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THE BIGGER PICTURE The discovery of influential nodes is a fundamental research issue in network sci-
ence. To quantify the influence of each node in a network, variousmethods have been presented in the liter-
ature. To the best of our knowledge, no previous research efforts address the influential node identification
problem from a graph-traversal perspective. To fulfill this void, we propose the TARank method that inte-
grates the information collected from the breadth-first search tree to identify influential nodes. The formu-
lation under the graph-traversal framework opens the door to a fundamentally new type of method of influ-
ential node identification. In the future, more effective recognition methods can be expected to be
constructed based on this general framework. Since empirical studies have validated the effectiveness
of TARank, it would be plausible to employ this method in different applications to reveal new findings.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Influential node identification plays a significant role in understanding network structure and functions. Herewe
propose a general method for detecting influential nodes in a graph-traversal framework. We evaluate the in-
fluence of each node by constructing a breadth-first search (BFS) tree inwhich the target node is the root node.
From the BFS tree, we generate a curve in which the x axis is the level number and the y axis is the cumulative
scores of all nodes visited so far.We use the area under the curve value as the final influence score of the target
node. Experimental results on various networks across different domains demonstrate that ourmethod can be
significantly superior to widely used centrality measures on the task of influential node detection.
INTRODUCTION

The network (graph) is a common type of data structure that offers

a holistic and top-down view to make sense of various interactive

systems, including social systems, biological systems, traffic sys-

tems, communication systems, and so on,1–3 that are highly

affected by a small portion of influential nodes, also called influen-

tial spreaders.4 Such nodes play a critical role and can signifi-

cantly enrich our understanding of the above systems. For

example, being able to effectively and properly detect influential

nodes allows us to control the spread of epidemics,5,6 design a

valid marketing plan,7,8 prevent the power grid from failing,9,10

predict future traffic flow,11,12 and identify essential proteins.13,14

Since finding the influential node is a general network analysis

issue, many metrics have been proposed to evaluate the impor-

tance of each node in a network from different perspectives. For
This is an open access article under the CC BY-N
example, degree centrality (DC)15 and the H-index16 are typical

neighborhood-based methods for centrality evaluation. Path-

based methods such as closeness centrality (CC),17 load

centrality (LC),18 betweenness centrality (BC),19 and information

centrality (IC) take global topological features into consideration.20

Eigenvector centrality (EC)21 and PageRank (PR)22 are typical

methods that evaluate the node centrality in an iterative refine-

ment manner. Existing centrality measures and their applications

in different fields have been summarized in several reviews.23–27

Despite decades of research ondeveloping centralitymeasures

for identifying influential nodes, there is still no consensus on the

best centrality measure across different types of networks in

various domains. This is mainly because each type of centrality

measure has its own advantages and drawbacks,28making it diffi-

cult even to offer a universal solution to displace the most simple

DC measure. Therefore, one new centrality evaluation method
Patterns 2, 100321, September 10, 2021 ª 2021 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:zyhe@dlut.edu.cn
https://doi.org/10.1016/j.patter.2021.100321
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2021.100321&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

C B

Figure 1. The main workflow of TARank

(A) Starting with each node as the root node, the

graph is traversed in a level-order to construct a

breadth-first search (BFS) tree. Each node in the

tree is associated with an initial score that is

generated from an arbitrary centrality measure.

(B) At each level of the tree, a cumulative score is

obtained by adding up the scores of all nodes tra-

versed by the BFS procedure so far. As a result, a

score vector for each BFS tree can be derived. The

first k values in the score vector (k =2 in this figure)

are used to plot a curve, and the AUC value is used

as the centrality score in TARank for quantifying the

influence of each node.

(C) All nodes in the network can be sorted according

to the AUC score. In this figure, the size of each

node is proportional to its corresponding

AUC score.
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with the following desired characteristics should be developed: (1)

it is a general formulation such that different types of existing cen-

trality measures can be incorporated, (2) it solves the node cen-

trality issue based on some principles that remain unexplored,

and (3) it has good performance on different types of networks.

