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We report a detailed experimental study of the complex behavior of a dc low-pressure plasma discharge tube
of the type commonly used in commercial illuminated signs, in a microfluidic chip recently proposed for
visible analog computing, and other practical devices. Our experiments reveal a clear quasiperiodicity route
to chaos, the two competing frequencies being the relaxation frequency and the plasma eigenfrequency.
Based on an experimental volt-ampere characterization of the discharge, we propose a macroscopic model of
the current flowing in the plasma. The model, governed by four autonomous ordinary differential
equations, is used to compute stability diagrams for periodic oscillations of arbitrary period in the control
parameter space of the discharge. Such diagrams show self-pulsations to emerge remarkably organized into
intricate mosaics of stability phases with extended regions of multistability (overlap). Specific mosaics are
predicted for the four dynamical variables of the discharge. Their experimental observation is an open
challenge.

A
n outstanding problem is to understand and control the complex chaotic behaviors commonly observed
in glow discharge plasma tubes. From an experimental point of view, the first observations of determin-
istic chaos1, mixed-mode oscillations and homoclinic chaos in discharge tubes2 date back more than

twenty years ago. Currently, much attention has been focused on the generic problem of phase synchronization
using these devices. In particular, phase synchronization has been demonstrated under different conditions3–5.
More recently, the transition to chaos and constructive effects of noise, such as stochastic resonance and coher-
ence resonance, have been reported in plasma tubes6–9. All aforementioned works have in common the feature of
using discharge tubes specifically built for research: Geissler’s tubes, Plücker’s tubes, and so on. Conversely, in this
work, we present an application of nonlinear dynamics to study the behavior of a popular device not designed
specifically for research purposes. Due to the great impact of plasma as a component in modern image viewing
devices, the investigation of plasma tubes is of considerable interest. Additional applications of interest involve
microfluidic chips proposed for visible analog computing10 and the ability of glow discharges to find the shortest
way through a maze11.

Electrical discharges have been continuously the subject of innumerous works and much is known about
them12–16. From a theoretical point of view, discharges have been traditionally described taking into account the
complex processes involved in the plasma recombination and electric conductivity. Such descriptions require the
use of coupled partial differential equations involving spatial and time variables, the transport of momentum and
energy of plasma components, the continuity equation, diffusion equation, Poisson equation, etc. This means that
a realistic description is generally quite involved. However, a fair description of the discharge can be obtained by
bypassing most of the aforementioned complexities and focusing solely on the key feature, namely the discharge
capacity of conducting electric current. In other words, one may consider a macroscopic volt-ampere character-
ization of the discharge, regarding then the whole plasma simply as a nonlinear two-terminal component of an
electric circuit. Clearly, such approach removes spatial dependencies and reduces the mathematical description to
a nonlinear set of coupled ordinary differential equations, a more easy problem to deal with. The quality of this
approach, of course, is proportional to the quality of the volt-ampere characterization of the plasma tube.
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In this work we explore the dynamical behavior of the plasma tube
in the region of glow discharge. We present a phenomenological
model based on the macroscopic electrical features, leading to a
two-dimensional nonlinear model. Additional considerations,
related to the experimental observation of chaos, induce us to intro-
duce additional degrees of freedom. We then check experimentally
and through numerical simulations that our model gives a fair rep-
resentation of the discharge. Finally, we use the model to predict the
distribution of self-pulsations in the control parameter space of the
discharge. Before proceeding, we stress the fact that although our
model is able to explain a number of experimentally measured fea-
tures of the discharge, it is just a rough approximation of the complex
spatial processes underlying the plasma. Over the years, there have
been numerous attempts of modeling plasma discharges as circuits.
Such models, however, aim to reproduce the plasma with a much
higher accuracy than is needed here. For instance, instead of ordinary
differential equations, more detailed models normally involve partial
differential equations. Detailed references about generation of low-
and high-energy plasmas can be obtained, e.g., in the several special-
ized books12–16.

Results
The object of our investigations is a plasma tube device of the type
commonly used in commercial neon signs and other applica-
tions10–16. The tube is filled with neon at a low-pressure of the order
of a few Torr, and has a length of 50 cm and 2.5 cm of diameter. Both
electrodes are identical and can be used as anode or cathode indif-
ferently. The experimental setup is sketched in Fig. 1.

