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Abstract

Motivation: Integrative multi-feature fusion analysis on biomedical data has gained much attention recently. In
breast cancer, existing studies have demonstrated that combining genomic mRNA data and DNA methylation data
can better stratify cancer patients with distinct prognosis than using single signature. However, those existing meth-
ods are simply combining these gene features in series and have ignored the correlations between separate omics
dimensions over time.

Results: In the present study, we propose an adaptive multi-task learning method, which combines the Cox loss task
with the ordinal loss task, for survival prediction of breast cancer patients using multi-modal learning instead of per-
forming survival analysis on each feature dataset. First, we use local maximum quasi-clique merging (lmQCM) algo-
rithm to reduce the mRNA and methylation feature dimensions and extract cluster eigengenes respectively. Then,
we add an auxiliary ordinal loss to the original Cox model to improve the ability to optimize the learning process in
training and regularization. The auxiliary loss helps to reduce the vanishing gradient problem for earlier layers and
helps to decrease the loss of the primary task. Meanwhile, we use an adaptive weights approach to multi-task learn-
ing which weighs multiple loss functions by considering the homoscedastic uncertainty of each task. Finally, we
build an ordinal cox hazards model for survival analysis and use long short-term memory (LSTM) method to predict
patients’ survival risk. We use the cross-validation method and the concordance index (C-index) for assessing the
prediction effect. Stringent cross-verification testing processes for the benchmark dataset and two additional data-
sets demonstrate that the developed approach is effective, achieving very competitive performance with existing
approaches.

Availability and implementation: https://github.com/bhioswego/ML_ordCOX.

Contact: guanghui.liu@oswego.edu

1 Introduction

Breast cancer has been one of the most common form of diseases
worldwide. Reported data emphasize the importance of a more pro-
found understanding of the factors that trigger breast cancer and
contribute to its development. Genetic alterations driven by multiple
factors motivate frequent applications to identify biomarkers of
breast carcinoma progression. Two ‘omics dimensions easy to meas-
ure refer to DNA methylation and mRNA expression processes.
DNA methylating process and mRNA levels exhibit differential
expressions in a variety of tissues (Suzuki et al., 2012). To elucidate
the interacting mechanisms of various genomics-related characteris-
tics, more sophisticated modeling and analysis processes are
required. It is noteworthy that the causal associations between DNA
methylation information and gene expression data receive wide
interest and analysis (Anjum et al., 2014; Jiao et al., 2014; Yang

et al., 2014). Methylation’s and mRNA’s influence in cancer have
been introduced with great success. mRNA epigenetic regulating
processes via DNA methylation at CpG sites can be maintained,
with methylating patterns termed as epigenetic markers (Lobo,
2008).

In early studies on cancer prognosis, the use of single-feature bio-
markers was often performed. Yet in the mentioned researches,
some useful Supplementary Information between different data
modalities was ignored. With the advances of modern genomic tech-
nologies, integrative analysis on heterogeneous data to find import-
ant information for diagnosis, staging and prognosis of cancers has
received considerable attention (Jeong et al., 2015; Kim et al., 2017,
2018). Multi-feature fusion analysis is receiving widespread atten-
tion from pathologists in practical clinics-related affairs. Some stud-
ies have explored a combination of different genomic biomarkers
for survival analysis. Kim et al. (2018) proposed an integrative
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robust pathway-based directed random walk (DRW) method on sur-
vival prediction processes of breast carcinoma utilizing the inter-
action between gene expressing state and DNA methylating process.
Yuan et al. (2012) integrated image and genomic records for
improving the survival prediction of breast cancer cases. Cheng
et al. (2017) constructed an emerging framework capable of predict-
ing the survival outcome of renal cell carcinoma cases by combining
image features and gene expression features. As indicated by the
aforementioned existing researches, different forms of data comple-
ment each other and present more effective case stratification if
employed jointly. Though the combination of genomic features is
capable of more effectively predicting the clinical evolution of car-
cinoma cases, simple combinations of the mentioned characteristics
are likely to present redundant characteristics, thus reducing the pre-
diction effect, so that some feature selection process is critical to
multimodal feature fusion. In previous research, the multimodal
data were commonly linked, and subsequently conventional feature
selection approaches were adopted for selecting the parts associated
with carcinoma prediction.