In this paper, we formulate the problem of influential node

recognition in a graph-traversal framework. For each node in

the network, we build a breadth-first search (BFS) tree by

traversing the graph in a level-wise manner, in which the target

node is the root node (Figure 1A). Intuitively, the BFS tree for

an influential node will have the following distinct features: (1)

There will be many nodes on the top levels of the tree. The nodes

that appear on the top levels of the BFS tree fall into the local

neighborhood of the root node. The number of nodes in the local

neighborhood has been widely used as a criterion for influential

node recognition in many classical evaluation methods, such

as DC. (2) Each node on the top levels of the tree is expected

to be an influential one as well. The assumption that one influen-

tial node is expected to have many highly influential neighbors

has been adopted in many popular methods, such as HITs,29

PR,22 and TwitterRank.30 (3) The height of the tree should be

low. The height of a BFS tree on an undirected network corre-

sponds to the largest ‘‘shortest path length’’ between the root

node and the remaining nodes. Hence, the lower the height is,

the more centric the root node is. Based on the above observa-

tions, we derive a score vector from each BFS tree in which each

element is the sum of the influence scores of all nodes above a

certain level. The influence score of each node in the tree can

be obtained from any existing centrality measure. According to

the first k entries in the score vector, we can plot a curve in which

the x axis is the level number and the y axis is the corresponding

score (Figure 1B). The area under the curve (AUC) can be used as

the overall centrality score for quantifying the node importance.

Such a general method for influential node identification is

named TARank (tree- and AUC-value-based rank).

The proposed method addresses the influential node identifi-

cation issue from a graph-traversal perspective, which is totally

different from existing methods in the literature. Meanwhile, it

provides a general framework for influential node quantification,

in which any existing centrality measures can be utilized for
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generating the final importance score. We evaluate our method

on 53 real networks, and experimental results demonstrate that

our method significantly outperformswidely used centrality eval-

uation methods.

RESULTS

An overview of TARank
The TARankmethod consists of the following steps (see Figure 1).

First, each node in the input network is regarded as the root node,

and a corresponding BFS tree is generated by traversing the

graph in a level-order. Each node in the tree has an initial centrality

score, which can be obtained from any centrality measure, such

as DC (Figure 1A). Second, a cumulative score vector of length

h is constructed from each BFS tree, where h is the largest level

number (the level number of the root node is 1). The i-th element

in the score vector is calculated as the sum of scores of all nodes

whose levels are no larger than i. Based on a user-specified

parameter, k(1% k% h), the first k cumulative scores in the score

vector are used to generate a curve in which the x coordinate

ranges from 0 to k and the y coordinate is the corresponding cu-

mulative score. The AUC value is used as the final centrality score

for assessing the node influence (Figure 1B). Finally, TARank de-

tects influential nodes according to the AUC scores (Figure 1C).

Performance evaluation
We conducted experiments on 53 real networks, including trans-

portation networks, technological networks, social networks,

informational networks, economic networks, and biological net-

works. The basic features of these networks can be found in

Table S1. To evaluate the performance of TARank, we employ

the Kendall’s tau correlation coefficient t31 as the performance in-

dicator to measure the statistical relationship between the AUC

score in TARank and the node influence obtained by the well-

known susceptible-infected-recovered (SIR) spreading model.32

Under the SIR spreading model, an infected node can transmit

the disease with an infection probability (transmission probability)

(see details under experimental procedures). The influence of

each node is quantified by averaging the number of recovered no-

des after 1,000 independent runs of the SIR spreading model.
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C Figure 2. Comparisons of the Kendall’s tau

correlation coefficient between SIR node in-

fluences and centrality scores on real net-

works

(A) The correlation coefficients between eight cen-

trality measures and node influences are shown in

different colors, where the y axis represents the

network name and the x axis shows the centrality

evaluation method.