An adjustable high-voltage dc source Vbias (Fluke 415B) allows us
to excite and drive the tube in the glow discharge operating region.
The Vbias plays the role of control parameter. Here, Rb and Rl are a
150 kV ballast resistor and a 1 kV load resistor (nominal values),
respectively. The capacitor C (2.4 nF), in parallel to the tube, makes
the circuit behave as an electrical relaxation oscillator. With this
setup, we performed preliminary measurements to determine the
electrical nonlinear characteristic of the tube. More explicitly, we
measured the voltage drop vl through Rl (using an Agilent 34401A
multimeter) corresponding to several Vbias values. From these data
we calculated the discharge voltage across the tube (vt in our equa-
tions) and reconstructed the electrical volt-ampere characteristic
curve using the following equation

vt~Vbias{vl 1z
Rb

Rl

� �
: ð1Þ

The experimental data are plotted in Fig. 2 where we use the total
current i instead of i2, supposing that the current through Rl and the
tube are the same. The obtained volt-ampere characteristic curve has
a negative slope and is in good agreement with neon lamp curves
found in literature13.

The range of interest for Vbias, corresponding to the data over the
maximum peak plotted in Fig. 2, is 730 V , Vbias , 2000 V. In this

operating region we studied the dynamical behavior of the plasma
tube. Two distinct signals were experimentally acquired: the dis-
charge voltage across the tube together with the corresponding light
emission. A probe 310 and a photodiode (New Focus 1621, not
shown in Fig.1) were used. Both voltage signals were recorded with
a digital oscilloscope (LeCroy LT342).

The recorded temporal sequences were used to construct bifurca-
tion diagrams. Fixing C 5 2.4 nF, Fig. 3(a) shows a bifurcation
diagram where the maxima of the voltage signal are plotted versus
the control parameter Vbias and Fig. 3(b) shows a zoom of the range
730 V , Vbias , 900 V. This diagram hints to the presence of a sub-
harmonic transition to chaos. Figure 3 (c) shows a return map,
namely a plot of successive pairs of maxima of the signal. This return
map illustrates a typical period-2 oscillation. Then, by increasing
Vbias, one observes a period-4 oscillation and another period-2 oscil-
lation (see Figs. 3(d) and 3(e)), before and after an interior crisis
characterized by a sudden decrease in the relative amplitude of the
voltage signal (see Fig. 3(a) around 1350 V). Lastly, Fig. 3 (f), shows a
structure resembling somewhat the familiar Hénon chaotic attractor.

Investigating the Vbias range 730 V–900 V allows us to localize a
period-one solution at Vbias 5 730 V. Here a limit cycle at a fre-
quency of 670 Hz is observed suggesting that we deal with a station-
ary regime of the plasma characterized only by the frequency of the
relaxation oscillator imposed by the capacitor C. In absence of the
capacitor C, as in Ref. (6), the plasma is in a homogeneous state. In
fact, a slightly increase of Vbias leads to period-two solutions and to a
narrow chaotic region. As an example, at Vbias 5 750 V, the corres-
ponding power spectrum reveals a dominant peak at 890 Hz, its near
subharmonic at 450 Hz and a weak remnant peak at 670 Hz. This
suggest that a two frequency route to chaos or quasiperiodicy scen-
ario is encountered. The second frequency, competing with the
relaxation frequency, is peculiar of the investigated plasma. The nat-
ure of transition to chaos was more clearly manifested when decreas-
ing the dissipativity, i.e. when the capacitor value is increased from C
5 2.4 nF to C 5 4.8 nF. As can be seen in Fig. 4, in this case the
discharge displays an elusive quasi-periodicity route to chaos, a scen-
ario which is corroborated by a careful analysis of a torus breaking
phenomenon. The bifurcation diagram in Fig. 4 (a) is markedly
different from the one in Fig. 3 (a). The Poincaré sections indicate
a transition from a limit cycle (Fig. 4 (c)) to a two dimensional torus
(Fig. 4 (d)), as characterized by the closed loop section. A further
increase of the control parameter leads to a torus breaking (Fig. 4 (e))
and, successively, to a condition of developed chaos (Fig. 4 (f)).

The temporal behavior and magnitude spectrum associated to the
quasiperiodic doubling cascade obtained at C 5 2.4 nF and Vbias 5

1000 V are reported in Fig. 5(a) and 5(b) respectively. Fig. 5(b)

Figure 1 | Schematic representation of the experimental setup. The

discharge tube is shown as a red element.

Figure 2 | Electrical voltage-current curve of the plasma tube
corresponding to the glow discharge region (i 5 vl/Rl).

www.nature.com/scientificreports
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clearly displays two peaks, the lower one (plasma eigenfrequency)
not being a subharmonic of the relaxation frequency at f 5 1610 Hz.
Fig. 5(c) and 5(d) display the behavior of the relaxation frequency
and plasma eigenfrequency as a function of Vbias for C 5 2.4 nF
and C 5 4.8 nF, respectively. In the first case (Fig. 5 (c)), their
ratio (feig / fmod) is near 0.5 while in the second case (Fig. 5(d)) is
near 0.89.

