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ABSTRACT Microbes have adapted to greatly variable environments in order to
survive both short-term perturbations and permanent changes. A classical and yet
still actively studied example of adaptation to dynamic environments is the diauxic
shift of Escherichia coli, in which cells grow on glucose until its exhaustion and then
transition to using previously secreted acetate. Here we tested different hypotheses
concerning the nature of this transition by using dynamic metabolic modeling. To
reach this goal, we developed an open source modeling framework integrating dy-
namic models (ordinary differential equation systems) with structural models (meta-
bolic networks) which can take into account the behavior of multiple subpopula-
tions and smooth flux transitions between time points. We used this framework to
model the diauxic shift, first with a single E. coli model whose metabolic state repre-
sents the overall population average and then with a community of two subpopula-
tions, each growing exclusively on one carbon source (glucose or acetate). After in-
troduction of an environment-dependent transition function that determined the
balance between subpopulations, our model generated predictions that are in
strong agreement with published data. Our results thus support recent experimental
evidence that diauxie, rather than a coordinated metabolic shift, would be the emer-
gent pattern of individual cells differentiating for optimal growth on different sub-
strates. This work offers a new perspective on the use of dynamic metabolic model-
ing to investigate population heterogeneity dynamics. The proposed approach can
easily be applied to other biological systems composed of metabolically distinct, in-
terconverting subpopulations and could be extended to include single-cell-level sto-
chasticity.

IMPORTANCE Escherichia coli diauxie is a fundamental example of metabolic adap-
tation, a phenomenon that is not yet completely understood. Further insight into
this process can be achieved by integrating experimental and computational model-
ing methods. We present a dynamic metabolic modeling approach that captures di-
auxie as an emergent property of subpopulation dynamics in E. coli monocultures.
Without fine-tuning the parameters of the E. coli core metabolic model, we achieved
good agreement with published data. Our results suggest that single-organism met-
abolic models can only approximate the average metabolic state of a population,
therefore offering a new perspective on the use of such modeling approaches. The
open source modeling framework that we provide can be applied to model general
subpopulation systems in more-complex environments and can be extended to in-
clude single-cell-level stochasticity.
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In natural environments, microorganisms are exposed to high fluctuations of nutrient
and micronutrient availability and have therefore evolved adaptation strategies, both

short term (to respond to temporary perturbations) and long term (to increase evolu-
tionary fitness) (1). We still lack a sound theoretical understanding of the mechanisms
driving such strategies, but the recent technological advances in high-throughput
experimental techniques pave the way to novel approaches that integrate experimen-
tal and theoretical biology (2). Theoretical ecology describes ecosystems in mathemat-
ical terms as dynamic organism-environment interactions (3). As in statistical physics,
individual behaviors in an ensemble result in observable emergent patterns that can be
modeled with mathematical equations (4). This is the case for the earliest models of
population dynamics developed by Verhulst (5), Lotka (6), and Volterra (7) and for the
pioneering work of Jacques Monod in modeling microbial growth (8). With the rising
academic and industrial interest in the “microbiome,” systems biology approaches are
becoming a new standard (9) and more methods for the mathematical modeling of
microbial communities are being developed (10, 11).

In constraint-based stoichiometric modeling, the metabolic network model of an
organism is reconstructed from its annotated genome and described mathematically as
a stoichiometric matrix (S). After imposition of the steady-state assumption and intro-
duction of thermodynamic and biological boundaries for the metabolic fluxes (v→), flux
balance analysis (FBA) (12, 13) defines an optimization problem in order to identify one
particular flux distribution in the solution space. As long as the objective function
(which imposes further biological assumptions on the system) is linear in the fluxes, the
optimization problem can be solved by linear programming (LP). FBA returns a unique
solution for the objective function, but the metabolic flux distribution is generally not
unique, especially in genome-scale metabolic network models (GEMs). On the basis of
the hypothesis that metabolism has evolved to make efficient use of resources and
minimize waste, two specific methods were developed to extend FBA: parsimonious
FBA (pFBA) (14) and minimization of metabolic adjustment (MOMA) (15). In pFBA, a
second LP is defined such that the value of the objective function is set to the FBA
solution and the new objective is the minimization of the overall fluxes. MOMA was
developed to simulate the response to the perturbation introduced by gene deletion
and is based on the principle that the organism would readjust its metabolism to a
minimally different configuration with respect to the wild-type optimum. Another
extension of FBA, dynamic FBA (dFBA) (16), allows partial recovery of the dynamic
information lost under the conditions of the steady-state assumption. In the static
optimization approach (SOA) that underlies dFBA, time is divided into discrete intervals
and a new FBA problem is solved at time ti after updating of the external conditions
according to the FBA solution at time ti�1. Approaches to modeling of microbial
communities with GEMs have been recently reviewed by Succurro and Ebenhöh (17).

