a basis of RT0 and α
k
i are the DOFs, which can

be derived as

αki = 999(ϕi(x̄k)) · nk, (52)

with x̄k and nk the centroid and the external normal of the face fk,
respectively (see Figure 1).

2.4. Transfer Matrix Approach
As described in the next section, MEG forward computations will
be carried out for a large number of dipole sources. In order to
speed up the many numerically expensive computations of the
secondary B-field Bs for all of these sources, following Wolters
et al. (2004), we adapted and implemented transfer matrix
approaches for all three presented FEM-based MEG forward
modeling schemes.

If Ku = j represents the resulting linear system of the EEG
forward computation discretization, we can formally write

u = K−1j. (53)

If we combine Equations (53) and (50), we obtain

Bs
corr,h = Su = S(K−1j) = (SK−1)j = BMEGj, (54)

where S is a generic secondary magnetic field integration matrix.
BMEG is the so-called MEG transfer matrix and allows computing
Bs
corr,h with a matrix-vector multiplication, instead of solving the

EEG forward problem and applying S.
To compute BMEG = SK−1, we can multiply its definition by

K from the right and then transpose it.
Using the symmetry of K, we arrive at the following matrix

equation,

KBtMEG = St , (55)

which can be solved for each row of S (column of St).

3. METHODS

3.1. Implementation
We implemented the CG-FEM and the two DG-FEM approaches
[non-conservative Equation 38 and conservative flux (Equation
39)] for theMEG forward problem in the Distributed andUnified
Numerics Environment (DUNE)1 (Blatt and Bastian, 2007;
Bastian et al., 2008a,b). DUNE is a modular open source C++
library for solving partial differential equations with mesh-based
methods. In particular, we used the DUNE-ALUGrid module
(Alkämper et al., 2016) for the representation of hexahedral
meshes and the DUNE-PDELab module (Bastian et al., 2010)
for the discretization of the partial differential equations. All
the newest implementations have been gathered in the module
called DUNEuro2, a special module dedicated to solve PDEs in
neuroscience.

3.2. Volume Conductor Models
For numerical accuracy tests of our new CG- and DG-FEM
implementations, we generated 4-layer homogeneous sphere
models for which an analytical solution for the MEG exists
(see section 2.1.4). We used four compartments with different

1http://www.dune-project.org
2www.duneuro.org
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TABLE 1 | Four compartment sphere model.

Tissue Outer radius

(mm)

Conductivity

(S/m)

References

Brain 78 0.33 Ramon et al., 2004

CSF 80 1.79 Baumann et al., 1997

Skull 86 0.01 Dannhauer et al., 2011

Skin 92 0.43 Ramon et al., 2004;

Dannhauer et al., 2011

conductivities in order to evaluate if, besides the analytical
solution in Equation (15), also our numerical implementations
show conductivity-independence of MEG in spherical volume
conductors and because the four compartment model is closer
to a realistic head model as shown in Figure 10. The four
compartments, whose radii and conductivities are shown in
Table 1 (same parametrization as in Engwer et al., 2017), are
rough approximations for skin, skull, cerebrospinal fluid (CSF)
and brain compartments. The spherical domain is represented
via hexahedral meshes with three different resolutions, namely 4,
2, and 1 mm. In this work, we focused on hexahedral meshes in
order to study the scenario where the combination of thin skull
structures and insufficient hexahedral mesh resolutions might
result in so-called skull leakages, as in Engwer et al. (2017). The
numbers of vertices and elements of these meshes are shown in
Table 2.

3.3. Sources and Sensors
As only tangential orientation components produce an MEG
signal in a multi-layer sphere model (section 2.1.4), we generated
8,000 dipoles with purely tangential orientations and unit
strengths. The sources were uniformly distributed inside the
brain compartment on spherical surfaces with 8 different
logarithmically scaled eccentricities reported in Table 3. A source
with eccentricity value of 0 is positioned in the center of the
sphere, while a source with eccentricity value of 1 belongs to the
surface separating brain and CSF compartments. The logarithmic
scaling was chosen, since it is well known that numerical errors
of the subtraction approach increase with decreasing distance
of a source to the next conductivity jump (Wolters et al., 2007;
Drechsler et al., 2009). We therefore expect larger numerical
errors especially for the sources at the highest eccentricity of
0.9873, which only have a distance of 0.99 mm to the CSF
compartment.

As the cortex has a thickness of 4 to 2 mm (Hämäläinen
et al., 1993; Murakami and Okada, 2006) and the sources are
located in the center of the gray matter, the sources which are
most important to analyze are those with a distance of 2 to 1
mm to the CSF compartment. Therefore we will focus on the
results of sources whose eccentricities are between 0.9642 (2.79
mm from the CSF compartment) and 0.9873 (0.99 mm from the
CSF compartment) and especially on those with the middle value
of this range, i.e., 0.9796 (1.59 mm from the CSF compartment).
Furthermore, in praxis (and for the realistic head model used
in this study, section 3.6), sources are usually placed so that
at least one layer of elements is between the source element

TABLE 2 | Parameters (from left to right) of the regular hexahedral meshes of the

4-layer sphere models used for validation purposes: segmentation resolution

(Segm. Res.), mesh width (h), number of vertices and number of elements.

Segm. Res.

