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A B S T R A C T   

Bioactive peptides are widely used in functional foods due to their remarkable efficacy, selectivity, and low 
toxicity. However, commercially produced bioactive peptides lack quality stability between batches. Further-
more, the efficacies of bioactive peptides cannot be guaranteed in vivo due to gastrointestinal digestion and rapid 
plasma, liver, and kidney metabolism. The problem of poor stability has restricted the development of peptides. 
Bioactive peptide stability assessments use different stability assays, so the results of different studies are not 
always comparable. This review summarizes the quality stability challenges in the enzymatic hydrolysis pro-
duction of bioactive peptides and the metabolism stability challenges after oral administration. Future directions 
on the strategies for improving their stability are provided. It was proposed that we use fingerprinting as a 
quality control measure using qualitative and quantitative characteristic functional peptide sequences. The 
chemical modification and encapsulation of bioactive peptides in microcapsules and liposomes are widely used 
to improve the digestive and metabolic stability of bioactive peptides. Additionally, the establishment of a 
universal stability test and a unified index would greatly improve uniformity and comparability in research into 
bioactive peptides. In summary, the reliable evaluation of stability is an essential component of peptide char-
acterization, and these ideas may facilitate further development and utilization of bioactive peptides.   

1. Introduction 

Bioactive peptides are protein fragments encrypted in the primary 
sequences of proteins, and they have a wide array of significant phar-
macological effects after their degradation from proteins (Singh et al., 
2021). The field of peptide therapy began in 1922 when insulin 
extracted from the pancreas of animals was first used for medical 
treatment (Banting et al., 1962), followed by corticotropin in 1949 
(Elkinton and Hunt, 1949). In 1953, oxytocin became the first synthetic 
peptide drug (Vigneaud et al., 1953). At first, it took months to years to 
synthesize peptides by solution-phase chemistry until the invention of 
solid-phase synthesis in 1963 (Merrifield, 1965). The peptide industry 

has developed significantly, accompanied by the maturity of 
high-performance liquid chromatography (HPLC) purification technol-
ogy. Due to their remarkable potency, selectivity, and low toxicity, 
bioactive peptides saw rapid development in the 1970s and 1980s 
(Muttenthaler et al., 2021). Bioactive peptides derived from foods that 
prevent the development of chronic diseases were included in the 
BIOPEP-UWM database. Today, the number of bioactive peptides 
registered in the BIOPEP-UWM database is 4,299, as of January 2022 
(Minkiewicz et al., 2019). The functions of peptides in the BIOPEP-UWM 
database include antihypertensive, hypolipidemic, hypoglycemic, anti-
oxidant, antithrombotic, immunomodulatory, antimicrobial, and 
anticancer. 
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In the past two decades, scientists have applied bioactive peptides to 
various fields, such as functional foods, biological reagents, biological 
fertilizers, and biopharmaceuticals. In food science, the conventional 
methods of producing bioactive peptides are enzymatic hydrolysis and 
fermentation of different precursor proteins (Iwaniak et al., 2019; Wu 
et al., 2019). Proteins derived from natural sources, such as plants, 
bacteria, fungi, and animals, have been extensively studied as sources of 
bioactive peptides. In addition, bioinformatics, using in silico analysis 
tools as a new method to discover bioactive peptides, has also made 
significant progress (Salim and Gan, 2020). Numerous food companies 
developed food-derived bioactive peptide products and claimed health 
effects from consuming these functional foods (Hartmann and Meisel, 
2007). For example, Calpis Co. (Tokyo, Japan) developed a commer-
cially available sour milk that contained peptides VPP and IPP from 
β-and κ-casein and declared it had a hypotensive function. The glyco-
macropeptide sold by Davisco (Minnesota, USA) had anti-cariogenic, 
antimicrobial, and antithrombotic functions. In non-food matrices, 
bioactive peptides also provide specific health-promoting effects. For 
instance, Recaldent™ and Trident™ added bioactive peptide CPP to 
chewing gum to help remineralize enamel subsurface lesions (Shen 
et al., 2001). In addition, bioactive peptides also have great potential as 
drug components. In state-of-the-art peptide drug discovery, display 
technologies, such as phage display, yeast display, and ribosome display, 
and integrated venomics are prominent (Muttenthaler et al., 2021). 
There are around 80 peptide drugs on the global market (Lau et al., 
2018), and the global peptide drug market is predicted to exceed $60 
billion by 2026. 

However, there are stability challenges with the use of bioactive 
peptides as functional foods or drugs. Therefore, the evaluation of 
peptide stability is an essential part of peptide characterization (Cavaco 
et al., 2021). First, scaling up production often results in irreproducible 
peptides. Unguaranteed quality stability will hinder the commercial 
production of bioactive peptides. Second, the most convenient and 
acceptable delivery method of bioactive peptides is oral administration 
(Yap and Gan, 2020). However, gastrointestinal digestion and rapid 
metabolism in plasma, liver, and kidney with short half-lives (t1/2) 
greatly affects the efficacy of bioactive peptides in vivo. Therefore, the 
application of bioactive peptides will be greatly hindered if high doses 
and frequent administration are required to ensure efficacy. As stated 
above, the evaluation of bioactive peptide stability has become critical 
to the development of this industry (Lee et al., 2019; Panchin et al., 
2020). 