FBA and dFBA have been applied to the study of one of the most basic examples of
metabolic transitions: diauxie (16, 18, 19). Discovered in the model organism Escherichia
coli in 1941 by Monod (8, 20), diauxie remains a topic of active research (21–23). Under
aerobic conditions with glucose as the sole carbon source (and generally the preferred
one), E. coli secretes acetate during growth, which it then consumes once the glucose
is exhausted. The molecular mechanisms driving this transition are still not completely
understood, but over the last few years the fundamental roles of stochasticity and
population heterogeneity have been demonstrated experimentally (24), often with the
support of mathematical models. Indeed, in unpredictable natural environments fluc-
tuating conditions of nutrient availability and variable fitness landscapes, homoge-
neous populations are more likely to face extinction, and bet hedging provides a
selective advantage (25). Single-cell studies have suggested that the observed biphasic
growth possibly represents the effect of stochastic gene expression (21), eventually
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coregulated by memory mechanisms (26). Kotte et al. (27) systematically investigated
bistability in a clonal E. coli population. After ruling out responsive switching as a
homogeneous adaptation, their results strongly suggested that the heterogeneous
adaptation that results in two coexisting phenotypes was driven by responsive diver-
sification (where a single phenotype diversifies in response to environmental changes)
rather than stochastic switching (where the two phenotypes would coexist from the
beginning). Although stochastic mathematical models have been proposed to support
those findings, metabolic modeling approaches are only considered suitable to de-
scribe homogeneous systems, with single-organism GEMs representing the average
population metabolic state.

Varma and Palsson (18) performed the first dFBA of E. coli, with a single GEM
growing aerobically first on glucose and then on the secreted acetate. Here we present
a study of E. coli diauxic growth on these two carbon sources, with the bacterial
population modeled either as having an average, unique metabolic state (standard FBA
and dFBA approach) or as being composed of two E. coli populations adapted to one
of the two carbon sources. We used a modeling approach that integrates ordinary
differential equation (ODE) models with dFBA, extending methods typically applied to
study the dynamics of multispecies communities to the investigation of emergent
patterns from individual behavior in monocultures. We implemented three approaches:
(i) we modeled a homogeneous and yet smooth shift, with a single E. coli GEM, by
adapting the MOMA algorithm; (ii) we introduced the hypothesis of subpopulations
growing on specific carbon sources and model population transition as a purely
stochastic mechanism; and (iii) we introduced an environment-driven response. Our
results suggest that diauxie, rather than being modeled as a coordinated metabolic
shift, can be modeled as the emergent pattern resulting from subpopulations optimiz-
ing growth on different substrates in response to environmental changes. This is much
in agreement with experimental evidence from, e.g., Kotte et al. (27) and offers a new
perspective on the use of dynamic metabolic modeling to investigate population
dynamics. The proposed approach can easily be transferred to studies of generic
subpopulations or communities and ultimately can be expanded to investigate single-
cell dynamics.

RESULTS

We ran simulations with an open source modeling framework developed to model
ecosystem dynamics. The models are ODE systems solved with integrating routines that
at each integration step solve an FBA problem. We first validated the E. coli GEM on the
data from Varma and Palsson (18) (who reported the first dFBA of the glucose-acetate
shift) and then used the calibrated model to reproduce the independent sets of
experiments described by Enjalbert et al. (22) (who experimentally analyzed E. coli
grown in aerobic batch systems with different concentrations of glucose and acetate).
In the standard dFBA approach, a population is modeled with a unique GEM and fluxes
instantaneously change to adapt to new environmental conditions. In reality, however,
transcriptional changes and flux rerouting may cause delays which are not captured by
existing algorithms. Furthermore, dFBA might predict metabolic states in which more
carbon sources are simultaneously utilized, and it is not obvious that such an approach
would correctly capture the complexity of a population diversifying into metabolically
distinct subpopulations. Therefore, we modified the dFBA algorithm by taking advan-
tage of optimization strategies previously developed for different biological issues and
implemented novel concepts as well. In particular, we used either pFBA (14) or an
adaptation of MOMA (15) to solve the FBA problem at each time step, replicating the
standard dFBA approach or implementing a homogeneous and yet smooth shift,
respectively. The MOMA algorithm was integrated into the dFBA routine by imposing
the constraint that the solution of the FBA problem at time ti had to be minimally
different from the solution at time ti�1. We tested three different hypotheses: (i)
homogeneous, smooth population shift; (ii) stochastic population shift; and (iii)
environment-driven subpopulation differentiation. We observed that dFBA performed

