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Neuromuscular junctions (NMJs) are directly involved into such indispensable to life
processes as respiration and locomotion. However, motor nerve forms only one
synaptic contact at each muscle fiber. This unique configuration requires specific
properties and constrains to be effective. The very high density of acetylcholine
receptors (AChRs) of muscle type in synaptic cleft and an excess of acetylcholine
(ACh) released under physiological conditions make this synapse extremely reliable.
Nevertheless, under pathological conditions such as myasthenia gravis and congenital
myasthenic syndromes, the safety factor can be markedly reduced. Drugs used for
short-term symptomatic therapy of these pathological states, cause partial inhibition of
cholinesterases (ChEs). These enzymes catalyze the hydrolysis of ACh, thus terminate
its action on AChRs. Extension of the lifetime of ACh molecules compensates muscular
AChRs abnormalities and, consequently, rescues muscle contractions. In this mini
review, we will first outline the functional organization of the NMJ, and then, consider
the concept of the safety factor and how it may be changed. This will be followed
by a look at autoregulation of ACh release that influences the safety factor of NMJs.
Finally, we will consider the morphological features of NMJs as a putative reserve to
increase effectiveness of pathological muscle weakness therapy by ChEs inhibitors due
to opportunity to use micro-pharmacodynamic mechanisms.
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ARCHITECTURE AND PHYSIOLOGY
OF NMJ

Neuromuscular junction (NMJ) is a synapse made up of motor
axon branch (so-called nerve terminal), synaptic cleft, and
postsynaptic region of muscle fiber (so-called end-plate), which
is a folded structure where primary and secondary folds are
distinguished. Such a configuration provides multiple extension
of surface area allowing a huge density of receptors, ionic
channels, and cholinesterases (ChEs) in a small crowded space
(Figure 1). NMJ is a tripartite synapse because three to five
terminal Schwann cells (TSCs) covering each nerve terminal
actively participate in the process of neuromuscular synaptic
transmission (Robitaille, 1995; Robitaille et al., 1997; Rochon
et al., 2001; Todd et al., 2007, 2010; Ko and Robitaille, 2015;
Arbour et al., 2017; Heredia et al., 2018).

The AP spreads along motor nerve fiber, leading to the
temporal activation of voltage-gated calcium channels. The
resulting acetylcholine (ACh) release as quanta, takes place at the
active zone. ACh is loaded into presynaptic vesicles which fuse
with presynaptic cell membrane and elbow out ACh into synaptic
cleft (Slater, 2015, 2017; Jones et al., 2017; Badawi and Nishimune,
2018). It is worth noting that other neurotransmitters (glutamate,
GABA, ATP) exist at NMJ where their putative role is fine tuning
of ACh release (Silinsky and Redman, 1994; Correia-de-Sá et al.,
1996; Petrov et al., 2013; Malomouzh et al., 2015; Nascimento
et al., 2017).

Diffusing across synaptic cleft, ACh molecules reach
postsynaptic membrane and bind to ACh receptors (AChRs)
of muscle type (α2β1δε). AChRs occupancy, i.e., activation,
results in the opening of coupled ionic channels. Inflow of
sodium ions according to electrochemical gradient causes
transient lowering of membrane potential in the postsynaptic
region, i.e., generation of excitatory postsynaptic potential that
are known as end-plate potential (EPP). In turn, EPP triggers
the opening of voltage-gated sodium channels (Nav1.4) in
muscle fiber and muscle AP generation. The time necessary
for the whole system to recover determines the lability of
synapse, i.e., the ability to reproduce the specific for each
muscle pattern of excitation. This time depends on the rate of
enzymatic ACh hydrolysis. During the falling phase of EPPs
(2–3 ms), high rate of acetylcholinesterase (AChE)-catalyzed
hydrolysis of ACh with a turnover approaching 1.5 × 104 ACh
molecules per second (Taylor et al., 2009) clears the synaptic
cleft of all released ACh and, consequently, guarantees low
probability of AChR activation. Thus, the main function of
AChE in synaptic cleft is to ensure the rapid destruction of
released ACh in the interstimuli intervals, before release of next
quanta.