We now derive experimentally a macroscopic model of the non-
linear behavior of the plasma discharge. The starting point are
Kirchhoff’s laws applied to the electrical circuit of Fig. 1. Denoting
by vt and i2 the discharge voltage and the current through the tube,
respectively, it is not difficult to derive the following equations

i~i1zi2, ð2Þ

Figure 3 | Experimental measurements for C 5 2.4 nF showing a peak-doubling route to chaos in the discharge. (a) Bifurcation diagram.

(b) Enlargement of the leftmost portion of (a). The blue arrows in (a) indicate the values of Vbias where the following return maps were measured:

(c) 1000 V; (d) 1320 V; (e) 1400 V; (f) 1550 V.

www.nature.com/scientificreports
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i1~C
dvt

dt
, ð3Þ

i1zi2~
Vbias{vt

Rb
, ð4Þ

where we disregarded a term containing Rl because Rl=Rb. The last
two equations yield

dvt

dt
~

1
RbC

Vbias{vt{Rbi2ð Þ: ð5Þ

An additional equation governs the voltage drop on the loop

L
di2

dt
~vt{G i2ð Þ, ð6Þ

where we introduced the spurious inductance L of the tube and its
voltage-current characteristic G(i2).

Figure 4 | Experimental measurements for C 5 4.8 nF evidencing a quasiperiodicity route to chaos. (a) Bifurcation diagram. (b) Enlargement of the

leftmost portion of (a). The blue arrows in (a) indicate the values of Vbias where the following return maps were measured: (c) 1100 V; (d) 1160 V;

(e) 1180 V; (f) 1200 V.
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The nonlinear function G(i2) is determined experimentally by
measuring voltage drop vl through Rl (see Fig. 1) and calculating vt

from Eq. (1). In order to obtain a dimension-less form of the previous
equations we make the following simplifying assumptions. The
experimental electrical characteristics reaches an asymptotic value
of about v 5 360 V on the right border of the normal glow region, we
use this value to rescale our equations and to define the first two
dimensionless quantities y and g (hereafter, dropping the subscript,
we replace i2 by i)

vt~v:y and G ið Þ~v:g ið Þ

Since the order of magnitude of the current i is 1023 A, we introduce
a convenient scale factor a 5 1023 A and a dimensionless variable x
such that

i~a:x:

As shown in Fig. 5(a), observing the temporal sequences we can note
that the interspikes interval between two successive peaks is almost
invariant with respect to our control parameter Vbias and that it
assumes the value of about b1 5 0.5 ? 1023 s. We use this value to
introduce the dimensionless time variable t R b1 ? t (maintaining the
same symbol t). Using two additional definitions, Vbias ; v ? yo and
b2 ; RbC, from Eq. (5) we obtain

_y~A0{A1y{A2x, ð7Þ

where we used the abbreviations A0 5 yob1/b2, A1 5 b1/b2, and A2 5

A1Rba/v.Similar arguments allows us to rewrite Eq. (6) as

m _x~y{g xð Þ ð8Þ

where the parameter m 5 (a ? L)/(v ? b1) is connected to the spurious
inductance L which cannot be bypassed experimentally.

We assume for G(i) 5 v ? g(i) a simple mathematical form
accounting for the two regions of the characteristic curve, namely

G ið Þ~v:g ið Þ,

~v: yczae{K1
:i{ yczað Þe{K2

:i
� � ð9Þ

redefining k1 5 K1 ? a and k2 5 K2 ? a we arrive at the following
dimensionless form

g xð Þ~yczae{k1
:x{ yczað Þe{k2

:x: ð10Þ

The values of the parameters yc, a, k1 and k2 are obtained by fitting the
experimental data (Fig. 2). Such fits give yc 5 0.977, a 5 0.9425, k1 5

0.4662, k2 5 26.1, with the quality coefficient of fit being
R2~0:9974, indicating a quite good fit to the data17.