Emergent Subpopulation Behavior in E. coli Diauxie

January/February 2019 Volume 4 Issue 1 e00230-18 msystems.asm.org 3

https://msystems.asm.org


with both pFBA and MOMA predicted abrupt transitions from acetate catabolism to
acetate anabolism and that condition-specific parameterizations were necessary to
reproduce the different data. We then modeled two E. coli subpopulations growing
exclusively on glucose or acetate. For this, we extended the standard dFBA approach
to include the process of population shifts. We tested whether purely stochastic
switches (ii) or, rather, responsive diversification (iii) could capture the diauxic behavior
by modeling the population transitions either with constant rates (ii) or with a heuristic
function dependent on carbon source concentrations (iii). We observed that only model
iii could reproduce data from different experiments with a unique set of parameters.
We did not find significant improvements using MOMA rather than pFBA within the
same metabolic state, so the simpler pFBA implementation was used in the subpop-
ulation simulations where each model was fixed into one metabolic configuration.
Further details of the modeling approach are provided in Materials and Methods.

E. coli diauxie modeled with a uniform population. A single GEM was used to
model the average E. coli metabolic state, and we compared the simulation results with
the original data from Varma and Palsson (18) (see Fig. S1 in the supplemental material).
The parameters for the simulations are reported in Table 1 and 2, and the only flux
constraints that we calibrated to the data were the oxygen uptake rate and the maximal
acetate secretion rate. A fixed cell death rate (Table 1) was introduced as previously
described, using a value from the literature (19). In these simulations, a lower absolute
level of flux variation at each simulation time step was observed with the MOMA
implementation (Fig. S2). We used the same GEM to reproduce the results from

TABLE 1 Fixed parameters for all simulationsa

Parameter Value

L.B. EX_O2 (mmol/gDW/h) �11.5
U.B. EX_Ac (mmol/gDW/h) 3
� (h–1) 0.03
VM

Glc (mmol/gDW/h) 10
KM

Glc (mM) 0.01
VM

Ac (mmol/gDW/h) 10
KM

Ac (mM) 0.01
aThe lower bound (L.B.) for oxygen exchange (EX_O2) as well as the upper bound (U.B.) for acetate
exchange (EX_Ac) were calibrated on the basis of data from Varma and Palsson (18). The death rate (�) was
computed assuming a cell death of 1% per generation (45) and a generation time of 20 min. The Michaelis-
Menten parameters for substrate uptake are taken from a report by Gosset (46). Those parameters were
also used in previously published dFBA implementations (47). gDW, grams dry weight.

TABLE 2 Parameters of the simulationsa

Figure
reference(s)
or
condition

Value(s)

BM(0)
(10�3

g DW) % ECGl(0)
Glc(0)
(mmol)

Ac(0)
(mmol)

�
(mmol
/h)

�
(mmol/h)