(mm)

Mesh width (h)

(mm)

No. of

vertices

No. of

elements

seg_4_res_4 4 4 56,235 51,104

seg_2_res_2 2 2 428,185 407,907

seg_1_res_1 1 1 3,342,701 3,262,312

and the conductivity jump, which is fulfilled for the considered
eccentricities 6 0.9873 in the 1 mm model (seg_1_res_1) and
6 0.9642 in the 2mmmodel (seg_2_res_2). SeeTable 3 for details
on the eccentricities and the corresponding distance from the
CSF compartment.

With regard to the MEG sensors, we used 256 point-
magnetometers outside the sphere model at a fixed radius of 110
mm (see Figure 2).

3.4. Error Measures
We will use the two error metrics that are commonly used for
validating EEG and MEG forward approaches (Meijs et al., 1989;
Bertrand et al., 1991;Marin et al., 1998; van den Broek et al., 1998;
Schimpf et al., 2002; Wolters et al., 2007), namely, the relative
difference measure (RDM%) for topographical errors:

RDM%(fana, fnum) = 50

∥
∥
∥
∥

fnum

‖fnum‖2
−

fana

‖fana‖2

∥
∥
∥
∥
2
, (56)

and magnitude error (MAG%):

MAG%(fana, fnum) = 100

(
‖fnum‖2

‖fana‖2
− 1

)

, (57)

where f is either the secondary B-field Bs or the full B-field
B. Note that we considered vector-magnetic fields (Bp, Bs, B)
without projecting them into radial nor tangential directions,
i.e., without distinguishing between radial and tangential point-
magnetometers.

Statistical results of numerical accuracies will be visualized
with mean curves and boxplots (see Figures 5–9). In the
boxplots, the analysis includes maximum and minimum,
indicated by upper and lower error bars, and thereby the total
range (TR). Furthermore, it includes the interval between upper
and lower quartile, i.e., the interquartile range (IQR), which is
marked by a box with a black dash showing the median.

3.5. A Leaky Model
The study of Engwer et al. (2017) showed for EEG forward
scenarios that DG-FEM can considerably outperform CG-FEM
in skull leakage models, where the sphere model is discretized
with a hexahedral mesh of 2 mm resolution and where at the
same time the thickness of the skull compartment is deliberately
reduced down to 2 mm (seg_2_res_2_r82), so that it contains
many leaky points, i.e., vertices belonging to both an element
labeled as skin and an element labeled as CSF or brain. SeeTable 4
for details. Note that real skull holes are not investigated in this
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TABLE 3 | Source eccentricities and corresponding distances to the CSF compartment.

Eccentricity 0.1 0.5025 0.7487 0.8718 0.9334 0.9642 0.9796 0.9873

Distance to CSF comp. (mm) 77.22 38.80 19.60 9.99 5.19 2.79 1.59 0.99

FIGURE 2 | Visualization of the 256 point-magnetometers used in the sphere model analysis. Radially (Left) and tangentially (Middle) oriented point-magnetometers

have been employed exclusively in section 4.1.1, while in all other studies all the three Cartesian components (Right) of the vector fields Bp, Bs, and B have been

considered.

TABLE 4 | Parameters (from left to right) of the regular hexahedral meshes of the

4-layer sphere models used to investigate the influence of skull leakages on the

presented CG- and DG-FEM MEG approaches: segmentation resolution (Segm.

Res.), mesh width (h), outer radius of the skull (mm) and number of leaky points.

Segm. Res.

(mm)

Mesh width

(h)

(mm)

Outer skull

radius

(mm)

No. of leaky

points

(mm)

seg_2_res_2 2 2 86 0

seg_2_res_2_r82 2 2 82 10,080

study. The sources are the same as previously described. Even
when not expecting similarly substantial error reductions on the
MEG side, we used here the same leakage models as in Engwer
et al. (2017) to investigate the influence of skull leakages on the
presented CG- and DG-FEMMEG approaches.

3.6. A Realistic Head Model
As a proof of concept, we computed one MEG forward solution
using the DG-FEM approach in a more realistic scenario. Based
onMRI recordings of a human head, a segmentation considering
six tissue compartments (white matter, graymatter, cerebrospinal
fluid, skull compacta, skull spongiosa, and skin) that includes
realistic skull openings such as the foramen magnum and the
optic nerve canal was generated. Based on this segmentation,
a six-compartment realistically shaped head model was built,
a hexahedral mesh of 2 mm resolution resulting in 508,412
vertices and 484,532 elements (Figure 10). As this model was
not corrected for leakages, 1,164 vertices belonging to both
CSF and skin elements were found. These leaky points were
mainly located at the temporal bone. More details about the

model and its generation process can be found in Engwer et al.
(2017). Locations and orientations of the sensors were chosen
accordingly to the CTF machine (OMEGA2005, CTF, VSM
MedTech Ltd., Canada), see Figure 10.

4. RESULTS

In this section, the results relative to the evaluation and validation
in multi-layer homogeneous sphere will be presented, followed
by the results of one forward computation on a realistically
shaped head model.

4.1. Validations and Evaluations in
Spherical Volume Conductor Models
In this section, we will validate, compare and evaluate the three
developed and implemented approaches for the MEG forward
problem, namely the CG-FEM and the DG-FEM with non-
conservative (Equations 31, 38) and conservative flux (Equation
39), in spherical volume conductor models.