In clinical practice, pathologists make a diagnosis and predict
evolution by clinical examination. The clinics-related behaviors of
breast carcinoma are significantly diverse, covering aggressive meta-
static disease and slowly developing localized tumors (Gulati et al.,
2014). Thus, prediction-related biomarkers are critical to split cases
for personalized carcinoma management, which could avoid over
treatment or under treatment (Chen et al., 2015). For example,
those patients classified in high-risk groups may benefit from more
aggressive therapies, closer follow-up and more advanced care plans
(Kim et al., 2004; Yu et al., 2016). Cox proportional hazard model
(Lin et al., 1993) is one of the most popular survival prediction
model. Recently, based on the Cox model, several regularization
approaches have been proposed in the literature. The Least Absolute
Shrinkage and Selection Operator COX model (LASSO-COX)
(Ryall et al., 2017; Shao et al., 2018; Tibshirani, 1997) applies the
lasso feature selection method for selecting parts associated with
carcinoma prediction. Random survival forests (RSF) (Ishwaran
et al., 2008) calculates a random forest with the log-rank test as the
splitting standard. It determines the cumulative hazards of the leaf
nodes while averaging them over the totality of elements. Cox re-
gression with neural networks by a one hidden layer multilayer per-
ceptron (MLP) (Xiang et al., 2000) was proposed to replace the
linear predictor of the Cox model. Some novel networks were sug-
gested to be capable of outperforming typical Cox models (Amiri
et al., 2008). DeepSurv (Katzman et al., 2016; Katzman et al., 2018)
refers to a deep Cox proportional hazards neural network as well as
a survival approach to model interacting processes of a case’s covari-
ates and treatment modalities for providing individual treatment
suggestions. DeepSurv is developed upon Cox proportional assump-
tion with a cutting-edge deep neural network. MTLSA (Li et al.,
2016) is a recently proposed model which regards survivL study to
be a multi-task learning issue. It transforms the problem into several
binary classifying processes, and employs a multi-task learning ap-
proach to model the event probability at different times. Though
much progress has been made using above approaches, Yet the pre-
diction performance of the previously proposed approaches remains
far from satisfying, and many areas remain for subsequent advance-
ment. In addition, the afore mentioned approaches assume that the
survival data of one patient is not determined by others, thereby los-
ing the robust ordinal association of the survival times of a range of
cases.

Motivated by all the previously mentioned considerations, we
present a novel method for survival prediction of breast cancer using
bidirectional Long Short-Term Memory (biLSTM) (Hochreiter and
Schmidhuber, 1997) ordinal Cox model network from gene mRNA
expression and DNA methylation multi-modal data. In this model,
the original Cox losses are combined with the auxiliary ordinal
losses as a multi-task loss. The losses of auxiliary tasks added to the
original objective help to improve the ability to optimize the learn-
ing process in biLSTM training and regularization. Because the per-
formance of multi-task systems strongly depends on the relative
weight between the losses of each task, adjusting these weights

manually is a difficult and expensive process, which makes multi-
task learning difficult in practice. So, we use an adaptive approach

to multi-task learning which weighs multiple loss functions by con-
sidering the homoscedastic uncertainty of each task. This allows us
to learn all kinds of quantities in the regression settings of different

units at the same time. This study demonstrates the effective proper-
ties of the developed approach through cross validation tests on the
benchmark dataset.

2 Materials and methods

2.1 Benchmark datasets
In this study, the used survival analysis benchmark datasets includ-
ing gene expression data, DNA methylation data and clinical data.
The clinical data are included in the main clinical file downloaded

from The Cancer Genome Atlas (TCGA) (Tomczak et al., 2015),
which provides an extensive collection of genomics and clinical out-

come data for large cohorts of patients of more than 30 types of can-
cers. The main files contain 1097 breast cancer patients’ clinical
annotations and information. In our case, two clinical variables are

used: Overall Survival Status (1 if the patient deceased, 0 if he/she is
living at the time of the last follow-up) and Overall Survival

(Months), which represent the number of months between diagnosis
and date of death or last follow-up. In clinical data, patients with
missing follow-up were excluded.

The gene expression data and DNA methylation data of breast
cancer cases pertain to the TCGA dataset of the Broad Institute

GDAC Firehose (Deng et al., 2017). Gene expression information
from mRNA sequence consisted of 20 533 genes. mRNA expression

profiles received the transformation from Illumina HiSeq 2000
RNA-seq readcounts to normalized reads per kilobase per million
(RPKM). This study acquires DNA methylation data as a gene-

related characteristic of 20 106 genes through the selection of the
probe exhibiting a minimal relation to expressing information for
the respective gene. This study removes genes achieving genes

expressing values of 0. Gene expression data, DNA methylation
data and clinical data were merged and filtered to keep only match-

ing samples. This study removes cases with survival months not
recorded or not correctly recorded having negative data. For the lat-
ter reason, among 1097 cases, this study extracts 485 instances that

comprised both mRNA sequencing and DNA methylation informa-
tion. The benchmark dataset including gene data and survival data

was obtained. Table 1 lists the gene- and clinic-related features for
the selected cases.

A challenging point facing the present research is that other sig-
nificant cohorts of breast cancer cases with matched DNA methyla-
tion and gene expression information are lacking. Thus, this study

firstly applies the cross-validation process in the respective steps of
downstream machine learning research, then adopts a second data-
set to validate the efficacy of the proposed method.