tx

(h)
�0

(h–1)
VM

�

(h–1)
KM

�

(mM)
�0

(h–1)
VM

�

(h–1)
KM

�

(mM) �

Fig. S1a and c 0.3 NA 10.8 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fig. S1b and d 0.24 NA 0.82 0.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fig. 1a and b, Fig. S5a 2.7 NA 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fig. 3a 2.7 0.95 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fig. 3b, Fig. S5d 2.7 0.95 15.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.04 0.0 0.0 0.9
Fig. S5g 2.7 0.95 15.0 0.0 0.0 0.0 0.0 0.04 0.2 30.0 0.04 0.2 5.0 0.9
Fig. S5b 3.8 NA 15.0 0.0 0.0 9.1 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fig. S5e 3.8 0.75 15.0 0.0 0.0 9.1 4.0 0.04 0.0 0.0 0.04 0.0 0.0 0.9
Fig. 4a, Fig. S5h 3.8 0.75 15.0 0.0 0.0 9.1 4.0 0.04 0.2 30.0 0.04 0.2 5.0 0.9
Fig. S5c 6.0 NA 15.0 32.0 0.0 9.1 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fig. S5f 6.0 0.75 15.0 32.0 0.0 9.1 4.0 0.04 0.0 0.0 0.04 0.0 0.0 0.9
Fig. 4b, Fig. S5i 6.0 0.75 15.0 32.0 0.0 9.1 4.0 0.04 0.2 30.0 0.04 0.2 5.0 0.9
M9G (m.c.) 2.7 0.95 15.0 0.0 0.0 0.0 0.0 0.04 0.2 30.0 0.04 0.2 5.0 0.9
M9GA (m.c.) 6.0 0.75 15.0 32.0 0.0 0.0 0.0 0.04 0.2 30.0 0.04 0.2 5.0 0.9
aNA, not in the model; BM(0), initial biomass quantity; % ECGl(0), initial percentage of glucose-consumer population; Glc(0), initial glucose concentration; Ac(0), initial
acetate concentration; tx, time of glucose exhaustion; m.c., mother culture. All other parameters are defined in the text.
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Enjalbert et al. (22), changing only the initial values for biomass, glucose, and acetate
(Fig. 1; see also Fig. S5). Although the pFBA simulation (Fig. 1a) showed a brief shift to
growth on acetate at the time of glucose exhaustion (GE) (�4 h), the MOMA simulation
predicted complete growth arrest already occurring at that point, with a minimal
acetate consumption to satisfy the ATP maintenance requirement implemented in the
GEM (Fig. 1b). Both simulations well captured glucose consumption and acetate
secretion, but neither was able to reproduce the slow acetate consumption observed
experimentally. Even after fine-tuning the constraint on acetate uptake to achieve a
perfect match of the acetate consumption data from Varma and Palsson (18), the model
could not reproduce the acetate concentration dynamics of the corresponding data
from Enjalbert et al. (22) (data not shown). Therefore, we decided to avoid fine-tuning
of the acetate uptake (Table 1). Both the pFBA and MOMA simulations showed an
abrupt change in the flux distribution upon shifting from glucose consumption to
acetate consumption (Fig. S3). We evaluated the agreement between the experiment
and the simulation with the R2 distance between in vivo and in silico data for biomass
(pFBA R2 � 0.989; MOMA R2 � 0.982), glucose (pFBA R2 � 0.993; MOMA R2 � 0.993),
and acetate (pFBA R2 � 0.277; MOMA R2 � 0.409). In Fig. 2, we compare the flux
distributions of our simulation results to the experimental results reported by Enjalbert
et al. (22) for overexpression/underexpression of key genes associated with glucose and
acetate metabolism (represented graphically in the top panels). First, we computed the
flux solutions for E. coli growing on either glucose or acetate exponentially (data not
shown) and compared the fluxes through the relevant reactions in E. coli growing on
acetate to those in E. coli growing on glucose. Fig. 2a shows the absolute values for the
flux results in the two simulations, normalized to values between 0 and 1 for direct
comparison with the qualitative representation of the gene expression data (with a
value of 0 for nonexpressed genes and a value of 1 for expressed genes). The simulation
results were consistent with the results of the experiments, with active reactions (dark
green) related to acetate consumption and anabolism (ACKr, PPCK, FBP, ICL, MALS) and
inactive reactions (white) related to glycolysis (PFK and PYK) during growth on acetate
and vice versa during growth on glucose. PPS did not carry flux in either simulation. We
then used the simulation results presented in Fig. 1 to compare the metabolic fluxes
before and after glucose exhaustion (GE), i.e., before and after the single E. coli model
shifted from growth on glucose to growth on acetate. Enjalbert et al. (22) compared
gene expression levels between samples taken at time GE plus 30 min and at time GE

FIG 1 Diauxic growth of E. coli modeled as a uniform population under batch conditions. Simulation data (lines) are compared to data from Enjalbert et al.
(22) (squares) as a function of time. Biomass data (blue, top subplots) and glucose and acetate data (red and yellow, bottom subplots) are shown. The flux
distribution at each time step was obtained with pFBA (a) or MOMA (b). gDW, grams dry weight; C, concentration; Q, quantity.
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minus 115 min. However, Fig. 1 shows that according to the simulation, growth had
already stopped after 30 min from the GE point. Indeed, comparing the absolute values
of fluxes taken at time GE plus 30 min and at time GE minus 115 min, we found that
both the pFBA and MOMA simulations qualitatively captured the downregulation
trends, whereas neither simulation reproduced the observed upregulation (data not
shown). Fig. 2b shows the difference in absolute values of fluxes taken at time GE plus
18 min and at time GE minus 115 min, time points where growth is still observed in
pFBA simulations. In this case, both simulations qualitatively captured most of the
upregulation/downregulation trends. Figure S4 shows the metabolic network (modified
from the map for the E. coli core model constructed by the use of Escher [28]), with the
data from the reactions performed as described for Fig. 2b highlighted and color-coded
according to the gene expression data. Finally, we reproduced the other experimental
scenarios from Enjalbert et al. (22) with the uniform population model, adjusting only
the initial values of biomass, glucose, and acetate. We observed that a uniform shift was
able to reproduce the biomass profile well when high acetate concentrations were
present in the medium (Fig. S5c), while this was not the case when only low acetate
concentrations were available (Fig. S5b).