(B) The correlation coefficients between TARank

variants and node influences are presented, where

TARank (x) denotes that the centrality evaluation

method x is used for generating the initial node

importance score in TARank. In both (A) and (B),

larger correlation coefficients are represented by

dark red squares and smaller correlation co-

efficients are colored with dark blue squares.

(C) The difference values of correlation coefficients

between each TARank variant and its counterpart

are exhibited. There are eight boxes and 53 points in

each box, where the points with different colors

emphasize different kinds of networks.

(D) The joint plot composed of a scatterplot and a

kernel density estimation plot shows the correlation

between the correlation difference value and the

network density.
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TARank is compared with eight state-of-the-art methods: H-

index, DC, EC, CC, BC, LC, PR, and IC. Since TARank is a

generic framework in which any centrality measure can be uti-

lized to generate an initial score for each node, we chose the

above eight centrality measures for calculating the final AUC

value as well. As a result, there were eight variants of TARank,

which are denoted as TARank (H-index), TARank (DC), TARank

(EC), TARank (CC), TARank (BC), TARank (LC), TARank (PR),

and TARank (IC), respectively.

Figure 2 shows the comparison between the variants of

TARank and the eight centrality evaluation methods in terms

of the correlation coefficient. In Figures 2A and 2B, different cor-

relation coefficients are labeled in different colors. Compared

with its counterpart in Figure 2A, each variant of TARank in Fig-

ure 2B exhibits higher correlation with the node influence

derived from the SIR model. That is, the overall performance

of TARank is better than those competing centrality evaluation

methods. To quantitatively describe the performance improve-

ment of TARank against each competitor, the difference value

of the correlation coefficient on each network is calculated.

The distribution of correlation difference values on all 53 net-

works for each centrality evaluation method is plotted in Fig-

ure 2C. Obviously, it can be observed that most difference

values are larger than 0, which means that TARank can yield a

performance gain in most cases. There are a small portion of

networks on which TARank does not work well. On one hand,

some biological networks are noisy, in that many spurious

edges are present but some true edges are missing.33,34 On

the other hand, some sparse networks may hinder spreading,

which even leads to hostile influence prediction results, as
shown in Figure 2D. The suspicion that

the network density can affect the perfor-

mance of influential node recognition has
been raised in a previous study.35 However, in our context,

the association between the network density and the correlation

difference is not statistically significant. This is because the cor-

relation difference measures only if TARank can yield perfor-

mance improvement over each competing centrality evaluation

method. For instance, when EC is utilized for generating the

initial node score, the correlation difference is almost zero on

most networks (see Figure 2C). Although the correlation differ-

ence is negligible, the final performance of TARank (EC) is quite

good, as shown in Figures 2B and 3.

Then, we compare the overall performance of eight TARank

variants using a boxplot of correlation coefficients on the 53

networks. As shown in Figure 3, TARank (H-index), TARank

(DC), and TARank (EC) can generally achieve better perfor-

mance than the other TARank variants with respect to the

average correlation coefficient. Among TARank (H-index),

TARank (DC), and TARank (EC), the TARank (DC) method is

more preferable than the other two methods in regard to the

time complexity (see Table S2). Hence, based on the trade-

off between effectiveness and efficiency, it seems that TARank

(DC) is a good candidate to be employed in practice for influ-

ential node identification.

To further check whether the effectiveness of TARank can be

significantly affected by the infection probability b, we ran

the spreading process with different b values on 53 real net-

works. In Figure 4, we compare the correlation coefficients of

TARank and eight centrality measures under different infection

probabilities. We can see from Figure 4 that the performance

of TARank is consistently superior to the eight centrality mea-

sures when the infection probability is varied from 1:0bc to
Patterns 2, 100321, September 10, 2021 3



Figure 3. The comparison of eight TARank

variants in terms of the distribution of corre-

lation coefficients over 53 networks

Here a boxplot is used to depict the distributions:

minimum (lower line), lower quartile (lower edge of

the box), median (center line), upper quartile (upper

edge of the box), and maximum (upper line).