Table 1. Gene and clinical characteristics of breast cancer

Characteristics Summary

Instance no. 485

Gene no.

Methylation 20 106

mRNA 20 533

Survival status

Living 413

Deceased 63

Follow-up (months) 0.03–282.69

Age (years)

Range 26–90

Median 57.23
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2.2 Gene feature extraction
The large number of genes in mRNA and methylation data posed a
challenge to obtaining sufficient statistical power. Recently, a
weighted network mining algorithm termed as local maximum
quasi-clique merging (lmQCM) (Cheng et al., 2017) has been devel-
oped and received favorable results when applied in gene co-
expression research. lmQCM could detect weak quasi-clique mod-
ules in weighted graphs with applications in functional gene cluster
discovery. This algorithm features a greedy approach that uses hier-
archical clustering and does not allow overlap between modules,
Meanwhile, it allows genes to be shared among multiple modules.
This is consistent with the fact that genes often participate in mul-
tiple biological processes. In addition, lmQCM can find smaller
coexpressed gene modules that are often associated with structural
mutations such as copy number variation in cancers. Another well-
known gene clustering algorithm is weighted gene co-expression net-
work analysis (WGCNA) (Langfelder and Horvath, 2008).
WGCNA is a powerful technique used to extract co-expressed gene
networks from gene expressions, and is widely used in genomic data
analysis.

In our study, we tested the effectiveness of the methods of
lmQCM and WGCNA respectively. By comparing the effects, we
chose lmQCM as gene feature extraction method. Instead of focus-
ing on individual genes, we firstly use the lmQCM algorithm to clus-
ter genes into coexpressed modules, then summarized each module
as an eigengene. The lmQCM algorithm has four parameters c, t, a,
b. Among these parameters, c is the most influential, as it determines
if a new module can be initiated by setting the weight threshold for
the first edge of the module representing a subnetwork. In the
lmQCM algorithm, the absolute values of the spearman correlation
coefficients between expression profiles of genes are transformed
into weights using a normalization procedure adopted from spectral
clustering. Thus, lmQCM algorithm yields 17 coexpressed gene
modules (features) for methylation data and 116 coexpressed gene
modules for mRNA data. It is worth noting that to avoid overfitting,
we applied gene feature selection methods to the training set and
test set in cross-validation respectively.

2.3 Ordinal Cox model
In survival analysis, prediction of the time duration until a certain
event occurs is the goal of the task being modeled and the death of a
cancer patient is the event of interest in our study (Kourou et al.,
2015). Cancer patients in our study can be divided into two catego-
ries, i.e. censored patients and non-censored patients. For censored
patients, the death events were not observed for them during
the follow-up period, and thus their genuine survival times are lon-
ger than the recorded data; while for non-censored patients, their
recorded survival times are the exact time from initial diagnosis
to death. We use a triplet ðxi; ti; diÞ to represent each obser
vation in survival analysis, where xi is the feature vector, ti is the
observed time and di is the censoring indicator. Here, di ¼ 1 or
di ¼ 0 indicates a non-censored or censored instance, respectively.

The primary goals in survival analysis are estimating the survival
function and hazard function (Wang et al., 2019), both of which can
be used to model the distribution of the event time over the timeline.
Survival function sðtjxÞ represents the probability that the event has
not happened earlier than a specified time t (Lee and Wang, 2003).
We define O as the variable of the true occurrence time for the event
of interest and PrðOÞ is the probabilistic density function (P.D.F.) of
the true event time. So we have,

sðtjxÞ ¼ PrðO � tjxÞ (1)

By defining the survival function sðtjxÞ as the probability that a
patient will survive after time t, the hazard function that can assess
the instantaneous rate of death is defined as following:

h tjxð Þ ¼ lim
Dt!0

Prðt � O � t þ DtjO � t; xÞ
Dt

(2)

where x ¼ ðx1; x2; � � �; xnÞ corresponds to the covariate variable of
dimensionality n. Among the hazards modeling methods, cox

proportional hazard model (Lin et al., 1993), which is built based
on the hypothesis that the hazard ratio between two instances is
time-independent, is defined as:

h tjxÞ ¼ h0 tÞ exp ðhTxÞ
��

(3)

Here, h0ðtÞ is the baseline hazard, and hTx is called survival
function, in which h ¼ ðh1; h2; � � �hnÞ can be estimated by minimiz-
ing its corresponding partial likelihood function. The partial likeli-
hood is defined as follows:

l hð Þ ¼
Y

i:di¼1

exp ðhðtijxiÞÞP
j2RðtiÞ exp ðhðtjjxjÞÞ

(4)

where ti denotes the event time, di is a binary value indicating
whether the event happened or not, and RðtiÞ denotes the set of all
individuals at risk at time ti, which represents the set of patients that
are still at risk before time ti. Therefore, the coefficient vector can be
learned via minimizing the negative partial log-likelihood function
( LCox) of the Cox model, which is defined as following (Sy and
Taylor, 2000):