E. coli diauxie modeled with a mixed population. We used two GEMs (and the
same parameter values as before) to model E. coli monocultures as a mixture of two
populations, one adapted to grow on glucose and one adapted to grow on acetate. The
two models, the E. coli glucose (ECGl) model and the E. coli acetate (ECAc) model, were
hence constrained to exclusively take up the corresponding carbon source. Two
transition functions, dependent on acetate or glucose concentrations, were introduced
to model cellular differentiation and cellular shift from one population to the other (see
Materials and Methods for details). We ran simulations to compare the different
scenarios investigated experimentally by Enjalbert et al. (22). The initial values for
biomass, glucose, and acetate were adjusted to the corresponding data sets. The
transition rates, as well as the initial population ratios, were chosen following the
assumption, supported by a simple mathematical model, that populations in constant
environments will converge to a constant ratio (see Text S1 in the supplemental
material for details). Data in Fig. 3 show simulations performed under the same

FIG 2 Comparisons of experimental information on gene expression levels with simulated flux distributions. The top plots qualitatively represent the gene
expression data from Enjalbert et al. (22). Flux solutions in the simulations for the reactions associated with the reported key genes are compared between two
independent simulations with E. coli exponentially growing either on acetate or on glucose (a) and within the same simulation (b) (growth on glucose simulated
with MOMA or pFBA) (Fig. 1) before and after the point of glucose exhaustion. Genes: acs, acetyl coenzyme A synthetase; pck, phosphoenolpyruvate
carboxykinase; pps, phosphoenolpyruvate synthetase; fbp, fructose-1,6-biphosphatase; icl, isocitrate lyase; mls, malate synthase; pfkA, phosphofructokinase;
pykF, pyruvate kinase; ppc, phosphoenolpyruvate carboxylase; icd, isocitrate dehydrogenase. Reactions (BiGG identifiers): ACKr, acetate kinase; PPCK,
phosphoenolpyruvate carboxykinase; PPS, phosphoenolpyruvate synthase; FBP, fructose-bisphosphatase; ICL, isocitrate lyase; MALS, malate synthase; PFK,
phosphofructokinase; PYK, pyruvate kinase; PPC, phosphoenolpyruvate carboxylase; ICDHyr, isocitrate dehydrogenase (NADP).
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conditions as those described for Fig. 1a, with the same absolute initial biomass values,
distributed in this case as 95% ECGl and 5% ECAc. This initial ratio was chosen by
considering the range of steady-state values for the population ratio (reported in
Table S1 in the supplemental material) as well as considering that it is reasonable to
assume that a higher number of cells would be adapted to grow on glucose, which is
the carbon source on which laboratory cultures are usually maintained. Data in Fig. 3a
show the simulation results for a scenario without transitions between the two states,
whereas the results of Fig. 3b were obtained with active transition functions, defined
here by constant transition rates as reported in Table 2. Although both panels a and b
of Fig. 3 capture well the biomass (R2 � 0.987 and R2 � 0.990, respectively) and glucose
concentrations (R2 � 0.996 and R2 � 0.997, respectively), only the simulation that
included the population transition realistically reproduced the acetate consumption
levels (R2 � 0.336 and R2 � 0.951 respectively) as well as a lag phase before culture
crash. Neither of the simulations captured the eventual recovery of growth hinted at by
the last data points. We reproduced two other results (where only biomass measure-
ments were available) from Enjalbert et al. (22), again using the same GEMs and
changing only the initial conditions (biomass quantity and distribution among ECGl and
ECAc) and the experimental setup accordingly. By modeling the population transition
with the same constant rate, we were able to explain the biomass profile in the case
where E. coli was grown on 15 mM glucose and, after glucose exhaustion, the acetate
concentration was maintained at around 4 mM (Fig. S5e) (R2 � 0.986), but not in the
case where E. coli was grown on 15 mM glucose and 32 mM acetate and, after glucose
exhaustion, the acetate concentration was maintained at the same high level (Fig. S5f)
(R2 � 0.727). We therefore introduced a dependency of the transition functions on the
substrate concentration (see Materials and Methods for details) that well captures all
the experimental scenarios with a unique set of parameters (Fig. S5g, h, and i). Data in
Fig. 4a show that an E. coli population starting with 95% ECGl and 5% ECAc describes
well the biomass dynamics (R2 � 0.985) and matches the glucose exhaustion point,
observed after around 4 h when acetate was maintained at 4 mM. Again, without
fine-tuning the GEM simulation parameters, Fig. 4b shows that an E. coli population
starting with 75% ECGl and 25% ECAc reproduced the biomass measurements (R2 �

0.940) and the glucose exhaustion point after around 4 h also in the experimental setup
with acetate maintained at 32 mM. The effect of adjusting the initial biomass ratios in

FIG 3 Diauxic growth of E. coli modeled as a mixture of two E. coli populations, ECGl and ECAc, growing exclusively on glucose and acetate, respectively, without
(a) or with (b) the possibility of shifting from one population to the other. Simulation data (lines) are compared to data from Enjalbert et al. (22) (squares) as
a function of time. The upper plots show simulation results (obtained using pFBA) for ECGl and ECAc biomass data (light blue and aqua, respectively) and the
observable E. coli biomass data (black line simulation, blue dots). The bottom plots show glucose and acetate (red and yellow, respectively).
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the different experimental conditions is shown in Fig. S6. Overall, the simulations
starting with 95% ECGl and 5% ECAc or 75% ECGl and 25% ECAc did not show strong
differences, but further reducing the percentage of ECGl (and leaving the range of
steady-state values of Table S1) resulted in drastic changes to the shape of the growth
curves. The initial condition of a 75% ECGl and 25% ECAc population distribution for
Fig. 4b is also justified by a difference in the initial experimental values for the biomass
quantity (see Fig. S7).