4.1.1. Preparatory Work Using Analytical Approach
To recall the most important symmetry properties of the MEG
forward problem in spherical volume conductor models, to
prepare the numerical studies below and to enable an easier
interpretation of their results, we first tested and visualized
the properties of the MEG analytical solution for a multi-layer
homogeneous sphere model, as reported in Remark 1. Here, we
consider radial and tangential point-magnetometers, i.e., we have
projected the B-field (Bp,Bs,B) onto the radial n and tangential t
directions at sensor locations (Figure 2).
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FIGURE 3 | (A) Analytical solutions in spherical volume conductor model for

radial point-magnetometers: L2 norm of the primary (Bp, pink) and secondary

(Bs, blue) B-fields (see Equation 58) for tangentially-oriented sources at

logarithmically scaled eccentricities. Values are expressed in Tesla T. (B)

Analytical solutions in spherical volume conductor model for radial

point-magnetometers: L2 norm of the radial full B-field component relative to

the one for the most eccentric source (see Equation 59) for

tangentially-oriented sources at logarithmically scaled eccentricities.

In Figure 3A, we compared, for the tangentially-oriented
sources at logarithmically scaled eccentricities and the 256 radial
point-magnetometers, the L2 norm of primary Bp (in pink) and
secondary Bs (in blue) B-fields, i.e.,

||Bp · n||2, ||B
s · n||2. (58)

We notice that the only contribution to radial point-
magnetometers is given by the primary component of the
B-field, Bs, as proven in Sarvas (1987).

In Figure 3B, we plotted the L2 norm of the full B-field for
radial point-magnetometers normalized to the maximum over all
tested sources, which is achieved for the most eccentric source,
i.e.,

||B · n||2

max ||B · n||2
. (59)

FIGURE 4 | Analytical solutions in spherical volume conductor model for

tangential point-magnetometers: L2 norm of the primary (Bp, pink) and

secondary (Bs, blue) B-fields (see Equation 60) for tangentially-oriented

sources at logarithmically scaled eccentricities. Values are expressed in

Tesla T.

We can see how the magnitude of the full B-field increases for
sources with an increasing eccentricity.

In Figure 4, we investigated the analytical solutions in
the spherical volume conductor model for tangential point-
magnetometers (Figure 2, middle). The Figure shows the L2

norm of the primary (in pink) and secondary (in blue) tangential
B-field components, i.e.,

||Bp · t||2, ||B
s · t||2, (60)

for tangentially-oriented sources at different eccentricities.
In this Figure we can see that, for tangential point-

magnetometers, the deeper the sources are, the more the primary
and secondary B-fields give identical contributions, but with
opposite signs, to the full B-field, i.e., they more and more cancel
each other out. Toward the sphere center, sources become more
and more radial and the full B-field goes down to zero. However,
as Figure 4 also shows, with increasing source eccentricity the
relative contribution of the primary tangential B-field component
increases when compared to the secondary B-field component.
The tangential full B-field projection (i.e., B · t) and, together
with it, the difference between primary and secondary tangential
B-field components (i.e., Bp · t and Bs · t) thus increase with
increasing source eccentricity.

4.1.2. FEM Study 1: Conservative vs.

Non-conservative Flux for DG Approach
We now turn our interest to the validation and evaluation of
our implemented new numerical FEM approaches for the MEG
forward problem in spherical models. We will only consider
tangentially-oriented sources for the validations and evaluations
in the next sections, because, as seen in section 4.1.1, radial
sources do not produce any magnetic field outside spherical
volume conductor models. Following Equations (28) and (14),
we will from now on measure errors of the vector fields
Bs (Figures 5, 6, 7, 9) and B (Figure 8). These errors thus
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include parts from the radial and the two tangential sensor
orientations and thus enable an overall view on theMEG forward
modeling accuracy. On the one hand, radially-oriented sensor
orientations are dominant in realistic MEG sensor configurations
(see Figure 10), while on the other hand, and as seen in section
4.1.1, because of the cancellation effect of primary and secondary
B-fields, tangentially-oriented sensor orientations are especially
delicate numerical test-cases.

In this analysis the focus is on DG-FEM and the necessity of
embedding the conservative flux (Equation 38) in the evaluation
of the secondary B-field Bs. We will thus validate and compare
the DG-FEM MEG forward methods with non-conservative
(Equation 38) and conservative (Equation 39) flux.

The RDM% and MAG% statistical errors can be seen in
Figure 5. Note that only a 4 mm mesh (seg_4_res_4) has been
used, because the lower the resolution, the higher we expect the
difference to be. With increasing source eccentricity, an overall
increase of the RDM% (top row) andMAG% (bottom row) errors
can be observed as shown by the mean error (left column) and
by the boxplot statistics (right column). The boxplots indicate
mainly increasing error statistics with regard to median, total
range (TR), interquartile range (IQR) and also maxima for both
conservative and non-conservative flux implementations. As a
general result, the employment of the conservative flux (in green)
delivers better results than the one of the non-conservative flux
(in dark red). The difference between the two implementations is
more evident with increasing eccentricity of the sources.

Let us now discuss in more detail the eccentricity of 0.9796,
i.e., 1.59 mm from the brain-CSF boundary. Higher eccentricities
do not have practical importance, as already explained in section
3.3. For the eccentricity of 0.9796, the maximum difference of 20
percentage points (pp) in mean RDM% is achieved between the
conservative and the non-conservative DG flux approaches. For
the least eccentric sources, this difference goes down to about 2
pp (see the 0.01 eccentricity in top left subfigure of Figure 5).

With regard to the boxplot of the RDM%, the median values
of the conservative flux case are overall smaller than the ones of
the non-conservative flux. For sources with eccentricity value of
0.9796 the RDM% median difference is greater than 20 pp; the
IQR difference is approximately 15 pp and the TR is constant and
similar for both approaches.