This review summarizes the stability challenges associated with the 
production and administration of bioactive peptides, including i) prod-
uct quality, ii) physicochemical properties, iii) gastrointestinal diges-
tion, and iv) metabolism. In addition, we provide future directions for 
the improvement of bioactive peptide stability in commercial food 
health-enhancing compositions and pharmaceutical ingredients. 
Furthermore, we promote the establishment of a standard stability 
evaluation test and a unified stability evaluation index. 

2. Quality stability of peptide products generated by enzymatic 
hydrolysis 

An increasing number of peptide products appear on the market 
annually with the gradual verification of many functions of food-derived 
bioactive peptides. Manufacturers claim their products are functional 
peptides or contain functional peptides. Japan, the United States, and 
Europe have taken the lead in launching bioactive peptide products with 
various functions, forming an industry with great commercial prospects. 
At the same time, the evaluation of the quality of bioactive peptide 
products has become an urgent problem. 

The most common peptide production method is enzymatic hydro-
lysis, followed by fermentation of different precursor proteins. Gener-
ally, bioactive peptide products derived from natural products, 
especially food, are not single peptides with high purity. The separation 

and purification of bioactive peptides from by-product proteins are 
currently receiving extensive attention. In particular, the by-products of 
fish and poultry are inhomogeneous, and the ingredients vary greatly, 
leading to complex protein hydrolysates with variable composition 
(Mage et al., 2021). In order to improve the quality stability of peptide 
products, greater consistency from batch to batch is needed. For 
example, the sequence and content of the peptides obtained by enzy-
matic hydrolysis should be approximately the same to ensure stable 
biological activity. Therefore, ensuring the stable quality of different 
batches of peptide products is worthy of further research. In addition, 
our experience and the production practices of cooperative companies 
have demonstrated the challenges in producing precisely the same 
peptide products generated by enzymatic hydrolysis, even under the 
same conditions and raw materials. This has been attempted in products, 
such as yak bone peptides, broccoli stem and leaf peptides, and sea 
cucumber peptides. Processing conditions, such as temperature, 
fermentation, and hydrolysis time, can affect the reproducibility of 
peptides, especially when protein mixtures exist in the substrate (Singh 
et al., 2021). Even when these factors are controlled and the process is 
consistent, minuscule and intrinsic batch-to-batch heterogeneity is still 
unavoidable. Therefore, it is necessary to explore the quality evaluation 
indicators, such as the content of bioactive peptides, activity stability, 
and the mechanism of activity stability. The traditional quality evalua-
tion of bioactive peptide products is mainly carried out from the 
following aspects: the color and appearance, the molecular weight dis-
tribution of the peptide, the type and content of amino acids, and the 
purity and extraction methods for the peptide. However, studies on the 
functional stability of bioactive peptides are lacking. The functional 
stability of peptides is related to the quantity and content of specific 
functional peptides in bioactive peptide products. Therefore, the current 
research hotspots and difficulties lie in the repeatability and accurate 
quantification of the characteristic active peptide sequences. 

3. Physicochemical property stability of peptides 

Proteins are generally composed of a complex network of stable in-
teractions, including hydrophobic interactions, salt bridges, and 
hydrogen bonds, that result in a unique 3D structure that is significantly 
stable, compared to other conformations (D’Addio et al., 2016). The 
bioactive peptides formed after protein degradation appear more “dy-
namic” in that the energetic barriers to transition among different 
conformations are usually small, compared with rigid proteins. The link 
between peptide structure and stability is unique to each individual 
peptide sequence. Different amino acids vary in their sensitivity to 
environmental factors, such as heat, pH, and salt. Heat treatment would 
change the secondary structure of peptides and make the peptide inac-
tive, which might be due to the aggregation (Enciso et al., 2015). pH 
conditions could cause changes in the ionization properties of peptides 
and lead to electron transfer. For instance, threonine, serine, and 
cysteine are unstable under alkaline conditions (Lopez-Sanchez et al., 
2016; Wang et al., 2017). The concentration of salt may affect the 
structure of the bioactive peptides due to changes in the side chains of 
amino acid residues under high salt concentrations that may result in a 
decrease in biological activity (Zhu et al., 2014). 