LCox hð Þ ¼ �
Xn

i¼1
di hTxi � log

X
j2RðtiÞ

exp ðhTxjÞ
� �

(5)

Although we could use the above Cox model to directly make
survival prediction, it does not take the ordinal survival information
between different cases (e.g. the survival time for case A is longer
than that for case B) into consideration. In the hazard ratio-based
model, the ordinal relationship of the hazard risk between patient
iand patient jcan be easily derived by calculating the ratio (i.e. recij):

recij ¼
hðtjxiÞ
hðtjxjÞ

¼
h0

�
tÞ exp ðhTxiÞ

h0

�
tÞ exp ðhTxjÞ

¼ exp ðhT xi � xjð ÞÞ (6)

In practice, if recij � 1, the survival time for patient i should be
shorter than that for patient j, and vice versa. By utilizing the above
ordinal relationship indicated by Cox model, we design a ranking
loss function (LordÞ to capture the ordinal survival information
among different patients as follows:

Lord hð Þ ¼ �
Xn

i¼1

X
j 6¼i

I�maxð0;1� recijÞ

¼ �
Xn

i¼1

X
j6¼i

I�maxð0; 1� exp ðhTðxi � xjÞÞ (7)

where I¼1 if the survival time for patient i is shorter than that for
patient j. Otherwise, I¼0.

By combining the Cox negative partial log-likelihood function
LCox with the above ordinal loss Lord, the weighted sum of the losses
can be formulated as a multi-task model. Numerous existing
approaches learning multiple tasks at the same time employ a naive
weighted sum of losses, in which the loss weights are uniform, or
altered in a crude and manual manner. However, the model effect
exhibits extreme sensitivity to weight selecting process. The afore
mentioned weight hyper-parameters can be tuned at high costs.
Thus, a more convenient approach capable of learning the optimal
weights is required. We developed a method to integrate several loss
functions for learning objectives in an adaptive manner.

2.4 Adaptive weighting losses
In this study, we use gene expression and methylation features to
make survival predictions for breast cancer patients. Our main task
is obtaining the training model. The main task has a corresponding
loss Lmain, which can be the expected return loss used for calculating
the policy gradient. The present study employs the Cox negative par-
tial log-likelihood function as the main loss Lmian, i.e. Lmain¼LCox.
To improve data efficiency, besides the main task, one has access to
one or more auxiliary tasks that share some unknown structure with
the main task (Papoudakis et al., 2018). In this study, the ordinal
survival deep network model is employed as an auxiliary task, and
the ordinal loss can be used as auxiliary loss of this auxiliary task,
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i.e. Laux¼Lord. Our goal is to optimize the main loss Lmian.
However, auxiliary tasks are commonly used to help to learn a good
feature representation. We can combine the main loss with the loss
from the auxiliary tasks as:

Lðh; k1; k2Þ ¼ K1ðk1ÞLmainðhÞ þ K2ðk2ÞLauxðhÞ (8)

where h is the set of all training model parameters, and K1;K2 are
the weights for the main task and the auxiliary task respectively. Let

KiðkiÞ ¼ e�ki ði ¼ 1;2Þ, in which k1, k2 are the weight variables with
an initial value of 0. Under the intuition that modifying h, k1 and
k2 to minimize L will improve Lmain and Laux if the two tasks are
sufficiently related. We propose to modulate the weight variable
k1; k2 at each learning iteration (epoch) t by adding a custom-multi-
loss layer in the deep network. Given that ht is the set of all model
parameters at training step t, and k1t, k2t are the weight variables at
step t, we assume that we update the parameters ht, k1t and k2t using
gradient descent on this combined objective:

htþ1 ¼ ht þ arht
L ht; k1t; k2tð Þ

k1 tþ1ð Þ ¼ k1t þ ark1t
L ht; k1t; k2tð Þ

k2ðtþ1Þ ¼ k2t þ ark2t
L ht; k1t; k2tð Þ (9)

where a is the gradient step size, and r denotes the gradient of the
loss function L. At each optimization iteration, we can efficiently
approximate the solution to argminðLÞ. The weights are discour-
aged from decreasing too much by the negative exponential func-
tions. The modeling task-dependent weighting can improve the
model’s representation and the performance of each task when com-
pared to separate model trained on each task individually.