In the MAG% boxplot (right column), the much better
performance of the conservative flux approach is especially
clearly visible. The MAG% median difference reaches 40 pp for
realistic sources of eccentricity 0.9796. For the same sources,
the TRs, IQRs and means are in general large, with a ratio
1:4 between conservative and non-conservative flux values. For
lower eccentricities, we observe overall smaller errors.

4.1.3. FEM Study 2: Convergence of DG Approach
Since we have seen in the last study that the conservative
flux DG-FEM approach (Equation 39) performs remarkably
better than the non-conservative approach (Equation 38), for
the remainder of the paper, we proceed with DG-FEM as
in Equation (49). The third study proposed is about the
convergence of the DG-FEM for computing the secondary B-
field Bs, when the mesh resolution is increased, namely from

the coarsest resolution of 4 mm over 2 mm to the highest
resolution of 1 mm. We studied the behavior of the RDM%
and MAG% errors for 8,000 tangentially oriented and randomly
distributed dipoles at different eccentricities. Results can be seen
in Figure 6.

The RDM% and MAG% error mean curves (Figure 6,
left column) are overall increasing with increasing source
eccentricity, as hypothesized by the theory of the subtraction
approach (Wolters et al., 2007) and well-known already from
EEG results (Drechsler et al., 2009). Most importantly, for
increasing mesh resolution, error statistics improve considerably.
For the most relevant eccentricity of 0.9796, the highest resolved
model (seg_1_res_1) reaches mean RDM% and MAG% errors of
1.5% and 0.1%, respectively. On the right column, we can study
the boxplots of the RDM% and MAG% of the same scenario
analyzed before. Both in the RDM% and MAG% cases, there is
an overall increase of the median, TR and IQR when increasing
the source eccentricity and decreasing the mesh resolution. If we
focus on the 1 mm mesh and 0.9796 eccentricity, the RDM%
median is only around 1.2%; the IQR is 0.8% and the TR reaches
20%. In particular, the IQR for dipoles of eccentricity 0.9796
increases drastically from 0.8% (1 mm) to almost 10% (2 mm)
and 30% (4 mm). The TR behaves similarly. The median MAG%
is extremely low, i.e., ≈0.017%; the IQR is ≈0.8% and the TR is
≈25%. For this eccentricity, we notice a huge difference among
the three mesh resolutions: the medians grow from 0.017% (1
mm), to 2.8% (2 mm), up to 28.6% (4 mm). The same trend is
noticeable for the IQR: 0.8% (1 mm), 7% (2 mm) and 60% (4
mm). However, these values are out of the displayed graph range.
The TR again behaves similarly.

4.1.4. FEM Study 3: Comparison between CG and DG
The fourth analysis performed in this work is a comparison
between CG- and DG-FEM for the MEG forward computation.
RDM% and MAG%s are evaluated both for the secondary B-
field Bs (Figure 7) and the full B-field B (Figure 8), following
Equations (28) and (14), respectively.

In our following result discussion, we focus on the comparison
between the two methods, rather than the performance of each
method alone, which has been done for DG-FEM in section 4.1.3.

With regard to the secondary B-field Bs results, we will first
analyze the mean RDM% curve (Figure 7, top left). In this plot
we can distinguish the three different couples of curves: CG- and
DG-FEM for 1 mm (seg_1_res_1), 2 mm (seg_2_res_2) and 4mm
(seg_4_res_4).

If we focus on the 1 mm analysis, we notice a high accuracy
(up to around 1.5%) for eccentricities smaller or equal to 0.9796
(i.e., 1.59 mm from the CSF compartment). Even if in our current
implementation, CG-FEM achieves slightly better results, the
differences to DG-FEM are below 0.5 pp, so that in summary,
DG-FEM constitutes an interesting alternative to the CG-FEM
approach. Also for lower mesh resolutions of 2 and 4 mm, the
performance of CG- and DG-FEM are very comparable for the
realistic eccentricities up to 0.9796. A similar observation can be
made for the mean MAG% curve, as the general trend for the
three couples of curves (i.e., CG-DG 1 mm, CG-DG 2 mm, CG-
DG 4 mm) is the same as before. When focusing on sources with
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FIGURE 5 | Accuracy comparison for secondary B-field Bs computation (Equation 28) between DG-FEM with non-conservative flux (Equation 38, in red) and

DG-FEM with the conservative flux (Equation 39, in green) in a 4 mm hexahedral sphere model: visualized are the means (Left column) and the boxplots (Right

column) of the RDM% (Top row) and MAG% (Bottom row), for tangentially oriented sources at logarithmically-scaled eccentricities. Dipoles not belonging to the

brain compartment are excluded from the statistics. The dashed green line represents the eccentricity of 4 mm distance to the brain-CSF boundary. Note the different

scaling of the y-axes (Top row).

eccentricity value of 0.9796, the meanMAG% difference between
CG- and DG-FEM remains below 0.11 pp.

As for the boxplots for 1 mm mesh resolution (seg_1_res_1)
and source eccentricity of 0.9796, the median RDM% difference
is≈0.4 pp (≈0.8 and≈1.2% for CG- and DG-FEM, respectively);
the IQR difference is around 0.2 pp (≈0.6 and ≈0.8% for CG-
and DG-FEM, respectively) and the TR difference reaches almost
20 pp (Figure 7, top right). In the same scenario, the MAG%
medians are identically extremely low, i.e., ≈0.015%. The IQRs
also do not differ, while, again the TR difference is around 20 pp
(Figure 7, bottom right).