Meanwhile, outliers are also plotted as isolated

points.
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2:0bc, in which bc is the epidemic threshold. In addition, the t test

for paired samples is adopted to test if the difference in correla-

tion coefficient between TARank and each centrality measure is

statistically significant. We conducted eight significance tests

and the results are shown in Figure 4. In each test, one

competing centrality measure is compared with the correspond-

ing TARank variant. We can see that the p values are less than

the significance level 0.05 in most cases. To empower better

generalizations, we tested the difference between two groups

in which one group consisted of all correlation coefficients

generated by TARank and another group was derived from eight

centrality measures. The result is shown in the last graph in Fig-

ure 4, in which the p values under the different transmission

probabilities are far less than the significance level 0.05. The hy-

pothesis testing results indicate that the performance of TARank

is significantly better than that of contrastive centrality evaluation

algorithms under the different infection probabilities.

In addition, we tested the performance of TARank under

another acclaimed spreading model: the susceptible-infected-

susceptible (SIS) spreading model.36 The influence score of

each node can be defined as the probability that a node will be

infected. The results (Figure S1) suggest that TARank is still

effective under the SIS spreading model. To investigate the per-

formance of TARank when the ‘‘ground-truth’’ influential nodes

are available, we followed the strategy proposed by Salavaty

et al.28 to compare our method with those competing methods

based on the SIRIR model in Figure S2. It indicates that most

TARank variants can achieve better performance than their

counterparts and are comparable to advanced modes such as

integrated value of influence (IVI).28

In previous experiments, the parameter k was fixed to be 2.

To test if TARank is sensitive to this parameter, we varied k

from 2 to 4 to check its performance fluctuations on 53 networks
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in Figures S3 and S4. The experimental re-

sults show that TARank can achieve better

performance than existing methods in

most cases under different k values.

DISCUSSION

In this paper, we did not distinguish the

concepts among the influential node, the

spreader node, and the hub node. Kitsak

et al.4 have discussed the difference be-

tween the hub node and the spreader

node, where the hub node will directly

link to more nodes but the spreader node

tends to have more interpersonal influence
on others. In addition, it is believed that the influential node

should have both many direct neighbors and high spreading

potential.28

In the experiments, eight existing centrality measures are

adopted for generating the initial node score. Thanks to the

versatility of our method, other existing centrality measures

(e.g., IVI,28 Local H-index37) can be employed for this purpose

as well. We have empirically tested the feasibility of using these

recently developed centrality measures in Figure S2. Meanwhile,

we will investigate the potential of our framework for identifying

influential nodes from weighted networks38 and time-varying

networks.39

When the initial node score is generated by existing centrality

metrics, the final node score derived from TARank can be re-

garded as the refinement of current centrality measures. From

this perspective, our method is related to those ensemble

methods such as IVI.28 Both TARank and IVI can utilize the exist-

ing centrality methods to identify the influential nodes. But in

contrast, IVI focuses on integrating several centrality methods,

while TARank can provide the refinement for an existingmeasure.

Conclusion
The scale-free property40,41 suggests that different nodes may

play totally different roles in a network. Hence, many research ef-

forts have been devoted to finding influential nodes in networks.

TARank provides a general framework for identifying influential

nodes by use of graph traversal. As indicated by the empirical

studies, TARank can incorporate different centrality measures

and offer significant performance improvements on various

types of networks.

We believe that the framework introduced here will serve as a

foundational graph theoretic tool for identifying influential nodes

in network science. Meanwhile, it can be applied to real
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Figure 4. The effects of the infection probability on TARank and eight centrality evaluation methods on 53 networks

In the first eight graphs, the light solid line represents one existing centrality evaluation method and the dark dashed line denotes the

corresponding TARank variant, where each bar that represents the 99% confidence interval is the graphical representation of the variability on

different networks. The p values were calculated for quantifying the significance of paired difference between each centrality evaluation method and its

TARank variant. The last graph shows p values under the different infection probability b, where the paired samples are collected from all eight tested

centrality measures.
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applications in different fields, such as essential protein identifi-

cation in proteomics and critical node recognition in a communi-

cation network.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact for this work is Zengyou He at zyhe@dlut.edu.cn.