2.5 Flowchart of system algorithm
Figure 1 shows the algorithm process of our proposed method.
There are several stages including the gene co-expression cluster
stage, main/auxiliary biLSTM network stage and the COX model
stage etc. In the gene co-expression cluster stage, the feature dimen-
sions of the mRNA and methylation data can be reduced. lmQCM
algorithm is used to cluster genes, and so mRNA and methylation
eigengenes are obtained respectively. The directly concatenated
eigengenes of mRNA and methylation will be main task input fea-
tures for the machine learning network to train the model.
Meanwhile, we also use the concatenated eigengenes as auxiliary
task input. In the main task, multiple biLSTM layers,

timeDistributed layers, dropout layers and full connected layers are
used to predict patient survival risk with the negative partial log-
likelihood function, and then the main loss (i.e. Lmain) is obtained.
In the auxiliary task, we use one auxiliary biLSTM layer and one
fully connected layer to obtain the ordinal loss (i.e. auxiliary loss
Laux). We designed a custom multi-loss layer which can combine the
main loss with the auxiliary loss: K1ðk1tÞLmain þ K2ðk2tÞLaux at each
learning iteration t. We use a proposed adaptive optimization iter-
ation method to tune the weight variables (k1t, k2t) of the main and
auxiliary loss. Finally, through iterative training, the deep cox haz-
ard model is built for survival analysis to ensure that the ordinal re-
lationship among the survival time of different patients can be
preserved. We termed this multi-task loss ordinary COX model pro-
cedure as ML_ordCOX.

2.6 Evaluation indexes
This study assesses the performance of the developed approach and
other comparing method using Concordance index (C-index). C-
index quantifies the fraction of all pairs of cases with predicted sur-
vival times ordered in a correct manner as:

C� index ¼ 1

k

Xm

i¼1

X
j:ti < tj

IðFðxiÞ < FðxjÞÞ (10)

where k denotes the set of validly orderable pairs when ti < tj;
k represents the number of comparable pairs among them; FðxÞ is
the prediction of survival time; I is the indicator function of whether
the condition in parentheses is satisfied or not. C-index gives prob-
ability. In terms of a random individual pair, the predicted survival
time of the two individuals is in the same order as their actual sur-
vival time. Since the C-index is determined only by variations in the
predicted results, it is very useful for evaluating proportional hazard
models. Because the order of proportional-risk models doesn’t
change over time. Therefore, we were able to use relative risk func-
tions rather than measures used to predict survival time.

3 Results and discussions

3.1 Coexpressed gene modules clustering help to

improve prediction accuracy
In this section, we test three gene feature selection methods:
Denoising Autoencoder (DA) (Liu et al., 2020), lmQCM and
WGCNA. DA has proven to be effective in selecting robust features
against input noise and extracting more specific cancer-related path-
ways or genes. In the experiments, we choose the optimal parameter
settings for these three methods. We set the number of DA encoder
layer nodes as 100, and activation function as ‘sigmoid’. In
lmQCM, we set parameters with t ¼ 1; a ¼ 1; b ¼ 0:4; and c ¼
0:30: For WGCNA, we set minModuleSize¼30. Through these
three different methods, methylation and mRNA features after
dimensionality reduction can be obtained. We use DA algorithm to
obtain 100 methylation features and 100 mRNA features respective-
ly. We use lmQCM algorithm to obtain 17 methylation features and
116 mRNA features respectively. Similarly, by WGCNA, we obtain
12 methylation features and 26 mRNA features respectively. We
combine methylation and mRNA features in series and obtain 200,
133 and 38-dimensional features in three different methods. It
should be noted that the number of features is automatically selected
by these algorithms. We test each integrated feature and compare
performance between different methods with C-index value. Table 2

Fig. 1. Illustration of the proposed model and framework

Table 2. Comparison of performance of three gene feature selec-

tion methods with C-index

Gene Selection Methods C-index

DA 0.5507

WGCNA 0.6423

lmQCM 0.6894
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lists the performance comparison of three methods. For the sake of
fairness and convenience, we only carry out the same single task loss
function, i.e. main loss (Lmain), and the same biLSTM structure.

As shown in Table 2, it can be found that lmQCM and WGCNA
methods have better performance than DA. In the cross validation
on the standard dataset, lmQCM is superior to WGCNA.
Compared with the DA and WGCNA methods, the C-index of
lmQCM is improved by 13.87% and 4.71%. Considering the simi-
lar computational complexity of lmQCM and WGCNA, we decided
to adopt lmQCM method to extract gene features.

3.2 Multi-feature fusion is superior to single feature
In this part, this study assesses the performance concerning the inte-
grated feature set with different single feature set. After obtaining
116 mRNA eigengenes and 17 methylation eigengenes from
lmQCM algorithm respectively, we take the two eigengenes as two
different single gene feature (named GmRNA and Gmeth) inputs. We
combine mRNA and methylation features in sequence and obtain a
133-dimensional feature vector which will be viewed as integrated
gene feature (Named GmRNAþmeth) input. Moreover, for the sake of
fairness, this study carries out the same multiple losses ordinary
COX model procedure (i.e. ML_ordCOX). The experiments com-
pare the performance of three feature sets over ten-fold cross valid-
ation and run 1000 epochs (iterations). It should be noted that the
learning rate will be set with an initial value of 0.001 and will be
reduced gradually by half every 100 epochs during training phase in
order to improve model performance. Table 3 summarizes the per-
formance comparison of the three feature sets with the values of the
C-index.