The results when focusing on the full B-field B in Figure 8

are similar to the ones in Figure 7. Even for the full B-field, both
the CG- and DG-FEM show an overall very high accuracy and a
negligible difference, especially when focusing on the 1 mm study
and source eccentricity of 0.9796. The mean RDM% (Figure 8,
top left) is ≈0.9% for CG-FEM and ≈1.5% for DG-FEM; the
mean MAG% is ≈ −0.015% for CG-FEM and ≈0.1% for DG-
FEM (Figure 8, bottom right).With regard to the RDM%boxplot
(Figure 8, top right), the medians are ≈0.8 and ≈1.15% for CG-
and DG-FEM, respectively; the IQRs are ≈1 and ≈1.2% for CG-
and DG-FEM, respectively, and the TRs are ≈3 and ≈20% for
CG- and DG-FEM. In the MAG% boxplot (Figure 8, bottom
right), we observe identical and extremely low values for the
median (≈0.01%) and for the IQRs (≈0.8%). The difference of
TRs is again bigger (≈20 pp) because of few outliers. Note that in

Figure 8, we have omitted the errors for the lowest eccentricity
of 0.01 because radial sources do not produce any magnetic
field.

4.1.5. FEM Study 4: CG and DG in a Leaky Sphere

Model
Motivated by the EEG results of Engwer et al. (2017),
where DG-FEM could clearly outperform CG-FEM in
skull leakage scenarios, this section is concerned with the
comparison of CG- and DG-FEM for the same scenario,
but for the MEG case. Therefore, a leaky sphere model
(seg_2_res_2_r82) has been constructed using an outer skull
radius of 82 mm (instead of 86 mm as in the previous
sections), resulting in an only 2 mm thick spherical
skull compartment. Then, a 2 mm resolution hexahedral
model has been constructed, resulting in 10,080 skull
leakages. Again, only tangentially-oriented dipoles have
been examined.

In Figure 9, we computed RDM% and MAG% mean curves
(left column) and boxplots (right column) for the leaky skull
spherical model scenario (seg_2_res_2_r82) compared to the
non-leaky skull spherical model scenario (seg_2_res_2).

We observe that, in contrast to the improvement that DG-
FEM could achieve in the EEG case (Engwer et al., 2017), the
skull leakages do not visibly influence the numerical simulation
of the secondary B-field Bs and, since the primary B-field Bp is
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FIGURE 6 | Validation and convergence analysis for secondary B-field Bs computation (Equation 28) of DG-FEM with conservative flux (Equation 39) in a 4 mm

(green), 2 mm (red) and 1 mm (blue) hexahedral sphere model: visualized are the means (Left column) and the boxplots (Right column) of the RDM% (Top row)

and MAG% (Bottom row), for tangentially oriented sources at logarithmically-scaled eccentricities. Dipoles not belonging to the brain compartment are excluded

from the statistics. Dashed lines represent the eccentricities of 4 mm (green), 2 mm (red) and 1 mm (blue) distances to the brain-CSF boundary. Note the different

scaling of the y-axes (Top row).

also not influenced, thereby also the full B-field and thus theMEG
forward problem.

If we observe the plots in the left columns, we notice that the
curves of the leaky scenarios are completely overlaying the curves
of the non-leaky scenarios, both for CG- and DG-FEM and both
for RDM% and MAG%mean curves.

Also in the boxplots we cannot distinguish the behavior of the
RDM% and MAG% in the leaky or non-leaky scenarios.

4.2. DG-FEM MEG Study in a Realistic
Head Model
In the last study, as a proof of concept, we simulated an
auditory N1 MEG signal using the new DG-FEM method
with conservative flux (Equation 39) in the 6 compartment
realistically-shaped head volume conductor model. Following
experimental evidence (Okamoto et al., 2007), the N1 current
dipole was positioned in the secondary auditory cortex and
oriented inwards-pointing and normally to the gray matter
surface. The result is shown in Figure 10. The subfigure on the
left represents a sagittal slice through the head model, color-
coding the 6 tissue compartment with different conductivities.
In the middle and right subfigures, the results for EEG and
MEG forward problem are presented. More precisely, the dipolar
electrical potential map with frontal negativity and right occipital
positivity is visualized on a cropped volume of the hexahedral
mesh together with the underlying source (black arrow). The
normally-oriented B-fieldMEG results at the 275 magnetometers

was interpolated and visualized, showing a dipolar pattern that is
90◦ rotated to the EEG one and, following the right-hand rule, the
negativity (blue) is over central and the positivity over temporal
areas, in line with the experimental results (Hämäläinen et al.,
1993; Okamoto et al., 2007).

5. DISCUSSION

In this paper, we developed, implemented and evaluated one CG-
FEM and two new DG-FEM approaches, a conservative and a
non-conservative one, to solve the MEG forward problem. In
section 2, we provided the mathematical theory for the CG-FEM
and for the two new DG-FEM approaches with conservative
and non-conservative discrete representation of the electrical
flux. We started from the EEG formulation and continued
with the MEG approaches. In section 3, we first described the
implementation of the FEM-based MEG forward approaches
in DUNEuro, a new modular C++ toolbox dedicated to
solve partial differential equations in neuroscience. Furthermore,
we presented the validation and evaluation platform for the
new methods. In section 4, we presented the results of our
analysis.