The sequences of peptides greatly influence their physicochemical 
property stability. Guruprasad et al. (1990) reported the correlation 
between the stability of a protein and its dipeptide composition, which 
revealed the occurrence of certain dipeptides was significantly different 
in the unstable proteins, compared with that in the stable ones. The 
ProtParam tool of the Expasy database was used in this method to es-
timate the stability of peptides (Gasteiger, 2005). Peptide VLSTSFPPK 
was purified and identified from Kluyveromyces marxianus protein hy-
drolysate. If the proline in the antepenultimate position was replaced 
with cysteine, tyrosine and histidine, the new peptides VLSTSFCPK, 
VLSTSFYPK, and VLSTSFHPK would have lower stability against the 
NaCl treatment in DPPH assay (Mirzaei et al., 2020a,b). As a result of 
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exposure to high concentrations of salt, a conformational change in the 
side chains of cysteine, tyrosine, and histidine may explain the lower 
stability of VLSTSFCPK, VLSTSFYPK, and VLSTSFHPK (Mirzaei et al., 
2020a,b). Peptide KLTWQELYQLKYKGI (KI-15) had exceptional thermal 
stability, but the stability decreased when the 10th-position leucine was 
replaced by phenylalanine and valine (Tm from 78.3◦C to around 40◦C). 
Computational and experimental studies showed heat resistance was 
based on the hydrophobic interaction of leucine-7 and leucine-10; 
therefore, the substitution of leucine in the 10th-position would lead 
to a substantial decrease in Tm (De Rosa et al., 2021). By replacing the 
dehydroalanine with dehydrobutyrine at position 5 of antimicrobial 
peptide Nisin, the resistance to acid-catalyzed chemical degradation of 
the peptide was enhanced. 

In addition, the amino acid sequences affect the structural charac-
teristics of the bioactive peptides, such as α-helices and β-sheets. 
Structural characteristics play an essential role in the stability of 
bioactive peptides. For example, the reduction in the peptide-folded 
helix group was highly correlated with a loss in thermal stability 
(Diana et al., 2010). Asaduzzaman and Chun (2015) and Udenigwe and 
Fogliano (2017) also reported bioactive peptides with a high proportion 
of β-sheet structures would be more sensitive to heat treatments. Mirzaei 
et al. (2020a,b) believed the higher percentage of β-sheet structures in 
peptide VLSTSFCPK was the reason for its higher sensitivity to heat 
treatment, compared with other similar peptides. The stability of the 
physicochemical properties of the peptide itself is the basis for its 
development and utilization. 

4. Gastrointestinal digestion stability 

Currently, clinically mature peptide therapy is most commonly 
administered via intramuscular injection, sustained-release subcutane-
ous injection, and intranasal delivery. As a typical delivery, hydrophobic 
depots could increase the duration of action (Mitragotri et al., 2014). 
However, oral administration is the most convenient and acceptable 
delivery method of bioactive peptides, especially for the application of 
peptides as daily therapy for chronic disease management. Many pep-
tides will be digested into inactive peptide fragments or free amino acids 
and lose activity in vivo after oral administration; however, these same 
peptides may have significant biological activity in vitro. For example, Li 
et al. (2018) identified a novel H1N1 virus neuraminidase inhibitory 
peptide, PGEKGPSGEAGTAGPPGTPGPQGL, from cod skin hydrolysates, 
and this peptide was almost inactivated after simulated gastrointestinal 
digestion. Most bioactive peptide drugs, such as insulin, have to be 
administered by parenteral routes, which is inconvenient and painful 
(Di, 2015). Therefore, the ability to resist digestion by gastrointestinal 
protease is critical to bioactive peptides. 

4.1. Gastrointestinal digestion of peptides 

Susceptibility to the action of gastrointestinal proteases, such as 
pepsin, trypsin, and chymotrypsin, is one of the important reasons for 
the short half-life of bioactive peptides (Wang et al., 2019). The cleavage 
specificity for pepsin (EC 3.4.23.1) lacks specificity, preferentially 
before or after Trp, Tyr, Leu, or Phe, with other restrictions in hydro-
phobic amino acid sites. Trypsin (EC 3.4.21.4) was found in pancreatic 
secretions, which specifically hydrolyzes amino acid residues Lys and 
Arg of the C-terminal. The chymotrypsin (EC 3.4.21.1) belongs to the 
serine protease family, and the hydrolysis side chains are composed of 
Phe, Tyr, and Trp, as well as other large hydrophobic side chains with 
specificities, such as Met and Leu. The presence of these gastrointestinal 
cleavage sites on the peptide is an important cause of its gastrointestinal 
instability. At present, the methods for evaluating the gastrointestinal 
resistance of bioactive peptides are mainly in silico simulation and in 
vitro enzymatic hydrolysis assay. 

4.2. In silico simulation of gastrointestinal digestion stability 

The “Enzyme(s) Action” application in the BIOPEP-UWM database 
(Minkiewicz et al., 2019) and “PeptideCutter” application in the ExPASy 
database (Wilkins et al., 1999) are commonly used to predict the hy-
drolytic actions of gastrointestinal proteases. The activity of chicken 
breast muscle hydrolysate-activated alcohol dehydrogenase was signif-
icantly reduced after intestinal digestion, and in silico assessments sub-
sequently revealed the degradation of peptides KDLFDPVIQ, 
YPGIADRM, VAPEEHPTLL, and ADGPLKGIL might be responsible for 
the reduced activity (Xiao et al., 2020). However, there are differences 
between simulated digestion in silico and actual gastrointestinal diges-
tion. Simulating gastrointestinal digestion in the database, based on the 
specificity of an enzyme, assumes that all bonds theoretically susceptible 
to a given proteinase are hydrolyzed (Minkiewicz et al., 2008, 2019). 
The proteolysis is often incomplete under actual conditions. In silico 
hydrolysis might not include the conditions, such as pH, temperature, 
time, the nature of protease-protein interactions, the complexity of the 
gastrointestinal environment, and other characteristics of enzyme 
application (Udenigwe, 2014; Vermeirssen et al., 2004). Moreover, the 
availability of peptide bonds also influences the effectiveness of enzyme 
action (Vermeirssen et al., 2004). Therefore, there are cases in which 
sites that could not be cut are cut, and vice versa. 