Mammalian ChEs family includes AChE (E.C. 3.1.1.7) and
butyrylcholinesterase (BChE; E.C. 3.1.1.8) that are closely related
enzymes. Their catalytic site is dedicated to hydrolyze ACh (Dvir
et al., 2010; Masson and Lockridge, 2010). At NMJs, the most
functional distinctions between these enzymes are associated
with their localization. AChE at the NMJ is clustered mainly in
synaptic cleft (Bernard et al., 2011; Blotnick-Rubin and Anglister,
2018), whereas BChE is mainly accumulated outside synaptic

cleft, around TSCs (Davis and Koelle, 1967; Petrov et al., 2014)
(Figure 1). Thus, ACh hydrolysis in synaptic cleft is accomplished
by the sole AChE. AChE controls the lifetime of ACh and its
occupancy time on AChRs in synaptic cleft. BChE, in turn,
controls the spillover and dynamics of ACh outside synaptic
cleft.

CONCEPT OF SAFETY FACTOR AND
PATHOLOGICAL MUSCLE WEAKNESS

AP is generated according to the principle “all or nothing.” It
means that any depolarization of exceeding threshold results in
generation of the same APs. The reliability of neuromuscular
transmission results from the release of more ACh molecules
than are required to depolarize the muscle fiber to the threshold
of AP generation. Thus, the “safety factor” is expressed most
often as the ratio of the estimated mean peak amplitude
of EPPs to the threshold depolarization required to generate
an AP in the muscle fiber (Wood and Slater, 2001; Slater,
2009).

At NMJ, there are two main points at which the safety
factor of synaptic transmission can be compromised. These
are reduction of ACh release and decreasing in efficiency
of postsynaptic depolarization, caused by ACh (Ruff, 2011).
Here we describe briefly some of the most common instances
in which the safety factor of neuromuscular transmission is
impaired.

The most common form of pathological muscle weakness
is myasthenia gravis (MG). Weakness in MG is caused by
autoantibodies directed against muscle type AChRs (80% of all
MG patients), muscle-specific kinase (MuSK), and low-density
lipoprotein-related protein 4 (LRP4) (Figure 1). Additional
antigenic targets as agrin, collagen Q, titin, and ryanodine
receptor have been described recently, but their pathogenicity
and clinical significance are unclear so far. The cause of
autoimmune response is unknown (Cavalcante et al., 2012;
Howard, 2018; Kusner et al., 2018; Plomp, 2018). MG therapy
approaches are ChEs inhibitors for short-term symptom control,
immunosuppressive drugs for long-term modification of the
disease course, and in some cases thymectomy. Treatments
of acute exacerbations are plasmapheresis, immunoadsorption,
and intravenous immunoglobulin (Verschuuren et al., 2016).
A complement inhibitor, eculizumab was recently approved for
the treatment of generalized MG. Other treatments including
targeted monoclonal antibody agents are currently under
investigation (Lee and Jander, 2017).

Lambert–Eaton myasthenic syndrome (LEMS) is the
presynaptic disorder of neuromuscular transmission caused by
decrease in the number of released ACh quanta. Weakness
is caused by autoantibodies to voltage-gated calcium
channels of P/Q-type (Figure 1). Around 60% of patients
suffering from LEMS have an underlying malignancy, most
commonly lung cancer. In other cases the trigger mechanism
is unknown (Verschuuren et al., 2016). The most effective
symptomatic treatment of LEMS involves administration of
3,4-diaminopyridine (Keogh et al., 2011). This drug blocks
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FIGURE 1 | Tripartite organization of the NMJ: nerve terminal, muscle fiber, and terminal Schwann cell (TSC). Acetylcholinesterase (AChE) is mainly clustered in
synaptic cleft. It controls the activation of muscle type AChR (α2βδε). Butyrylcholinesterase (BChE) is anchored at the TSC and controls activation of α7 nicotinic
AChR (nAChR) and, probably, muscarinic (mAChRs). The most common forms of synaptic abnormalities are caused by autoantibodies to voltage-gated calcium
channels of P/Q-type, α2β1δε, muscle-specific kinase (MuSK) and low-density lipoprotein-related protein 4 (LRP4). The most common congenital myasthenic
syndromes are caused by mutations in genes coding for several functional proteins: (i) subunits of α2β1δε, (ii) proteins necessary for clustering of α2β1δε (LRP4,
Dok-7, agrin, rapsyn), and (iii) voltage-gated sodium channels (Nav1.4).

voltage-gated potassium channels in nerve terminals (Figure 1),
thereby prolonging the AP. This enhances entry of Ca2+ into
the nerve terminal and increases ACh release. Treatments
proposed for long-term modification of this disease include
immunosuppressants (Kesner et al., 2018).