First, we tested and visualized the symmetry properties of the
MEG analytical solution for a multi-layer homogeneous sphere
model, as described in Remark 1 and as proven by Sarvas (1987).
First of all, radial sources have a zero magnetic field outside a
multi-layer sphere volume conductor model. Then, for tangential
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FIGURE 7 | Accuracy comparison for secondary B-field Bs computation (Equation 28) between CG-FEM (in warm colors) and DG-FEM with the conservative flux (in

cold colors), for different mesh resolutions: visualized are the means (Left column) and the boxplots (Right column) of the RDM% (Top row) and MAG% (Bottom

row), for tangentially oriented sources at logarithmically-scaled eccentricities. Dipoles not belonging to the brain compartment are excluded from the statistics. Dashed

lines represent the eccentricities of 4 mm (green), 2 mm (red) and 1 mm (blue) distances to the brain-CSF boundary. Note the different scaling of the y-axes (Top row).

FIGURE 8 | Accuracy comparison between CG- and DG-FEM for solving the MEG forward problem, i.e., the full B-field B (Equation 14), for different mesh resolutions.

Visualized are the means (Left column) and the boxplots (Right column) of the RDM% (Top row) and MAG% (Bottom row), for tangentially oriented sources at

logarithmically-scaled eccentricities. Dipoles not belonging to the brain compartment are excluded from the statistics. Dashed lines represent the eccentricities of

4 mm (green), 2 mm (red) and 1 mm (blue) distances to the brain-CSF boundary. Note the different scaling of the y-axes (Top row).
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FIGURE 9 | Accuracy comparison for secondary B-field Bs computation (Equation 28) between CG-FEM (in warm colors) and DG-FEM with the conservative flux (in

cold colors), in two different 2 mm hexahedral sphere models: seg_2_res_2 and seg_2_res_2_r82, described in Table 4. Visualized are the means (Left column) and

the boxplots (Right column) of the RDM% (Top row) and MAG% (Bottom row), for tangentially oriented sources at logarithmically-scaled eccentricities. Dipoles not

belonging to the brain compartment are excluded from the statistics. The dashed red line represents the eccentricity of 2 mm distance to the brain-CSF boundary.

Note the different scaling of the y-axes (Top row).

FIGURE 10 | Exemplary EEG and MEG forward computation for an auditory source computed using DG-FEM in a realistically shaped head model. Hexahedral mesh

with 2 mm resolution, 6 compartments, sagittal slice (Left); electric potential distribution visualized on the clipped volume conductor model in the sagittal plane where

the auditory dipole (black cone) lies (Middle); MEG solution interpolated on the radial magnetometers including a volume rendering of the head model (Right).

sources, only the primary B-field contributes to the full B-
field for radial point-magnetometers (Figure 3A). For tangential
sources and tangential point-magnetometers, we additionally
showed that the more eccentric the source is, the more its
primary B-field contributes to the full B-field relative to the
contribution of the secondary B-field. The deeper the tangential
source is, the more the secondary B-field weakens the primary

B-field until for sources in the middle of the sphere model,
where the primary and secondary B-fields totally compensate for
each other (Figure 4 together with Figure 3B). In contrast, the
more eccentric the sources are, the less symmetric the return
currents are and the less their secondary B-field compensates
the magnetic field of the primary current (Figure 4). This is in
line with the fact that the strength of the full B-field for both
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radial and tangential magnetometers is decreasing for decreasing
eccentricities (Figure 3B), as expected by the theory where it is
proven that MEG sensors are blind for radial sources (Sarvas,
1987).

In a second analysis, we studied how large the influence
of a conservative representation of the electrical flux in the
computation of the secondary B-field is by adopting the DG-
FEM is adopted. By comparing the DG-FEM with a conservative
(Equation 39) and non-conservative (Equation 38) flux in a 4mm
multi-layer homogeneous sphere model, the high importance
of DG-FEM with conservative flux could be worked out,
outperforming the non-conservative DG-FEM scheme in all
cases (Figure 5). In light of these results, the conservative flux
DG-FEM was then used in all consecutive studies.

Results from the third study show the convergence of the DG-
FEM numerical solutions toward the analytical solution when the
resolution of themeshes is increased from 4mmover 2mmdown
to 1 mm (Figure 6).

From our comparison studies between CG- and DG-FEM
regarding the secondary and the full B-fields, we first of all
noticed that the accuracy for the 1 mm mesh resolution is
extremely accurate for both methods: the mean RDM% is only
up to≈1.5% and the mean MAG% only up to≈0.1% for sources
with realistic eccentricities of 0.9796 (i.e., 1.59 mm to the next
conductivity jump at the brain-CSF boundary) (Figures 7, 8).
With ≈1.15% median RDM% and ≈0.01% MAG% for DG-FEM
for the 1 mmmesh, also the IQRs are very low. The result is only
slightly influenced by some few outliers, which showed higher
numerical errors. However, these errors might be avoided by
better controlling the source position with regard to the mesh,
for example by only allowing sources in the center of the cortical
hexahedra.