4.3. In vitro simulation of gastrointestinal digestion stability 

In vitro simulation of gastrointestinal digestion provides simple and 
inexpensive way for researchers to estimate the gastrointestinal stability 
of bioactive peptides. Peptide stability has been evaluated by revealing 
the peptide sequence and the role of each amino acid (Mirzaei et al., 
2021). The consensus is that high molecular weight peptides are more 
prone to hydrolysis than smaller ones. Chen and Li (2012) proved 
casein-derived peptides with molecular weight >3 kDa are more likely 
to be degraded than peptides <3 kDa during two-stage in vitro gastro-
intestinal digestion. Compared with gastric digestion, peptides are more 
prone to hydrolysis in the intestine. In addition, bioactive peptides with 
more acidic amino acids (Picariello et al., 2010) and higher hydropho-
bicity (Xie et al., 2015) would be more stable during gastrointestinal 
digestion. In addition, the stability of peptides is influenced by peptide 
sequences (Mirzaei et al., 2020a,b). A lack of cleavage sites for gastro-
intestinal proteases is essential for improving gastrointestinal stability. 
Proline and glutamic acids are conducive to improving the resistance of 
bioactive peptides to pepsin and pancreatin (Savoie et al., 2005). 
However, experiments performed by different teams vary in their 
methods of simulating digestion. 

For gastric digestion, Hao et al. (2020) adjusted the pH to 3 and 
incubated the sample (1 mg/mL) with pepsin (1000 U/mL) at 37◦C for 
120 min. Differently, Yuan et al. (2018) adjusted the pH of pepsin 
(enzyme/substrate of 1:35, w/w) to 2.5 and incubated the mixture at 
37◦C for 60 min. When simulating the gastrointestinal digestion of 
casein-derived peptides, peptides were adjusted to pH 2 and hydrolyzed 
with pepsin (2% w/w) at 37◦C for 90 min (Chen and Li, 2012). Marseglia 
et al. (2019) mixed sodium and potassium salts with pepsin (25,000 
U/mL) to prepare simulated gastric juice and incubated the sample with 
simulated gastric juice at 37◦C for 2 h after adjusting to pH 3. The 
digestion stability of peptides is commonly assessed by dividing the 
remaining amount of peptide after digestion by the amount of peptide 
before digestion. Different amounts of enzyme added and different re-
action conditions (such as pH, incubation time, and solution constituent) 
will inevitably lead to different results. 

In summarizing the reported methods of intestinal digestion, differ-
ences still exist among the digestion methods. Furthermore, the source 
of the enzymes is crucial, but porcine and bovine trypsin were used in 
different studies to evaluate the digestion stability of peptides. Baptista 
et al. (2020) prepared pancreatic juice mixed with pancreatin (from 
porcine pancreas, 800 U/mL) and bile solution in vitro. After adjusting to 
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pH 7, the samples were digested at 37◦C for 2 h. Jin et al. (2016) used 
trypsin (1:100, w/w) from bovine pancreas to simulate the intestinal 
digestion of yogurt. 

Different experimental reagents and methods will affect the results. 
Ahmed et al. (2022) summarized 31 articles about the simulated 
digestion stability of peptides, including 27 stable peptides and 66 un-
stable peptides. However, due to the differences between evaluation 
methods, it is difficult to directly compare these peptides. For example, 
if under the same experimental conditions, a peptide that was reported 
to be unstably incubated for 2 h may be more resistant to gastrointes-
tinal digestion than a peptide that was reported to be stably incubated 
for 1 h. In addition, a simple mixture solution is different from actual 
body fluids, which may lead to differences between digestion in vitro and 
in vivo (Cavaco et al., 2021). Fortunately, more and more studies have 
reported digestion simulation methods closer to the real human body 
conditions in recent years, such as the studies by Brodkorb et al. (2019) 
and Minekus et al. (2014) Moreover, some investigators have developed 
methods of in vivo digestion in mice instead of in vitro stimulation (Fan 
et al., 2019; Tu et al., 2019). 