Lag time for growth on acetate explained with population distribution. Enjal-
bert et al. (22) showed different trends in the lag times of E. coli cultures required to
achieve maximal growth after GE. In their switch experiments, they sampled at different
time points “mother cultures” of E. coli cells growing under batch conditions on 15 mM
glucose alone (“M9G” condition) or on 15 mM glucose and 32 mM acetate (“M9GA”
condition) and reinoculated the sampled cells as “daughter cultures” into fresh medium
exclusively containing glucose (M9G condition) or acetate (M9A condition). We repli-
cated this experiment in silico by running first simulations under the M9G and M9GA
conditions. For the M9G mother culture, we used the simulation of the mixed ECGl and
ECAc population shown in Fig. 3b, because the experimental conditions were the same.
We did not have an experimental reference data set for the M9GA mother culture, and
we simulated a new scenario similar to that shown in Fig. 4b, with the same initial
population composed of 75% ECGl and 25% ECAc but without the feeding of additional
acetate. The GE time points were about 4.6 h for M9G and 3.9 h for M9GA, consistent
with the observations of Enjalbert et al. (22) (data not shown). The in silico mother
cultures were sampled at regular time intervals to obtain the initial biomass distribution
of ECGl and ECAc for the daughter cultures (reported in Table 3), and the lag time was

FIG 4 Diauxic growth of E. coli modeled as a mixture of two E. coli populations, ECGl and ECAc, growing exclusively on glucose and acetate, respectively, with
the possibility of shifting from one population to the other. (a) E. coli grows on 15 mM glucose; after the glucose was exhausted, the acetate concentration was
kept at about 4 mM. (b) E. coli grows on 15 mM glucose and 32 mM acetate; after the glucose was exhausted, the acetate concentration was maintained at
around the same concentration. The upper plots show simulation results (obtained using pFBA) for ECGl and ECAc biomass data (light blue and aqua lines,
respectively) and the observable E. coli biomass data (black line simulation, blue dots) (data from Enjalbert et al. [22]). The bottom plots show simulation results
for glucose and acetate (red and yellow lines, respectively).

TABLE 3 Percentage of ECGl biomass under M9G and M9GA conditions at indicated time
points relative to glucose exhaustion

Condition

% ECGl biomass at time (h):

�1.0 �0.75 �0.5 �0.25 0 0.25 0.5 0.75 1.0 1.25 1.5

M9G 95.1 95.0 94.8 94.5 94.3 93.2 92.3 91.4 90.6 89.4 88.2
M9GA 78.7 78.6 78.1 77.3 76.5 73.2 70.1 67.2 64.5 62.0 59.7
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computed for each daughter culture (see Materials and Methods for details). Data in
Fig. 5 show the simulation results compared with the experimental data from Enjalbert
et al. (22). The error bars were obtained for the simulated lag time data by adjusting the
initial biomass ratio of the daughter cultures by �15%. A quantitative agreement
between simulation and experimental results was achieved only in the M9G-M9G
switch experiment (Fig. 5a) with the correct prediction of almost zero lag time for the
daughter cells, but the trend for the delay to reach maximal growth was in general
qualitatively reproduced also for the other scenarios. According to the simulations,
cultures switched from M9G to M9A (Fig. 5a) need about 1.5 h before reaching maximal
growth, which is more than twice the duration observed experimentally. For cultures
pregrown in M9GA (Fig. 5b), we observed both in simulations and in experiments a
decreasing lag time for daughter cultures sampled after GE for the M9GA-M9A switch
and an increasing lag time for the M9GA-M9G switch. Additional studies are repre-
sented in Fig. S8. In particular, panels a to d of Fig. S8 show the dependence of the lag
time in the daughter cultures on the maximal transition values and panels e to h of
Fig. S8 show the same dependence, including the distribution of the biomass ratio in
the mother cultures, for a limited set of parameters.

DISCUSSION

We have investigated a fundamental example of metabolic adaptation, namely, the
diauxic growth of E. coli on glucose and acetate, aiming to test whether a dynamic
metabolic modeling approach can capture diauxie in monocultures of E. coli as the
observable emergent result of individual (subpopulation) behavior. To this end, we first
developed a modeling framework to integrate dynamic models (ODE systems) with
structural models (metabolic networks) and then performed simulations to reproduce
published experimental results in silico.