As demonstrated in Table 3, in the 10-fold cross validation on
standard datasets, the GmRNAþmeth outperforms the two single fea-
ture sets. Compared with them, Gmeth and GmRNA, the C-index of
the GmRNAþmeth is improved by 5.15% and 16.49% respectively.
The integrated feature set, by leveraging the combination of the sin-
gle feature sets, can effectively improve the performance.

Figure 2 reflects the loss decrease during training phase by apply-
ing different feature sets. From Figure 2, we find that as the number
of iterations increases, the training loss of the multi-feature fusion
methods (GmRNAþmeth) decreases obviously faster than that of the
other two single feature set methods (i.e. Gmeth and GmRNA). The
faster gradient descent helps the training loss converge to the opti-
mal solution. It demonstrates the advantage of the integrated pat-
terns of sequential mRNA data and methylation data. It is worth
noting that the continuous decay of the learning rate makes the
training loss curve finally converge.

3.3 Multi-task losses method performs better than sin-

gle task loss alone
We compare the proposed multi-task losses method (i.e.
ML_ordCOX), which combines the main loss (Lmain) with the auxil-
iary loss (Laux) from the auxiliary task, with two single task alone
loss methods (i.e. only main task loss and only auxiliary task loss).
In 3.2 section experiments, GmRNAþmeth is the best feature set. So,
we use GmRNAþmeth as input feature set to assess the performance
concerning the proposed approach. Table 4 presents the perform-
ance comparison of the ML_ordCOX and the two single task loss
methods with the values of the C-index.

From Table 4, we can find that the multi-task ML_ordCOX
method has the best performance when compared with the other
two single task methods. Compared with only the main task loss

and only the auxiliary task loss, the C-index of the ML_ordCOX is
improved by 3.28 percent and 21.66 percent respectively. It means
that the proposed multi-task method can dynamically adapt the
weights for the multiple tasks to perform better than or as well as
the best single task.

Figure 3 shows the training loss curves of three different loss
methods. As can be seen from this Figure 3, the curve of the only
auxiliary task loss method converges fastest, and the curve of the
multi-task method ML_ordCOX, which combines the two single
tasks, decreases faster than that of the only main task. It indicates
that the auxiliary task will help multi-task to converge to the opti-
mal solution if we add an auxiliary loss term to the total loss
function.

We develop an adaptive optimization iteration method to tune
the weight variables (k1, k2) of the main and auxiliary loss. In the
experiments, we also tracked the weight variables and represented
the weight change curve. Figure 4 shows the curves of weight varia-
bles ðk1, k2Þ, (i.e. lambda1, lambda2), and weights ðK1;K2Þ for the
main task loss and the auxiliary task loss. Here,
Ki kið Þ ¼ e�ki ; ði ¼ 1;2Þ. In Figure 4(a), weight variables ðk1, k2Þ are
set with initial value of (0,0), and the values are changed to (0.1488,
0.01303) when the model converges. As also can be seen from
Figure 4(b), weights ðK1;K2Þ are set with initial value of (1,1) and
converge to (0.8617, 0.9871) when 1000 epochs are completed. As
demonstrated in Figure 4, firstly, we could use the negative exponen-
tial functions of weight variables to effectively discourage the
weights from decreasing too much. Secondly, compared with the
auxiliary task, the main task weight plays a major tuning role in
training the multi-task model.

3.4 Comparison with existing survival prediction

methods over cross-validation test
We compare the prediction effects of the developed ML_ordCOX
method with five machine learning approaches: RSF (Ishwaran
et al., 2008), LASSO (Tibshirani, 1997), MLP (Amiri et al., 2008),
DeepSurv (Katzman et al., 2016) and MTLSA (Li et al., 2016). The
C-index is used to evaluate the prediction performance. To ensure
fairness, this study runs the identical feature set in all cross-
validation tests.