4.4. Stability of peptides on the transepithelial transport 

The extensive enzymatic system in the gastrointestinal tract, 
epithelial cells, and mucosa constitute a significant barrier. Whether 
bioactive peptides can resist hydrolysis by brush border membrane en-
zymes and travel intact through intestinal epithelial cells is important. 
Caco-2 cells, human colon cancer cells, are widely used to simulate the 
transport and stability of bioactive peptides across intestinal epithelial 
cells (Ohsawa et al., 2008). The apparent permeability coefficient values 
of bioactive peptides were mainly between 10− 8 and 10− 6 across the 
Caco-2 cells monolayer. Pep T1-mediated transport, paracellular diffu-
sion, and transcytosis are primary transfer methods across intestinal 
epithelial cells (Fig. 1). Several metabolic enzymes on the Caco-2 cells 
membrane may reflect drug absorption (Teng et al., 2012). The resis-
tance of different peptides against Caco-2 enzymes varies widely. For 
example, 96% of the ACE-inhibitory peptide QIGLF keep stable after 
incubation with a Caco-2 cells membrane for 2 h (Ding et al., 2014), 
while the peptides AAATP, AAPLAP, KPVAAP (Gallego et al., 2016), and 
YAEERYPIL (Miguel et al., 2008) were almost entirely degraded after 2 
h. 

5. Metabolism stability 

Bioactive peptides show great potential in function foods and phar-
maceutical engineering, due to their high potency and low toxicity. 

However, most peptides have short t1/2 of 2–30 min because of the broad 
distribution of peptidases in the body (such as plasma, kidney, and 
liver). After absorption, bioactive peptides are often rapidly degraded by 
proteases or rapidly cleared in plasma, kidney, and liver. For example, 
the t1/2 of bioactive peptides VP, VPY, VPYP, and YPQ were less than 5 
min (Zheng et al., 2019). Giapreza® (DRVYIHPF), approved by the Food 
and Drug Administration (FDA) in 2017, is metabolically unstable in the 
human body and its estimated t1/2 is 30 s. The short t1/2 means that an 
increase in dosage or repeated administration is required for efficacy, 
which significantly limits the development of bioactive peptides. 

5.1. Metabolism stability in blood 

Digestion in the gastrointestinal tract can still be avoided by 
changing the route of administration, but metabolism after entering the 
bloodstream is an unavoidable problem. Peptidase genes account for 
3.1% of all encoded human proteins, making peptidases one of the most 
abundant classes of enzymes and widely distributed in the body (Klein 
et al., 2018). When the bioactive peptides are absorbed into the blood-
stream through the epithelial cells of the small intestine, a large number 
of proteases and peptidases present in the blood will act on the peptides 
(Fig. 1). Peptidases commonly found in the blood include carboxypep-
tidase N (cleavage site specificity: Lys, Arg, Ala, and Gly), aminopepti-
dase N (cleavage site specificity: Ala, Leu, Arg, Trp, Leu, and Phe), DPP4 
(cleavage site specificity: Pro and Ala), plasmin (cleavage site speci-
ficity: Arg and Lys), furin (cleavage site specificity: Arg, Ser, and Lys), 
and neprilysin (cleavage site specificity: Phe, Leu, Try, Ile, and Val) (Lai 
et al., 2021). Bottger et al. (2017) incubated eight peptides with blood, 
plasma, and serum. Except for one stable peptide, the degradation 
products of the remaining seven peptides were detected in blood, 
plasma, and serum. When assessing the serum/plasma stability of 
bioactive peptides, the assays vary from different study to study, such as 
the species source of the plasma or serum, commercial plasma or serum 
and fresh acquisition, peptide/plasma or serum ratio, pH value, and 
buffer. These all affect the results. For example, to assess its stability, 
Yang et al. (2017) incubated an antithrombotic peptide RGDWR (200 
ng/mL) with rat plasma. Low et al. (2020) used complete human EDTA 
blood, obtained from the Red Cross Blood Donor Service, to evaluate the 
plasma stability of a proopiomelanocortin-derived peptide (2 μM). Wang 
et al. (2021) mixed physiological saline-containing peptide (1 mg/mL) 
with fresh human plasma (1:1, v/v) to investigate the effect of structural 
modification of antimicrobial peptides on their plasma stability. More-
over, commercial human serum is to be used with caution because a lack 
of homogeneity between batches can lead to variable activity (Cavaco 
et al., 2021). 

Fig. 1. Stability challenges encountered by bioactive peptides in vivo, including gastrointestinal digestion and metabolism.  
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5.2. Metabolism stability in kidney and liver 