Experimentally we observe some windows of chaotic behavior.
Since the Poincaré–Bendixson theorem forbids chaos in two-
dimensional systems (such the relaxation oscillator described
by Eqs. (15) and (16)), to be able to describe the experimental
results we need extend the dimensionality of the model by intro-
ducing additional degrees of freedom related to the plasma
eigenfrequencies. Observing the temporal sequences, we note
that in chaotic regime the spikes amplitudes change significantly,
in an oscillatory way, but their interspikes intervals are un-
changed. This behavior can be reproduced by the following
damped oscillator

€zzb _zzv2z~cx: ð11Þ

Figure 5 | Representative characteristics of the discharge. (a) Temporal sequence, and (b) its magnitude spectrum obtained at C 5 2.4 nF and Vbias 5

1000 V. Relaxation frequency (red) and plasma eigenfrequency (blue) as a function of Vbias for (c) C 5 2.4 nF, (d) C 5 4.8 nF.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8447 | DOI: 10.1038/srep08447 5



This plasma oscillation is driven by the current and it is rapidly
damped when the current decreases to zero. We suggest an
oscillatory modulation around the working point to reproduce
the experimental time series. In this case, the new electrical
characteristic is

g x,zð Þ~ycz azzð Þe{k1
:x{ yczazzð Þe{k2

:x, ð12Þ

where we fix the parameters yc 5 1, a 5 1, k1 5 0.5, and k2 5 26.
With this, our macroscopic model of the discharge tube is now

complete:

_x~
1
m

y{g x,zð Þð Þ, ð13Þ

_y~A0{A1y{A2x, ð14Þ

_z~w, ð15Þ

_w~{bw{v2zzcx: ð16Þ

The parameters A0, A1, A2 are related to the experimental configura-
tion adopted. Namely, A0 is connected to the bias voltage, plays the
role of control parameter, and varies in the range [3, 7.8]. Parameters
A1, A2 depend of the capacitor contained in the electrical circuit,
while m, b, v and c are free parameters. Concerning the parameter
m, we add the following. Since a 5 1023 A, v 5 360 V and b1 5 0.5 ?
1023 s, from the definition of m in Eq. 8 we get

m~
a:L
v:b1

~0:006:L: ð17Þ

Since it is highly unlikely to have spurious inductances L of the order
of 1 H, one sees that m is lower than 1023. Note, however, that m can be
used to externally control a time-scale of the circuit.

Discussion
The experimentally derived macroscopic model in Eqs. (13)–(16)
can be used to predict numerically the distribution of stable self-
generated complex oscillatory patterns in the discharge. Such study
serves a few good purposes. On one hand, one may derive a wide-
ranging phase diagrams providing a systematic classification of the
oscillatory states, of their relative abundance, and of the boundary
separating oscillatory phases. Since it is much harder to perform real-
life experiments over extended parameter domains than computer
simulations, numerically obtained phase diagrams allow experi-
ments to be planed and performed for more promising parameter
regions in control space. The availability of numerical predictions
provides data against which to compare the reliability of the theor-
etical description and to improve it where needed.

Using the model in Eqs. (13)–(16) we computed the bifurcation
diagram shown in Fig. 6 (a) and three return maps as indicated in the
figure. These plots should be compared with the corresponding ones
seen in Fig. 3. Note the larger interval of A0 in Fig. 6 (a). As one sees,
while there is a fair overall agreement between Fig. 3 and 6, the
bifurcations seen for higher values of A0 in Fig. 3 (a) display a reverse
doubling scenario which is not seen in Fig. 6. This means that the
agreement between measurements and modeling deteriorates as A0

increases. We have also attempted to locate an adequate region of the
model to reproduce unambiguously the quasiperiodicity route
observed experimentally. While the model can provide signs of qua-
siperiodicity, clear evidence could not be found.

Our model was also used to compute the isospike diagrams18–22

shown in the four panels of Fig. 7, i.e. phase diagrams depicting for
every point in control parameter space the number of spikes con-
tained in one period of the regular oscillations. The colors of the
individual panels depict the number of spikes contained in one per-
iod of the stable oscillation of each of the four variables x, y, z, w, as
indicated in the figure caption. Black represents ‘‘chaos’’, i.e. para-
meters for which it was not possible to detect any periodicity. Specific
details about how these stability diagrams were computed are given
below in the Computational Methods.

The stability diagrams in Fig. 7 allow one to recognize the rich and
intricate interplay between the continuous spike-adding and spike-
doubling mechanisms responsible for the complexification of peri-
odic oscillation of the electric discharge. Each variable produces a
complex mosaic of colors, showing how the number of spikes self-
organize in control space. A significant feature in Fig. 7 is that,
although all phase diagrams display the same structure, indepen-
dently of the variable used to construct them, the individual phases
vary in a way that is quite hard to summarize in any means other that
by displaying them graphically.