Table 3. Performance comparison among integrated feature set

and single feature sets with C-index

Feature Sets C-index

GmRNAþmeth 0.7222

GmRNA 0.6707

Gmeth 0.5573

Fig. 2. The training loss curves by applying different feature sets

Table 4. Performance comparison between three different loss

methods with C-index

Methods C-index

Multi-task losses (ML_ordCOX) 0.7222

Only main task loss 0.6894

Only auxiliary task loss 0.5056
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Table 5 lists the performance comparisons between the proposed
method, MTLSA, DeepSurv, MLP, Lasso and RSF by the measure-
ments of C-index. From Table 5, we find that the cross validation of
the developed method on the standard training set is better than the
other five methods. Compared with the methods: RSF, LASSO,
MLP, DeepSurv and MTLSA, the C-index of the developed method
is improved by 14.93%, 11.78%, 7.33%, 6.99% and 7.74% re-
spectively. As can be seen from Table 5, firstly, the prognosis power
of the regularized Cox models (i.e. RSF and LASSO) is inferior to
the other deep model-based methods (i.e. MLP and DeepSurv). This
is because the deep model can better represent gene features than the
hand-crafted low-level features. Secondly, the proposed biLSTM
method can achieve higher C-index values than the comparing meth-
ods, which demonstrates the advantage of LSTM that can represent
the integrated patterns of sequential mRNA data and methylation
data. The experiment also demonstrates the efficacy of the proposed
method.

3.5 Survival stratification prediction
Another important task in survival analysis is to stratify cancer
patients into subgroups with different predicted outcomes, by which

we can develop personalized treatment plans during cancer disease
progression. The median risk score method is used in the training set
as a threshold to stratify patients in the test set into low-risk and
high-risk groups, and then test if these two groups have significantly
different survival time using the log-rank test. Better prognosis pre-
diction performance comes with smaller P-value from the log-rank
test. We show the stratification performance of different prediction
methods in Figure 5.

As shown in Figure 5, the proposed prediction method
(ML_ordCOX) achieves significantly superior stratification per-
formance (log-rank test P¼1.29e-05) when compared with the
other methods (log-rank test P¼0.702, 0.834, 0.063, 0.0257 and
0.0514 for RSF, LASSO, MLP, DeepSurv and MTLSA, respectively)
on mRNA and methylation datasets, which shows the advantage of
using auxiliary loss. In addition, it is worth noting that the proposed
method could provide better prognostic prediction than the compar-
ing methods, this is because our proposed model considers both the
ordinal characteristics and the integrative patterns in survival ana-
lysis. Thus, its prognostic power is effectively improved.

3.6 Performance generalization and comparison over

independent validation sets
To further explore the effectiveness of the proposed method, we
carry out experiments on two additional cancer type datasets, i.e.
Glioma cohort (GBMLGG) and Pan-kidney cohort (KIPAN). The
two datasets were also obtained from Firehose (Deng et al., 2017).
We selected these two cohorts because they have a high number of
cases, which allows us to draw more valid inferences, and construct
stronger comparisons for our breast cancer results. The GBMLGG
datasets include 1129 samples for clinical data, 17 184 gene expres-
sion features for mRNA sequencing data, and 20 116 gene-level fea-
tures for DNA methylation data. We obtained 563 instances that
had both mRNA sequencing and DNA methylation data after merg-
ing and filtering. For GBMLGG datasets, by using lmQCM

Fig. 3. The training loss curves of three different task loss methods

Fig. 4. The weight variable and weight curves of the main task loss and the auxiliary

task loss. (a) the curves of weight variables ðk1, k2Þ for the main task loss; (b) the

curve of weights ðK1;K2Þ for the auxiliary task loss

Table 5. Performance comparison among different survival predic-

tion methods by the measurements of C-index (along with their

standard deviations)

Methods C-index

The proposed method (ML_ordCOX) 0.7222 (0.0145)

MTLSA 0.6448 (0.0232)

DeepSurv 0.6523 (0.0271)

MLP 0.6489 (0.0663)

LASSO 0.6044 (0.0097)

RSF 0.5729 (0.0178)

Fig. 5. The survival curves by applying different methods
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algorithm, we extracted 17 coexpressed features for methylation
data and 36 coexpressed features for mRNA data. The KIPAN data-
sets contain 973 samples, 25 055 gene expression features, and
20 533 DNA methylation features. Similarly, we also extracted 656
instances that had both mRNA sequencing and DNA methylation
data. For KIPAN, lmQCM algorithm yields 25 coexpressed features
for methylation data and 28 coexpressed features for mRNA data.

Firstly, we compare the performance concerning the integrated
feature set with two different single feature sets. In order to be con-
sistent with breast cancer, for GBMLGG and KIPAN, we still take
the obtained mRNA eigengenes and methylation eigengenes from
lmQCM algorithm as GmRNA and Gmeth respectively. The integrated
feature set is still referred to as GmRNAþmeth. Table 6 summarizes
the performance comparison of the three feature sets on GBMLGG
and KIPAN datasets. Secondly, we use the two additional datasets
to further validate the effectiveness of our proposed multi-task losses
method (i.e. ML_ordCOX). We compare ML_ordCOX with two
single task loss methods (i.e. only main task loss Lmain and only aux-
iliary task loss Laux). Table 7 presents the performance comparison
between these three different loss methods.