Although there are over 44 kinds of tissues, the enzymatic break-
down of bioactive peptides mostly happens in the kidney and liver after 
reaching organs throughout the body (Hall, 2014). In addition, because 
the pore size of the glomerulus is about 8 nm and the molecular weight 
of bioactive peptides is less than 25 kDa, peptides are easily filtered and 
rapidly removed from systemic circulation by the kidney (Fig. 1) (Katsila 
et al., 2012). Subsequently, bioactive peptides enter the bladder and 
excrete from the body because the renal tubules cannot reabsorb (Chia, 
2021). The liver is the organ with the most active metabolism and plays 
an essential role in peptide metabolism. The metabolic rate of bioactive 
peptides in the liver depends on the amino acid sequence and the spe-
cific intake of hepatocytes (Meibohm and Zhou, 2012). At present, there 
are still few studies on liver and kidney metabolism of food-derived 
bioactive peptides, as the majority focus on mature peptide drugs. 
Cetrotide®, a decapeptide containing five unnatural amino acid residues 
approved by the FDA in 2000, was hydrolyzed by peptidase between 
Ser-4 and Tyr-5 and became a tetrapeptide before renal elimination 
(Chia, 2021). Firmagon®, a decapeptide, was degraded in the liver and 
excreted mainly as tetrapeptide and pentapeptide fragments from the 
urine (Sonesson and Rasmussen, 2013). Firazyr®, a decapeptide, was 
metabolized into two inactive fragments through the action of plasma 
and liver peptidase and excreted by the kidney (Bork et al., 2007; Leach 
et al., 2015). 

6. Strategies to ensure the quality of peptide products 

Reproducibility and stability are vital for the entrance of peptide 
products into the market. Therefore, it is crucial to establish quality 
control indicators to evaluate product stability. Lopez-Morales et al. 
(2019) used size exclusion chromatography (SEC), mass spectrometry 
(MS), and nuclear magnetic resonance spectrometry (NMR) to evaluate 
the peptide profile, and determined the safety of collagen hydrolysates 
as a quality indicator. By determining the average molecular weight and 
polydispersity index with MS and NMR, Vazquez-Leyva et al. (2019) 
used structural and mass mobility orthogonal analysis to profile complex 
peptide mixtures. In addition, Mage et al. (2021) studied the potential of 
using a large Fourier-transform infrared (FTIR) fingerprinting database 
to obtain new insights on the quality of peptide products. 

Traditional Chinese medicines (TCM) are small molecule mixtures 
with complex component. The fingerprint of TCM is a quality control 
method for extracts and preparations, which has become an interna-
tional consensus (Tao et al., 2017). The FDA accepts TCM-style chro-
matographic fingerprints in application materials. The World Health 
Organization (WHO) also stipulated in the 1996 guidelines for the 
evaluation of herbal medicines that if the active ingredients of any given 
TCM are not clear, chromatographic fingerprints can be provided to 
prove the product’s quality. Chromatographic, spectroscopic, mass 
spectrometry, and capillary electrophoresis are widely used in finger-
printing. The application of fingerprints may solve the problems of the 
quality assessment of TCMs, which often have complex ingredients, 
unidentified active ingredients, and differences in quality across product 
batches. Taking the Ginkgo biloba extract preparation as an example, 
these fingerprints reflect the 33 chemical components (mainly flavo-
noids and lactones) contained in the preparation and their respective 
concentrations. Research on the correlation between chemical compo-
sition and drug efficacy has shown that extracts composed of about 24% 
ginkgo flavonoids and about 6% ginkgolide have the best curative ef-
fects. The reproducibility of the fingerprint spectrum is good. Crude 
peptide products generated by enzymatic hydrolysis of protein usually 
contain different peptide sequences. Learning from the quality control 
experience of TCM, qualitative and quantitative characteristic function 
peptide sequences combined with fingerprints may play an essential role 
in the quality control of crude peptide products. 

7. Strategies to improve the stability of bioactive peptides 

7.1. Modification 

At present, chemical modification is one of the primary measures to 
improve the stability of bioactive peptides, including D-amino acid or 
unnatural amino acid substitution, increased molecular mass, cycliza-
tion, and N/C-terminal modification or substitution (Fig. 2 & Table 1) 
(Yao et al., 2018). D-amino acid substitution is a common strategy to 
improve the stability of peptides. Mao et al. (2021) reported the intro-
duction of D-amino acid promoted the stability of antimicrobial peptides 
against plasma and liver S9 metabolism when all amino acids of IRI-
KIRIK were in D configuration. Jia et al. (2017) reported the same 
D-amino acid substitution strategy to improve the stability of an anti-
microbial peptide polybia-CP. A20FMDV2 is a 20-mer peptide, and 
D-amino acid substitutions could significantly prolong its serum stability 
(Cardle et al., 2021). Substituting L-amino acid in cationic AMP peptide 
KRLFKKLLKYLRKF with D-amino acid and unnatural amino acids, the 
stabilities of the peptides toward proteases were enhanced (Lu et al., 
2020). Chia (2021) identified 25 peptide drugs approved by the FAD, 20 
of which contain unnatural amino acids. Unnatural amino acid substi-
tution could significantly extend the systemic half-life of bioactive 
peptides. Not many peptide drugs are composed of natural amino acid 
residues, as represented by vasopressin, angiotensin II, plecanatide, 
linaclotide, and oxytocin. 