The congenital myasthenic syndromes (CMS) are rare genetic
disorders that are characterized by abnormal neuromuscular
synaptic transmission. The most common forms of CMS are
due to mutations in the genes coding for the different subunits
of AChR. Other forms of CMS include mutations coding for
different postsynaptic proteins (Dok-7, rapsyn, voltage-gated
sodium channels), proteins present in the synaptic cleft (collagen
Q, forming a tail that anchors AChE) (Legay, 2018), and
presynaptic terminal proteins such as choline acetyltransferase
(Ohno et al., 2001; Engel et al., 2015; Nicole et al., 2017)
(Figure 1). For most of CMS syndromes that can be characterized
physiologically as having “underactive” synapses, trial of a ChE
inhibitor, and/or 3,4-diaminopyridine may be appropriate. The
exception is for patients carrying a Dok-7 mutation who do not
respond to ChE inhibitors. Some of CMS syndromes can be
described physiologically as having “overactive” synapses (e.g.,
collagen Q deficiency and slow channel syndrome). In these cases,
AChE inhibitors are contraindicated. Patients with slow channel
syndrome may benefit from treatment of long-acting agents that
block the AChR ion pore, such as quinidine or fluoxetine. Finally,
albuterol or one of the β-agonists have been empirically found
to benefit patients with Dok-7 and collagen Q deficiency (Engel,
2007; Engel et al., 2015).

Toxicant-induced NMJ pathologies include poisoning by
inhibitors of ChEs and nicotinic AChR (nAChR) blockers (Pope
et al., 2005; Pope and Brimijoin, 2018; Renew et al., 2018).

CHOLINESTERASE INHIBITION AND
AUTOREGULATION OF
ACETYLCHOLINE RELEASE

At the moment, processes accompanying inhibition of ChEs at
NMJ are very well studied at the level of single quantum release
effects, by recording so-called miniature EPPs (mEPPs). These
mEPPs are the result of release of a single ACh vesicle, which
under resting conditions (absence of a nerve APs or in between
two nerve APs) every few seconds fuse with the nerve terminal
membrane so that small spontaneous EPPs can be recorded.

In this case, the sequences of inhibited synaptic AChE are:
(i) more ACh molecules reach the postsynaptic membrane
without being catalytically hydrolyzed by AChE during their
diffusion across the synaptic cleft, and therefore, more AChRs
are activated; (ii) because of prolonged lifespan in synaptic cleft,
ACh molecules activate AChRs sustainably. Electrophysiological
recordings show that prolonged lifetime of ACh in synaptic cleft
due to AChE inactivation results in the increase of amplitude and
duration of mEPPs (Katz and Miledi, 1975; Petrov et al., 2006,
2009, 2011). This fact is in agreement with idea that the main
function of AChE in synaptic cleft is to control the duration of
ACh action on postsynaptic AChRs.

Butyrylcholinesterase inhibition does not influence the mEPP
amplitude and duration either when AChE is active or when this
enzyme is inactivated (Minic et al., 2003). Thus, BChE inhibition
does not potentiate the effect of ACh on muscle type AChRs. The
absence of effects on mEPPs parameters due to BChE inhibition
can be explained by localization of this enzyme outside the
synaptic cleft on the surface of TSCs.
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Since each EPP is the sum of the effect of individual
mEPPs released simultaneously, it can be expected that the
effects of AChE and BChE inhibition on mEPP and EPP are
similar. However, electrophysiological recordings show that after
complete inhibition of ChEs, EPPs amplitude varies, but in most
cases, below the level of EPPs amplitude, recorded when ChEs
are fully active. At the same time, mEPPs amplitude recorded in
interstimuli intervals after ChEs inhibition is higher than mEPPs
amplitude under conditions of active AChE and BChE. This
suggests that when ChEs are inhibited, despite the amplification
of postsynaptic effect of each quantum, fewer quanta of ACh are
secreted in response to nerve AP. In other words, excess of ACh
in synaptic cleft, resulting from ChEs inhibition, depresses ACh
release.