Materials availability

This study did not generate new unique reagents.

Data and code availability

All the networks analyzed in the experiment and the source code of TARank

are publicly available at https://github.com/LiuYan-Peggy/TARank.
Method details

Data preparation

We used 53 real networks to test the effectiveness of our method. These net-

works can be divided into six categories: social networks, transportation net-

works, informational networks, technological networks, biological networks,

and economic networks. All networks can be found at Pajek Datasets

(http://vlado.fmf.uni-lj.si/pub/networks/data/) and Network Data Repository.42

A brief description of each network is provided in Table S1.

The TARank framework

Given a network with a set of N nodes V = fv1; v2;/; vNg and a set of M

edges E = fe1; e2;/; eMg, we can generate a set of initial centrality scores

CS = fcs1; cs2;/; csNg. In CS, each csiði = 1;/;NÞ is the centrality score

of node vi, which can be obtained from an arbitrary centrality evaluation

method. For each node, we can specify it as the root node and traverse

the network in a breadth-first manner to construct a BFS tree T. Then, the
Patterns 2, 100321, September 10, 2021 5
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cumulative centrality score at the k-th level of the BFS tree can be calcu-

lated as:

cum scoreðkÞ =
Xk

q=1

X
vj˛TðqÞ

csj; (Equation 1)

where TðqÞ is the set of nodes that are at the q-th level of the BFS tree. There-

after, we can create a line chart for each node, where the horizontal (x) axis is

labeled by the level number of the BFS tree and the vertical (y) axis shows the

cumulative centrality score. Finally, the final centrality score for each node can

be obtained by calculating the AUC value43 of the corresponding line chart

when the number of levels is no larger than k, as follows:

AUCðkÞ = cum scoreð1Þ=2+ ðcum scoreð1Þ+ cum scoreð2ÞÞ=2
+/+ ðcum scoreðk � 1Þ+ cum scoreðkÞÞ=2

=
Xk

q=1

0
@�

k � q+
1

2

� X
vj˛TðqÞ

csj

1
A:

(Equation 2)

As shown in Equation (2), the AUC score is essentially a weighted linear

combination of initial node scores in which top nodes are associated with large

weight coefficients. Note that the initial node score can be either generated

from an existing centrality measure or assigned in an independent way. To

demonstrate the fact that TARank is a general purpose method for influential

node identification without the reliance on existing centrality measures, we

derive the following interesting variants under our framework by manipulating

the initial node score:

d If we let csi = 1ði = 1;/;NÞ and k = 2, then the final AUC score will be 3
2+

jTð2Þj
2 , where jTð2Þj is the number of nodes at the second level of the BFS

tree. Obviously, the final AUC score of each node is the linear transfor-

mation of its degree. That is, this variant under our framework is equiv-

alent to DC. Obviously, we can also obtain a final AUC score that is

exactly the same as DC by setting k = 2 and csi =
2jTð2Þj
3+ jTð2Þj. In a nutshell,

we have derived the classical centrality measure DC under our frame-

work without using any existing evaluation methods.

d When k = h (h is the height of the BFS tree), if the initial score of the root

node is 1 and the scores of all other nodes are 0, then the AUC score will

be h� 1
2. Since the eccentricity centrality (ECC)44 is equivalent to the

height of the BFS tree, ECC is obtained as a variant of our framework un-

der the above settings.

d CC is defined as the inverse of the average (shortest-path) distance from

the root node to all other nodes. From the perspective of the BFS tree,

CC can be calculated as the inverse of

Ph

q= 1
ðq�1ÞjTðqÞj
N�1 , where TðqÞ is the

set of nodes at the q-th level of the BFS tree. If we set csi = 1 and k = h,

then the AUC score is
Ph

q= 1

�
h � q + 1

2

�
jTðqÞj. It is clear that this TAR-

ank variant can be regarded as the inverse of theweightedCC.Whenwe

define csi =
2

N�13

Ph

q= 1
ðq�1ÞjTðqÞjPh

q=1
ð2h�2q+1ÞjTðqÞj

and k = h, this TARank variant is the

same as the inverse of CC.

d So far, we have shown that it is feasible to derive some popular centrality

measures under our framework. In point of fact, it is also possible to

create some new, yet effective, centrality measures by using level (dis-

tance)-sensitive functions to specify the initial node score. For instance,

we may utilize gðdiÞ= exp

(
� d2

i

2s2

)
to set the initial score for node vi,

where di is the shortest-path distance from the root node to node vi.