Based on the size-dependent mechanism of renal clearance, 
increasing the molecular mass of bioactive peptide is an excellent 
strategy to increase their blood circulation times and extend their half- 
lives (Maack et al., 1979). Therefore, linking bioactive peptides to 
large polymers was widely used to avoid renal filtration because poly-
peptides with molecular mass of 50 to 70 kDa would be retained longer 
in circulation. Conjugation to polyethylene glycol (PEG) has widely 
been employed. The t1/2 of bioactive peptides attached to PEG could be 
extended 10- to 100-fold. A PEGylated analogue of the gut hormone 
oxyntomodulin is in phase I trials for treating obesity (Bianchi et al., 
2013), which has long-term antihyperglycemic, insulinotropic, and 
anorexigenic effects. Zhou et al. (2009) used methoxy-PEG-aldehyde to 
modify the N-terminal of an RGD-modified endostatin–derived synthetic 
peptide, and the t1/2 was prolonged by 5.86-fold. Conjugation to lip-
idation, plasma proteins, and albumin-binding molecules was used to 
increase the size of bioactive peptides (Pollaro and Heinis, 2010). Al-
bumin ligand-conjugated thymopentin (RKDVY) became more stable in 
plasma and had better immune-modulating activity (Tan et al., 2017). 

Cyclization is another common method of modification of peptides to 
improve their stability and activity. Endogenous opioid peptides have 
great potential in treating pain. However, natural opioid peptide re-
ceptors have poor specificity and unstable metabolism, and cannot reach 
the brain after systemic administration. The cyclized opioid peptide has 
a longer half-life and higher metabolic stability while retaining its 
analgesic activity (Piekielna et al., 2013). Vernen et al. (2019) demon-
strated backbone cyclization of tachyplesin peptides improved their 
stability and properties of antimicrobial and anticancer. Methods of 
cyclizing bioactive peptides have also been reported more in recent 
years. For example, Zhang et al. (2019) reported a highly chemo-
selective and simple method of cyclizing bioactive peptides. The reac-
tion was readily accomplished and was found to be capable of tolerating 
different functionalities. Yamagami et al. (2021) demonstrated the 
peptide cyclization strategy by combining a soluble-tag-assisted liq-
uid-phase peptide synthesis with a backbone amide linker. In addition to 
chemical peptide ligation, naturally occurring and engineered enzymes 
are also used for peptide cyclization (Nuijens et al., 2019). Toplak et al. 
(2016) reported a peptiligase that could efficiently catalyze head-to-tail 
peptide cyclization. Thioesterase SurE could cyclize two distinct 
non-ribosomal peptides (Matsuda et al., 2019). 

N/C-terminal modifications are widely used to protect bioactive 
peptides against endogenous exopeptidases. An antimicrobial peptide 
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reported by Li et al. (2021) was easily degraded in the plasma, and 
acetylating its N-terminal improved the stability of peptides against pH, 
plasma, and trypsin degradation. Liu et al. (2020) demonstrated N-ter-
minal myristoylation enhanced the antimicrobial activity of 
PMAP-36PW. N-terminal acetylated peptide RLYE showed better anti-
tumor activity, due to a decrease in the susceptibility to serum pepti-
dases (Yun et al., 2019). C-terminal modification could impact bioactive 
peptide stability, membrane permeability, and activity (Arbour et al., 
2020). Through generating C-terminal peptide amides of antibacterial 
peptides, a head-to-tail cyclized antibacterial peptide was synthesized, 
which exhibited higher proteolytic stability (So et al., 2021). A modified 
20-residue peptide A20FMDV2, with N-terminal D-Asn and C-terminal 
D-Thr, showed improved activity by reducing susceptibility to plasma 
degradation (Hung et al., 2017). 

In addition, side-chain modifications, backbone modification, and 
alkylation of amide nitrogen are all chemical modifications widely used 
in bioactive peptides (Pernot et al., 2011). The biochemical modification 
has received more and more attention in recent years (Gao et al., 2018). 
Some unmodified bioactive peptides have astonishing resistance to 
proteolysis, but the determinants of this unusual phenomenon remain 
mysterious (Bottger et al., 2017; Werner et al., 2016). Demystifying the 
mechanism behind it is an important direction of future efforts. 

7.2. Encapsulation 

Modifications are often used for target bioactive peptides that have 
the potential to be developed as drugs. However, encapsulation methods 
are more acceptable and inexpensive for bioactive peptides as functional 
foods. 

Microcapsules and microgels are ideal for bioactive peptides delivery 
applications. The bioactive peptides embedded in microcapsules have a 
range of advantages, including resistance to digestion in the gastroin-
testinal system and prevention of chemical and enzymatic degradation 
to ensure biological activity (Malmsten, 2006). They can also control the 
release rate and reduce adverse immune side effects (Frokjaer and 
Otzen, 2005). Zhang et al. (2009) reported alginate/chitosan/starch 
microcapsules that could deliver antimicrobial oyster peptides to the 
intestine, and the microcapsules showed a sustained-release effect. 

Fig. 2. Different strategies to improve the stability of bioactive peptides (A) Various chemical modification, (B) Microcapsules, and (C) Liposome.  

Table 1 
Summary of the strategies to improve the stability of bioactive peptides.  

Strategies Applications Examples Ref. 

Chemical 
modification 

D-amino acid 
substitution 

IRIKIRIK Mao et al. 
(2021) 

Polybia-CP Jia et al. (2017) 
A20FMDV2 Cardle et al. 