Autoregulation of ACh release, i.e., the capability of ACh
to modulate parameters of own secretion was described long
time ago (Ciani and Edwards, 1963; Duncan and Publicover,
1979). It is known that presynaptic AChRs are of both types,
ionotropic (nAChR) and metabotropic [muscarinic (mAChRs)].
It was shown that mAChRs, at least of four subtypes (Ì1, M2,
M3, and Ì4), are present at NMJ (Garcia et al., 2005), although
their physiological role is not fully established. It was shown that
in some cases exogenous mAChRs agonists can suppress ACh
release, while in other situations these agonists may enhance ACh
release (Abbs and Joseph, 1981; Wessler et al., 1987; Arenson,
1991; Robitaille et al., 1997; Slutsky et al., 2001; Oliveira et al.,
2002, 2009; Santafé et al., 2003, 2004, 2006, 2007; Dudel, 2007;
Kovyazina et al., 2010, 2015).

It was shown that specific inhibition of AChE increases the
probability of ACh release through activation of M1 mAChR
subtype (Minic et al., 2002). On the contrary, it was shown that
inhibition of both AChE and BChE decreases the probability of
ACh release regardless the type of mAChRs (Minic et al., 2003).

The regulation of ACh release at NMJs by nAChRs is
less documented compared to mAChRs. It was shown that
α7 nAChRs can be localized at the TSC and act as a sensor for
spillover of ACh adjusted by BChE (Figure 1). It was shown that
ACh release was significantly depressed through the activation of
α7 nAChR when BChE was specifically inhibited (Petrov et al.,
2014). When both AChE in the synaptic cleft and BChE at TSC
were inhibited, the spillover is increased. This induces a dramatic
reduction of ACh release that compromises the muscle twitch
triggered by the nerve stimulation.

It was shown that MG triggers homeostatic synaptic plasticity,
resulting in increased ACh release. However, this pool of vesicles
is small. Vesicles are rapidly depleted, leading to a larger
depression in EPP amplitude during repetitive stimulations. This
depression may contribute to the reduction of safety factor in
patients with MG (Wang and Rich, 2018).

Under conditions of reduced safety factor, even slight
downregulation in intensity of ACh release may influence muscle
contraction. Because, the activation of AChRs, working as
sensors at the input of different autoregulation pathways, is
also controlled by AChE and BChE, the use of ChEs inhibitors
does not only potentiate the effect of ACh on postsynaptic
nAChRs, but also causes additional activation of presynaptic
autoregulation pathways.

The use of selective AChE or non-selective (AChE and
BChE) inhibitors to treat pathological muscle weakness was
previously discussed (Komloova et al., 2010; Petrov et al., 2018a).
In this review, we provide new evidences that selective AChE
inhibitors could be even better than non-specific inhibitors
to improve the muscle function. AChE inhibition increases
the life-time of ACh molecules in the synaptic cleft and thus
the number of nAChRs opened upon ACh binding. Indeed,
AChE greatly contributes to make possible the jumping of EPP
amplitude above the threshold of AP generation, and thus, the
occurrence of muscle fibers twitch. With non-selective inhibitors,
if BChE is also inhibited, the negative loop is stimulated.
Then, less ACh quanta are released and EPP amplitude is
reduced.

NMJ AND OPPORTUNITY TO USE
MICRO-PHARMACODYNAMIC
MECHANISMS

The NMJ architecture containing high density of AChE
(5000 AChE monomers/µm2) (Anglister et al., 1994) and
α2β1δε nAChR (10,000 receptors/µm2) (Sine, 2002) in a small
crowded space determines a sub-compartment at the origin
of particular PK/PD mechanisms (Figure 2). The micro-
anatomical structure of NMJ determines high target occupancy
of ligands and increases residence time of these ligands on
targets due possible rebinding. As a consequence, binding
kinetics controls the duration of drug action in micro-anatomical
compartments. Therefore, potent slow-binding ligands with slow
rate of dissociation from targets display long-lasting action. The
latter is important for the medical use AChE inhibitors, since
pharmacological effect persists only while AChE at the NMJ
is inhibited. In addition, faster elimination of inhibitors from
myocardium and smooth muscles where the architecture of
synapses is different from NMJ of skeletal muscles can reduce the
duration of unwanted side effects.