Figure 8 shows bifurcation diagrams for the four variables of the
model, computed by varying two parameters simultaneously along
the diagonal straight line segments shown in Fig. 7. While the overall
structure of the diagrams is essentially the same, independent of the
variable used to count spikes, the number of spikes in the several
branches changes considerably, corroborating the sequences
recorded in the stability diagram of Fig. 7. Noteworthy are the many
jumps observed in the bifurcation diagrams, which signal abundance
of multistability in the region, i.e. the possibility of stabilizing distinct
attractors according to the initial conditions used. This behavior
stresses the richness of the dynamical states supported by the
discharge.

In this paper, we reported an experimental study of a low-pressure
electrical discharge recording for it the standard doubling scenario as
well as a remarkable elusive route to chaos by quasiperiodicity. By
characterizing the discharge through a volt-ampere characteristic, we
developed a simple model reproducing its basic features. Based on
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this model, we performed a detailed classification of the oscillatory
behaviors, periodic or not, supported by the discharge. By computing
stability diagrams for all model variables, we characterized both the
size and shape and the unexpected sequential ordering underlying
the organization of stability phases. Our diagrams show precisely
where the number of spikes changes as a function of the variables

used to count them. We found a plethora of stability islands which
are simply too complicated to be classified systematically or to be
described by other means than purely graphically. Incidentally, we
mention that currently there is no method to locate analytically
stability phases for nonlinear oscillations of arbitrary periods so that
the only way to find them is through direct numerical computations.

Figure 7 | Isospike diagrams obtained by counting the number of peaks in one period of (a) x, (b) y, (c) z, (d) w. Integrations were started from the

arbitrarily chosen condition, (x, y, z, w) 5 (1, 1, 0.01, 0.01), at A0 5 3 and continued up to A0 5 8 by following the attractor.
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Note that the information in our phase diagrams allows one to effec-
tively control the dynamics, namely to select the final dynamical state
precisely by performing just a single change of parameters. This is in
sharp contrast with conventional methods of controlling the
dynamics23,24, which require pre-investigating unstable orbits, do
not include a prescription for the precise selection (targeting) of
the final state, and require the permanent application of external
perturbations.

In summary, although relatively simple, the macroscopic dis-
charge model reported here can reproduce basic experimental obser-
vations and reveals rich and unexpected dynamical facts. Future
work should tell if the complex stability mosaics predicted by this
model can be also found in experimental diagrams or in predictions
derived taking into account spatial phenomena of the discharge as
described, e.g. by more sophisticated discharge models based on sets
of partial differential equations.

Methods
Computational methods: The isospike diagrams18–22 in Fig. 7 were obtained by
solving the model equations numerically for the following set of parameters: m 5 3 3

1024, b 5 8 3 1023, c 5 4.2, A1 5 1.4, and A2 5 0.6, where the last two values refer to C
5 2.4 nF. To this end, we used the standard fourth-order Runge-Kutta algorithm
with fixed-step, h 5 5 3 1026, over a mesh of 400 3 400 equally spaced points. For
each value of v, we started the numerical integrations at A0 5 3 from the arbitrarily
chosen initial condition (x, y, z, w) 5 (1, 1, 0.01, 0.01) and then proceed by following
the attractor, using the last obtained values of the variables to start every new integ-
ration involving infinitesimal changes of parameters. The first 400 3 106 time-steps
were discarded as transient time needed to reach the final attractor. The subsequent
100 3 106 iterations were then used to compute the number of spikes contained in one
period of the oscillations, by recording up to 800 extrema (maxima and minima) of
the time series of the variable under consideration, together with the instant when
they occur, and recording repetitions of the maxima. As indicated by the colorbar in
the figures, a palette containing 17 colors was used to represent ‘‘modulo 17’’ (i.e.
recycling colors) the number of peaks (maxima) contained in one period of the
oscillations. The computation of stability diagrams is numerically a quite demanding
task that we performed with the help of 1536 processors of a SGI Altix cluster having a
theoretical peak performance of 16 Tflops. While it is possible to observe period-
doubling routes, most of the times what happens is just the addition of a new peak to
the waveform (without a corresponding doubling the period). Eventually, after
adding several peaks, one reaches a situation where the period roughly doubles a
previously observed value.

The bifurcation diagrams in Fig. 8 were obtained by plotting the local maximum
values (spikes) of the four variables along the lines shown in the four panels of Fig. 7,
namely when tuning A0 and v simultaneously along the line v 5 1.222A0 – 0.844. In
all diagrams, both axis were divided into 600 equally spaced values. As done for the
stability diagrams, computations were started at the minimum value of A0 from the
initial condition (x, y, z, w) 5 (1, 1, 0.01, 0.01) and continued by following the
attractor using the same integrator and integration step. The first 16 3 106 steps were
discarded as transient, while during the subsequent 4 3 106 steps plotting no more
than 200 spikes (local maxima) of the variable under consideration.
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