(2021) 
KRLFKKLLKYLRKF Lu et al. (2020) 

Unnatural amino 
acid substitution 

Afamelanotide Chia (2021) 
Bivalirudin 
Cyclosporine 
Pasireotide 

Increase molecular 
mass 

Endostatin-derived 
peptide 

Zhou et al. 
(2009) 

RKDVY Tan et al. 
(2017). 

Cyclization Cyclized opioid 
peptide 

Piekielna et al. 
(2013) 

Tachyplesin peptides Vernen et al. 
(2019) 

N/C-terminal 
modification or 
substitution 

Antimicrobial 
peptide 

Li et al. (2021) 

PMAP-36PW Liu et al. (2020) 
RLYE Yun et al. (2019) 
A20FMDV2 Hung et al. 

(2017) 
Encapsulation Microcapsules Antimicrobial oyster 

peptides 
Zhang et al. 
(2009) 

Phaseolus lunatus L. 
peptides 

Cian et al. 
(2019) 

α-helical 
polypeptide 

Morikawa et al. 
(2005) 

Insulin Aiedeh et al. 
(1997) 

Liposome Antioxidant peptide Ramezanzade 
et al. (2021) 

RLSFNP Zhang et al. 
(2019) 

Insulin Cui et al. (2015)  
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Phaseolus lunatus L. peptides embedded in maltodextrin/gum arabic 
microcapsules preserved their α-glucosidase, α-amylase, and dipeptidyl 
peptidase-IV inhibitory activity through gastrointestinal digestion (Cian 
et al., 2019). Morikawa et al. (2005) prepared α-helical polypeptide 
microcapsules using emulsion-templated self-assembly of amphiphilic 
poly(γ-benzyl L-glutamate)s (PBLG), which was stable in a dry envi-
ronment. Chitosan microcapsules could ensure the stable release of in-
sulin over a long period (Aiedeh et al., 1997). The wall material is the 
primary determinant of microcapsule performance. Natural polymers 
(such as sodium alginate, chitosan, and cyclodextrins), fully synthetic 
polymers (such as polylactic acid/glycolic acid copolymer and poly-
caprolactone), semi-synthetic polymers (such as ethyl cellulose), and 
inorganic materials (such as calcium carbonate, silicate, double metal 
hydroxide, phosphate, and clay) have been used to prepare microcap-
sules. The release of microcapsules depends on pH values, temperature, 
ionic strength, particle sizes, and additives. At present, the preparation 
technology of microcapsules focuses on improving the encapsulation 
efficiency and prolonging the drug release. Furthermore, safer and 
non-toxic wall materials derived from food ingredients can provide new 
directions for microcapsules. The development of strategies to better 
ensure the biological activity of bioactive peptides in microcapsules, 
particularly those stored at room temperature for extended periods, is 
also needed in future efforts. 

Liposomal packaging is another strategy used to improve bioactive 
peptide stability. Liposomes, with a microvesicle structure, consist of an 
aqueous core and an amphiphilic bilayer. Niu et al. (2014) found lipo-
somes containing bile salts showed longer residence time and stronger 
transmembrane permeability in vivo. Ramezanzade et al. (2021) pre-
pared liposomes coated with chitosan cross-linked with sodium tripo-
lyphosphate and embedded fish-purified antioxidant peptide. The 
bioavailability of milk-derived ACE-inhibitory peptide RLSFNP after 
liposome encapsulation was improved and had better intestinal ab-
sorption. Parmentier et al. (2011) investigated tetraether lipid lipo-
somes, which could deliver oral peptides. The plant-derived ergosterol 
liposomes screened by Cui et al. (2015) could significantly improve the 
oral bioavailability of insulin. Liposomes should maintain their vesicular 
morphology and avoid early leakage of encapsulated material by 
resisting destruction by bile salts, pancreatic enzymes, and acidic con-
ditions to improve the oral bioavailability of encapsulated bioactive 
peptides in the gastrointestinal tract. 

8. Conclusions 

Bioactive peptides have been developed and advanced over the past 
two decades and have applications in novel foods and pharmaceuticals. 
However, their stability continues to be an important challenge to 
overcome. For the quality control of peptide products, we suggest the 
method of fingerprint for qualitative and quantitative analysis of specific 
peptide segments as a quality control index. In order to ensure the ef-
ficacy of bioactive peptides, peptide products must have stable physi-
cochemical properties, resistance to gastrointestinal digestion, and 
specific metabolic stability, so as to achieve an appropriate retention 
time in the body. Chemical modification and encapsulation in micro-
capsules or liposomes are two mainstream methods to improve the 
stability of bioactive peptides. We believe stability studies are essential 
and will prove highly beneficial to bioactive peptide development. 
Moreover, we found that different researchers used various methods for 
mainstream evaluation tests, such as in vitro gastrointestinal digestion 
and plasma stability, making it difficult to compare the data between 
different reports. Therefore, establishing a standard stability evaluation 
test and a unified index are necessary. 
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