Avoiding fine-tuning of model parameters. One recurrent criticism of stoichio-
metric and constraint-based modeling approaches, such as FBA, is that they can easily
be adjusted to reproduce experimental results by ad hoc changes of flux constraints.
Indeed, we observed that a condition-specific fine-tuning of the constraint on acetate
uptake could reproduce fairly well the growth dynamics of the different experiments
(data not shown). However, the change of such a constraint from one experimental
condition to another is not biologically justified. Although some extensions of the FBA

FIG 5 Simulation data (dark and light gray points) and experimental data (orange and yellow points) (data from Enjalbert et al. [22]) for the delay in the growth
of daughter cultures before they reached maximal growth after the medium switch. Mother cultures are grown on either 15 mM glucose (M9G) (a) or 15 mM
glucose and 32 mM acetate (M9GA) (b). Daughter cultures are reinoculated into fresh media with either 15 mM glucose (M9G; square and plus markers) or 45
mM acetate (M9A; diamond and cross markers). The simulation error bars are obtained by adjusting the initial population ratios (obtained by sampling the
simulated mother cultures) by �15%.
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approach such as FBA with molecular crowding (FBAwMC [29]) provide reasonable
ways to constrain the metabolic fluxes and were shown to reproduce carbon consump-
tion hierarchies, they also require extensive parameterization. We therefore chose to
use the basic FBA approach, limiting the number of constraints imposed and with
parameters mostly from experimental measurements (Table 1). In the case of oxygen
uptake and acetate secretion, we calibrated the constraints using data from Varma and
Palsson (18), where an E. coli diauxic shift from glucose to acetate was first simulated
using a genome-scale model. The FBA parameters were left unchanged to reproduce
the independent experiments reported by Enjalbert et al. (22). The use of an indepen-
dent set of data to calibrate the FBA model parameters is a possible way to improve the
confidence in subsequent results. Further model parameters of the ODE system were
chosen according to reasonable hypotheses and were adjusted slightly to achieve fair
agreement with the experimental results in a manner that was consistent among all the
simulations. The initial conditions were specific to the experiments that we aimed to
reproduce.

Standard dFBA allows for abrupt metabolic readjustments. The flux distribu-
tions obtained from FBA solutions represent an average picture of the metabolic state
of a population, which is in general modeled using a single genome-scale model.
Therefore, standard dFBA implementations, in which the FBA constraints evolve ac-
cording to the updated external conditions, reproduce the average change in meta-
bolic state of the population in response to external variations. This is equivalent to
assuming that a population undergoes a coordinated, uniform metabolic shift under
changing environmental conditions. Furthermore, such transitions are generally abrupt
with dFBA models. We therefore tested two alternative approaches to simulate the
diauxic shift in uniform E. coli monocultures, solving the FBA problems either with pFBA
(mostly equivalent to the usual dFBA implementations) or with an adaptation of the
MOMA algorithm. In the latter case, instead of minimizing the difference in flux
distribution between a “wild-type” GEM and a modified one (original MOMA imple-
mentation), we used the same concept to integrate the dFBA system while also
imposing the following condition: at initial time ti, the flux solution differs minimally
from that at time ti-1, where the time steps are set by the integration routine. In contrast
to our expectations, however, this approach did not achieve smoother metabolic
adjustments in the system in response to the changing external conditions. Instead,
both implementations resulted in abrupt changes in the flux distributions following the
shift from glucose to acetate metabolism (see Fig. S3 in the supplemental material).
More-sophisticated implementations of a dynamic MOMA model (e.g., computing the
minimal adjustment based on a subset of biologically relevant variables) might succeed
in achieving smooth metabolic transitions but would require the introduction of
additional parameters and ad hoc biological hypotheses. In a similar way, biologically
justified extensions of FBA such as FBAwMC (29) might provide better descriptions of
an average and uniform population-level metabolism but typically need the empirical
determination of large numbers of organism-specific parameters.

Monocultures can be modeled as multisubpopulation systems to capture in-
dividual heterogeneity. With the introduction of two basic assumptions (first, that
there are two distinct metabolic states consuming either glucose or acetate; second,
that transition from one state to the other is driven by glucose and acetate concen-
trations), we were able to capture all the experimental trends published by Enjalbert et
al. (22) with the same computational model. The transitions between the two states
were modeled as Hill functions of the corresponding substrate concentrations with a
noise offset representing a constant, small noise component in cell regulation. Al-
though other transition laws could have been chosen, Hill functions conveniently
model concentration-dependent shifts between two states. For example, when acetate
is highly abundant, more cells in the glucose consumption state shift to the acetate
consumption state in response to the change in environment. Finally, the introduction
of a transition efficiency term was motivated by the observation that cells can get “lost

Succurro et al.