Concepts and methodology for analysis of micro-PK/PD
mechanisms and drug discovery have been developed in the past
decade (see Copeland et al., 2006; Vauquelin, 2010, 2015, 2016;
Vauquelin and Charlton, 2010; Copeland, 2011; Walkup et al.,
2015; Tonge, 2018).

Very few slow-binding inhibitors of AChE have been used
for their pharmacological properties and they have not been
analyzed in terms of micro-PK/PD mechanisms. However, a
recent PK/PD study of a potent and highly selective inhibitor
of AChE, C-547 (Kharlamova et al., 2016), revealed micro-
pharmacodynamic mechanisms taking place in NMJ (Petrov
et al., 2018b).

C-547 is a slow-binding inhibitor of AChE of type B
(for a review about slow-binding inhibitors, see Masson and
Lushchekina, 2016). Slow-binding inhibitors of type B are ligands
that bind rapidly to the enzyme, making a complex EI that slowly
“isomerizes” to EI∗ (Scheme 1).

The isomerization step, in Scheme 1, corresponds to the
crossing of the bottleneck in the active center gorge of the
enzyme to reach its final position (Kharlamova et al., 2016;
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FIGURE 2 | PK/PD model for the action of C-547 (I) at NMJ. (1) Central compartment (blood stream); (2) striatal muscle compartment; (3) NMJ sub-muscular
compartment with high concentration of AChE (physiological target) in contained space. Slow-binding inhibition of AChE, long residence time of I on target, and slow
elimination of I from NMJ lead to possibility of re-binding to AChE. This determines long-lasting action of C-547.

SCHEME 1 | Mechanistic scheme for slow-binding inhibition of AChE by
C-547.

Masson and Lushchekina, 2016). The overall slow rate of
dissociation of the enzyme inhibitor complex, koff, is (Eq. 1):

koff =
k4k6

(k4 + k5 + k6)
(1)

The reciprocal of koff is the residence time, τ, of ligand on AChE.
The importance of this parameter has been emphasized as it
determines the temporal duration of drug-target complex and
leads to sustained pharmacology (Copeland, 2011).

Thus, in confined anatomical space such as NMJ where there
is a high density of AChE subunits, binding kinetics of C-
547 to AChE is characterized by long residence time on target
(τ = 20 min) (Kharlamova et al., 2016) and slow diffusion rate
of C-547 out of NMJ (Petrov et al., 2018b). This makes possible
re-binding of C-547 to AChE, and therefore slow elimination
from NMJ. In addition, binding of C-547 to albumin determines
a slow distribution in tissues and long PK in the bloodstream
(t1/2 = 3 h in rat). As the result of thermodynamic and kinetic
selectivity, C-547 has a long-lasting action on skeletal muscles,
higher than 72 h in rat model of MG. Compared to current

drugs used for palliative treatment of MG, that display lower
affinity and selectivity for AChE, short PK (t1/2 < 30 min) and
short residence time (except for carbamates that form transient
covalent adducts with AChE), binding kinetics and PK/PD of
C-547 make this compound as a promising leader drug for
improving sustained treatment of MG and related diseases.
Therefore, the discovery of new drugs for treatment of NMJ
diseases depends on identification of highly selective molecules
that fast associate to targets (fast-on rates), show long residence
times on target (slow-off rates) and display long PK in the
bloodstream.

CONCLUSION

Pharmacology of ChE inhibitors used for the treatment of
muscle weakness is still poor. At the moment, only the
carbamylating agent pyridostigmine bromide is used as ChEs
inhibitor for treatment of muscle weakness symptoms. However,
the selectivity of pyridostigmine for AChE versus BChE is low
(6 against >10,000 for C-547; Petrov et al., 2018b). Taking into
account ACh release down regulation under conditions of BChE
inhibition, we can also conclude that selective inhibitors of AChE
vs. BChE may have an advantage for MG treatment over non-
selective ChE inhibitors, like pyridostigmine.

Moreover, symptomatic drug therapy often requires
continuing sustained administration for maintaining high
levels of target occupancy. Based on long-lasting target binding
and rebinding, it is therefore possible to increase in vivo duration
of drug action. Micro-anatomical properties of NMJ with high
density of AChE could be helpful to design such long-lasting
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drugs that may greatly improve MG therapy. Design of new
drugs, including selective AChE inhibitors, must be oriented in
that direction.
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