In Figure S5, we use such a Gaussian similarity function to generate

the initial score for each node. The experimental results show that the

TARank variants based on this score initialization function have perfor-

mance comparable to that of TARank (DC). This means that TARank can

be a good candidate for identifying influential nodes without the reliance

on existing centrality metrics.
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The spreading models

The SIR model and SIS model are two widely used spreading models, which

can be performed using the EoN45,46 package for Python and are usually uti-

lized to analyze the spread of diseases,5 the diffusion of microfinance,47 and

the propagation of news.48

The SIR spreading model consists of three compartments: S stands for the

number of susceptible nodes, I is the number of infectious nodes, and R de-

notes the number of recovered or removed nodes. Initially, one seed node is

infected and all other nodes are in the susceptible state. Each infected node

tries to infect its susceptible neighbors with the transmission probability b.

Then, each infected node changes to enter the recovered state with a proba-

bility l. The spreading process stops until there is no infected node in the

network. Finally, we average the number of recovered nodes after 1,000 inde-

pendent runs of the SIR spreading model. All nodes in the network will be

treated as the seed node in turn to run the SIR spreading model. That is, we

need to simulate the SIR model 1,000N times independently, where N is the

number of nodes. For simplicity, we set l= 1 and b = abc, where a varies

from 1.0 to 2.0 and bc denotes the epidemic threshold. On the basis of the het-

erogeneous mean-field theory,49–51 the epidemic threshold is roughly equiva-

lent to bcz
CkD

Ck2 D�CkD, where CkD represents the average degree and Ck2D denotes

the second-order average degree.

In the SIS spreading model, there is a group of initially infected nodes and all

other nodes are susceptible. Infected nodes try to infect their susceptible

neighbors with the transmission probability b and then become susceptible

with a probability lc. Then, the number of infected nodes will enter the dynamic

equilibrium ‘‘endemic’’ state in which both the number of susceptible nodes

and the number of infected nodes are constant proportions of all nodes in

the network.52 Finally, we calculate the probability that the initial infected

node is still at the state of infected after simulating the SIS model 1,000

times.4,36 For convenience, we set b=abcza CkD
Ck2 D

53 and lc = 0:1, where a is

varied from 1.0 to 2.0.

Kendall’s tau correlation coefficient

Kendall’s tau correlation coefficient, also called the Kendall rank correlation

coefficient, is commonly applied to measure the ordinal association between

two rank lists. Consider a set of observations ðx1; y1Þ;/; ðxN; yNÞ of joint ranks
from X and Y. Any pair of two observations ðxi ; yiÞ and ðxj ; yjÞ ði <jÞ is called

concordant if it satisfies either both ðxi >xjÞ and ðyi >yjÞ or both ðxi <xjÞ and

ðyi <yjÞ; otherwise it is discordant. It should be noted that a pair of observations

is neither concordant nor discordant if ðxi = xjÞ or ðyi = yjÞ. Then, the Kendall’s

tau correlation coefficient t is defined as follows:

t =
Nc � Nd�

N
2

� =
2ðNc � NdÞ
NðN� 1Þ ;

where Nc is the number of concordant pairs, Nd is the number of discordant

pairs, and the denominator

�
N
2

�
represents the total number of pair combina-

tions. In this paper, t = 1 means that the rank list derived from a centrality eval-

uation method is identical to the rank list derived from the spreading process,

while t = � 1 indicates that one rank list is the reverse of the other.
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