To the best of our knowledge, not many recent studies
on finite element methods applied to solve the MEG forward
problem have been presented, and none of them about DG-
FEM. (Van den Broek et al., 1996) applied a CG-FEM
approach in a 10 cm single-layer homogeneous sphere model
and RDM% errors were measured. The minimum RDM%
found by these authors for far less eccentric sources of 0.95
was 3%. Still, the comparison is not straightforward because
of the different approaches, the different element meshes
(tetrahedrons vs. hexahedrons), and the different source models
which have been used. In general, tetrahedral meshes can
better approximate surfaces but, for realistic head models,
the generation of such models is difficult in practice and
might cause unrealistic model features, e.g., holes in tissue
compartments such as the foramen magnum and the optic
canals in the skull are often artificially closed to allow
constrained Delaunay tetrahedralization (CDT). Furthermore,
CDT modeling necessitates the generation of nested, non-
intersecting, and non-touching surfaces. However, in reality,
surfaces might touch, for example, the inner skull and the outer
brain surfaces. Hexahedral models, as investigated here, have
larger geometry approximation errors, but do not suffer from
the above limitations and can be easily generated from voxel-
based MRI data. However, with new methods like in Nüßing
et al. (2016), such geometry approximation errors can be avoided

without the need of generating geometry conforming tetrahedral
meshes.

van den Broek et al. (1998) used both a sphere model
and a realistically shaped model. In both cases only three
compartments were modeled, namely the brain, the skull and
the scalp (brain and scalp with the same conductivity values,
and skull with a 1:80 conductivity ratio). The authors used a
lower amount of sources and lower mesh resolutions, but locally-
refined tetrahedra meshes. In both scenarios, magnetometer
sensors were covering only the top half of the models.

A CG-FEM MEG forward modeling study in a human
(and rabbit) head volume conductor model was performed
by Haueisen et al. (1995). The authors distinguished 12 or
more homogeneous and isotropic realistically shaped head tissue
compartments and used 2 mm FEM models. Since the focus was
on sensitivity analysis and suppression ratio (i.e., the magnetic
field of radial dipole divided by the one of the corresponding
tangential dipole, was found to be in average 0.19 ± 0.07 in the
realistic human head model) and not on validation in sphere
models like in our study, we can not further compare these results
to our results.

Another example of a CG-FEM and Biot-Savart’s law scheme
used to compute the electric potential and the B-field was
presented by Schimpf et al. (2002). Similar to our approach, the
authors used a 1 mm hexahedral mesh of a 4-layer piecewise
homogeneous and isotropic sphere model. Also the arrangement
of sources and sensors was similar to our work. The main focus
of their work was, however, on source modeling: it was found
that from the different tested source modeling approaches, the
subtraction approach, also used in our study at hand, was the
most accurate one.

In Vorwerk (2016, Ch. 2.10.4), for solving the MEG forward
problem, three different CG-FEM source modeling approaches
(i.e., subtraction, Saint Venant and partial integration) were
compared in a 1 mm hexahedral (and in tetrahedral) meshes.
Both the secondary and the full B-fields were examined
against the analytical solution in a multi-layer homogeneous
sphere model for tangentially oriented magnetometers. Also in
this comparison it was found that the subtraction approach
outperforms the other source modeling methods with regard to
numerical accuracy for all sources apart from the most eccentric
one. The subtraction method is therefore most sensitive to very
close conductivity jumps and thus needs high resolution meshes
especially in the source area, a result which is in line with ours.
Deeper comparisons are again not easy because of different set-
ups, but we are planning a direct comparison of the SimBio3 code
used by Vorwerk (2016) and our DUNEuro implementation in
future studies.

In Vorwerk et al. (2014), a guideline for EEG and MEG
forward modeling using CG-FEM Saint Venant modeling was
presented in realistic head models with a varying number of
layers and conductivity profiles. The main result was that it is
highly recommended to include the CSF and distinguish between
gray and white matter and that, especially for the MEG, the
modeling of skull spongiosa and compacta might be neglected.

3https://www.mrt.uni-jena.de/simbio/index.php/Main_Page

Frontiers in Neuroscience | www.frontiersin.org 16 February 2018 | Volume 12 | Article 30

https://www.mrt.uni-jena.de/simbio/index.php/Main_Page
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Piastra et al. Discontinuous Galerkin FEM for MEG/EEG

Furthermore, the numerical errors of a lower resolved (about
1 million nodes) 6 compartment anisotropic (6CA) model in
reference to a higher resolved (about 2 millions nodes) version
of 6CA were studied and expressed in terms of topography and
magnitude errors: 95% of the sources had an RDM% of less than
2.5% and a MAG% of less than 10%.

Our last study was about the influence of leaky points on
the computation of the secondary B-field when DG-FEM is
adopted (Figure 9). In this analysis we considered two different
multi-layer homogeneous sphere models, namely seg_2_res_2
and seg_2_res_2_r82. The difference between the two models is
that in seg_2_res_2_r82 the thickness of the skull compartment
is deliberately reduced so that 10,080 leaky points are present.
When comparing CG- and DG-FEM in the leaky model (i.e.,
seg_2_res_2_r82) and in the non-leaky model (i.e., seg_2_res_2),
we observed that the results of the computation of the secondary
B-fields are almost identical. This means that the skull leakages
neither cause additional MEG forward modeling errors for DG-
FEM, nor for CG-FEM. The situation is thus different from
the EEG case, where remarkable errors for CG-FEM forward
modeling were shown, while DG-FEM could strongly alleviate
these additional leakage errors (Engwer et al., 2017). For MEG,
in case of tangential sources, the return currents mainly flow
parallel to the inner skull surface in the close environment of
the source, so that the leakages do not affect the overall MEG
forward solution. We have to underline the fact that the results
obtained in leaky scenarios are not to be confused with those
where real holes of a certain diameter, e.g., from trepanation, are
present in the skull compartment. The skull leakages investigated
in Engwer et al. (2017) and, consequently, in this work are due
to erroneous or, in general, poor representation of the skull
compartment and not to real holes in the skull compartment.
Lau et al. (2014) found that MEG signals are influenced by skull
defects such as post-surgical skull openings. They examined the
influence of skull holes in MEG signals via in vivo rabbit brains
experiments, finding that the MEG signal amplitude reduced
by as much as 20%, especially if the source is central under
the skull defect. Their conclusion is that MEG source modeling
requires realistic volume conductor headmodels that incorporate
skull defects. Furthermore, Lau et al. (2016) showed that also
MEG inverse solutions are affected by skull defects. In particular,
ignoring skull defects in the head model during reconstruction
displaced and reoriented sources under a skull defect, and when
skull defects were incorporated in the head model with their
physical conductivity, the location and orientation errors were
mostly eliminated.