From Table 6, we can find that the GmRNAþmeth still outperforms
the two single feature sets. For GBMLGG, compared with GmRNA

and Gmeth, the C-index of the GmRNAþmeth is improved by 2.25%
and 1.34%; and for KIPAN, the performance of integrated feature
has an increase of 1.24% and 29.63%. It once again shows the su-
periority of integrated features. As shown in Table 7, compared
with only main task loss and only auxiliary task loss, the C-index of

the ML_ordCOX is improved by 1.19 percent and 29.64 percent on
GBMLGG, and is improved by 1.35% and 2.20% on KIPAN. From
Table 7, we can also find that the proposed multi-task method still
has the best performance than the other two single task methods on
the additional datasets.

Figures 6 and 7 show the performance curves concerning the
GBMLGG and KIPAN respectively. The plotted curves include the
training loss curves by three different feature sets, the training loss
curves of three different loss methods, the curves of weight variables
(k1, k2), and weights ðK1;K2Þ curves. Compared with Breast Cancer,
Figures 6 and 7 show the similar performance curves on GBMLGG
and KIPAN. It further demonstrates the advantage of the integrated
feature and the proposed multi-task losses method.

Finally, we compare the proposed method ML_ordCOX with
the aforementioned five survival prediction methods on GBMLGG
and KIPAN datasets. Table 8 lists the performance comparisons be-
tween the proposed method ML_ordCOX, MTLSA, DeepSurv,
MLP, Lasso and RSF by the measurements of the C-index on
GBMLGG and KIPAN datasets. To ensure fairness, we still use the
same feature set in all cross-validation tests.

From Table 8, we can find that our method ML_ordCOX
achieved the best performance on GBMLGG and KIPAN data. For
GBMLGG, compared with RSF, LASSO, MLP, DeepSurv and
MTLSA, the C-index of the developed approach ML_ordCOX is
improved by 23.04%, 20.01%, 7.42%, 5.89% and 11.33% respect-
ively; and for KIPAN, the performance of ML_ordCOX has an in-
crease of 15.15%, 14.02%, 4.95%, 4.01% and 7.64% in C-index
respectively.

Hence, the test results demonstrate that the generalization capa-
bilities of the developed approach are superior to those of the other
five reported approaches. The good performance of these independ-
ent tests further demonstrates the effectiveness of the developed
method for survival analysis of other cancer types.

Table 6. Performance comparison among integrated feature set

and single feature sets by C-index on GBMLGG and KIPAN

datasets

Feature Sets GBMLGG KIPAN

GmRNAþmeth 0.8236 0.7748

GmRNA 0.8011 0.7624

Gmeth 0.8102 0.4785

Table 7. Performance comparison between three different loss

methods by C-index on GBMLGG and KIPAN datasets

Methods GBMLGG KIPAN

ML_ordCOX 0.8236 0.7748

Only main task loss 0.8117 0.7613

Only auxiliary task loss 0.5272 0.7528

Fig. 6. The performance comparison curves on GBMLGG dataset

Fig. 7. The performance comparison curves on KIPAN dataset

Table 8. Performance comparisons among different survival pre-

diction methods by C-index on GBMLGG and KIPAN datasets over

ten-fold cross-validation (with standard deviations)

Methods GBMLGG KIPAN

ML_ordCOX 0.8236 (0.0201) 0.7748 (0.0142)

MTLSA 0.7103 (0.0193) 0.6984 (0.0264)

DeepSurv 0.7647 (0.0216) 0.7347 (0.0173)

MLP 0.7494 (0.0227) 0.7253 (0.0363)

LASSO 0.6235 (0.0147) 0.6346 (0.0286)

RSF 0.5932 (0.0278) 0.6233 (0.0233)

Integrative survival analysis of breast cancer with gene expression and DNA methylation data 2607



4 Conclusions

This study develops a survival analysis framework for breast cancer
cases, considering cases’ ordinal survival information. Cross-
validation experiments on the mRNA gene expression data and
DNA methylation data were carried out. Experimental results dem-
onstrate the superiority of the proposed method over the existing
RSF, Lasso, MLP, DeepSurv and MTLSA methods. The good per-
formances of the proposed method come from the use of the com-
bined bidirectional LSTM predictor and ordinal information.
Experimental results also show the importance of DNA methylation
and gene expression signatures for breast cancer survival analysis. In
this work, we have shown that dynamically combining an auxiliary
task and adaptively adjusting the weights for the multiple tasks in an
online manner can give a significant performance improvement for
biLSTM Cox model network. The proposed method uses the idea
that auxiliary tasks should provide a gradient update direction that
helps to decrease the loss of the main task. In addition, we carried
out experiments on Glioma cohort and Pan-kidney cohort. The
good performance on the two additional cancers also demonstrates
that our method is not limited to breast cancer and can be applied to
other carcinoma types with many samples in TCGA.
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