A further important aspect to discuss is that, if a combined
EEG and MEG source reconstruction is strived for (Fuchs et al.,
1998; Aydin et al., 2015), the same forward model should be
used for both EEG andMEG, because of considerable advantages
in terms of implementation, accuracy and computational cost
efficiency, as the MEG forward model is also based on the electric
potential and thus the numerical solution of the EEG forward
problem. We therefore employed the same method (CG- or DG-
FEM, with conservative or non-conservative flux representation)
for both EEG and MEG in our work at hand. Accordingly, in
case of EEG or combined MEG/EEG source reconstruction in
possibly leaky head models (e.g., in temporal bone areas or, more

generally, in children investigations), the usage of DG-FEM is
recommended. In fact, DG-FEM clearly improves EEG forward
solutions in leaky models (Engwer et al., 2017) and, at the same
time, delivers reliable and accurate MEG solutions, as shown in
the study at hand.

In this study, we did not evaluate the computational costs
of the CG- and DG-FEM schemes for the computation of
the MEG forward solution. Because of the higher number of
degrees of freedom, DG-FEM is computationally more expensive
than CG-FEM. However, the FEM transfer matrix approach
(section 2.4) considerably reduces the computational costs of
both approaches, so that this aspect gets less relevant for practical
applications.

We now discuss possibilities for further accuracy increase
that we plan to evaluate in our future work. In this study,
sources were just chosen randomly, i.e., the influence of the
source position relative to an element of the discretization was
not yet investigated. It is well known that the combination
of computing leadfields only for the most accurate sources
combined with leadfield inter- and extrapolation techniques for
other sources might not only speed up computations, but might
also further increase numerical accuracy (Yvert et al., 2001;
Vorwerk, 2011). In the DG-FEM scheme, indeed, already in the
EEG forward computation (see Equation 26), the contribution
given by the integral over Ŵint can reach high values when
the source is relatively close to a quadrature point on the
internal skeleton, because of the singularity in ∇u∞. Moreover,
in Drechsler et al. (2009), an analytical expression for ∇u∞ was
derived for isotropic and anisotropic conductivity distributions
in the source space. A further future goal will thus be its
implementation and use to further decrease the numerical errors
in our FEM implementations, both on the CG- and DG-
FEM sides. In addition, the degrees of polynomials in V1

h
can

be increased, together with the order of the Raviart-Thomas
function space used to extend the conservative flux into the
volume of each element. On the other hand, increasing the
order of function spaces results in increased computational costs,
so this intervention should be treated carefully. Furthermore,
the DG-FEM constitutes the first step for the UDG-FEM
implementation. This method, already tested in an EEG study
(Nüßing et al., 2016), reduces the geometrical error of the forward
simulations in hexahedral models while drastically decreasing the
computational cost and thus its application to the MEG forward
modeling represents an interesting future goal.

Overall the newly implemented conservative flux DG-FEM
scheme offers an interesting new EEG and MEG forward
modeling approach. It can be used especially in leakage scenarios
and, in general, for comparison purposes, not only in EEG
and MEG source analysis, but also in bioelectromagnetism
applications, i.e., including also the simulation of transcranial
electric and/or magnetic stimulation (Miranda et al., 2006; Datta
et al., 2013; Windhoff et al., 2013; Wagner et al., 2014).

6. CONCLUSIONS

We presented theory, validation and evaluation of three finite
element method (FEM) approaches for the MEG forward
problem, namely the continuous Galerkin FEM (CG-FEM), as
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well as two new approaches, the discontinuous Galerkin FEM
(DG-FEM) with a conservative and a non-conservative flux
implementation. All three methods have been implemented
in the DUNEuro software module. Statistical validations and
evaluations have been performed on multi-layer homogeneous
sphere models represented via hexahedral meshes and the
subtraction approach has been adopted as source model.
DG-FEM with conservative flux implementation, i.e., a main
feature of a DG-FEM discretization, turned out to be superior
to the non-conservative flux variant. The new DG-FEM
method showed proper convergence behavior with increasing
mesh resolution. When compared to the CG-FEM, DG-
FEM provided results that are in a comparable range of
high accuracy. Furthermore, both methods are able to model
realistic head volume conductor models with their tissue
inhomogeneities and anisotropies. In contrast to EEG studies,
the so-called skull leakage effects did not play a crucial
role for MEG. However, for EEG or combined MEG/EEG
source analysis scenarios, DG-FEM offers an interesting new
alternative to CG-FEM, considering the importance of a
high accuracy of the forward problem solution in MEG/EEG
source reconstruction. Finally, the DG-FEM MEG forward
simulation in a realistic head model for an auditory source
resulted in EEG and MEG topographies that are in line
with practical findings in the field of auditory evoked
responses.
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