January/February 2019 Volume 4 Issue 1 e00230-18 msystems.asm.org 10

https://msystems.asm.org


in transition,” an effect that was estimated to account for the death of �7% of yeast
cells, which cannot initiate glycolysis following a shift to high glucose levels (30). Using
a simple mathematical model (see Text S1 in the supplemental material), we identified
ranges for the parameters of the transition functions and selected reasonable values
that would return good agreement between simulations and experiments. Both the
values for the constant transition rate (4% h–1) and the values for the maximal transition
rate (20% h–1) were in good agreement with measured average protein turnover rates
in E. coli cultures from the literature (31–33). Simulation results were mostly in very
good agreement with the experimental data, and our results strongly further support
the idea, suggested over the last few years by results from independent studies of
different organisms (21, 25, 34), that monocultures represent an ensemble of subpopu-
lations in different metabolic states that are partially regulated by the environmental
conditions. When the acetate concentrations were too low to support growth, it was
sufficient to model the transition as a constant random process. In contrast, in order to
reproduce the data under conditions with high acetate concentrations, we needed to
introduce an active transition rate dependent on substrate concentrations. Interest-
ingly, this assumption alone was sufficient to model the experimentally observed
growth rate, without further fine-tuning of model parameters. The introduction of
substrate-dependent transition functions is also consistent with the experimental
observations of Kotte et al. (27), supporting the hypothesis that a monoculture under-
goes diversification in response to environmental changes.

The lag phase corresponding to growth on different substrates can be ex-
plained by population distributions. With standard dFBA simulations, the metabolic
transition during the shift from one carbon source to another is abrupt, and no lag
phase is observable. Such an outcome is rarely the case, and, most remarkably, the
duration of the lag phase between the exhaustion of the favored carbon source and the
resumption of optimal growth on the alternate carbon source is highly variable under
different environmental conditions. This observation can easily be explained as an
emergent property of subpopulation dynamics. Our simulations are consistent with the
explanation that the delay in the resumption of full growth actually depends on the
relative abundances of the two subpopulations. Although the simulation results did not
reproduce the experimental data quantitatively, all qualitative trends were fully ex-
plained. Several factors may explain these discrepancies. For example, the lack of
experimental data concerning the mother cultures (in terms of biomass, glucose, and
acetate dynamics) made it impossible to calibrate the initial model population. This
could introduce a significant bias in the later sampling and determination of the
subpopulation ratio, thus strongly influencing the quantification of the lag time, which
is highly correlated with the population distribution (Fig. S8). Solopova et al. (25)
showed that the density of a Lactococcus lactis population (translating in practice to the
rate at which the primary carbon source was consumed) played a significant role in
determining the proportion of cells successfully transitioning to growth on the sec-
ondary carbon source. The connection between lag time and subpopulation distribu-
tion could in principle be exploited to estimate initial population distributions from lag
time measurements. However, it is difficult to assess the robustness and reliability of
such predictions with the currently available data, and further investigation, including
experiments devoted to determination of initial conditions, is therefore required. An
additional source of the discrepancies between our quantitative results and the exper-
imental measurements could have been the experimental procedure itself. For exam-
ple, abrupt changes in conditions, such as the reinoculation of daughter cultures into
a different medium in the switch experiments, might select for additional adaptation
strategies. Interestingly, we observed a dramatic improvement in the quantitative
agreement between experiment and simulation by relaxing the condition imposing no
growth for populations inoculated on the “wrong” carbon source (data not shown). By
allowing the glucose-consuming population sampled from glucose mother cultures to
growth more slowly on acetate, we mimicked a situation in which cells store resources
and are able to survive a bit longer. On the other hand, allowing reduced growth on
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acetate (glucose) for the glucose consumer (acetate consumer) population that was
exposed to both carbon sources in the mixed mother cultures could be a proxy for a
memory effect. Bacterial cells do show memory effects in response to changes in
environmental conditions (26), but more-systematic experiments would be necessary
to carefully and reproducibly determine the lag times as functions of external param-
eters to explore this potential explanation further. Finally, data obtained using a recent
stochastic model of the regulatory network of diauxic growth in E. coli suggest that the
limitations of biological sensors are responsible for the lag phase (35). From these
results, we can infer that the transition functions, which currently depend on the
absolute concentration of one carbon source at a time, might not be able to capture
the fine details of population shifts in our model. A possible extension would be to
introduce more-complex transition mechanisms dependent on the relative concentra-
tions of primary and secondary carbon sources, a process whose elucidation would
need dedicated experiments for the construction and validation of the new transition
functions.

Subpopulations in the dynamic metabolic modeling approach. We developed a
modeling framework to perform FBA simulations using embedment in a system of
ODEs. Building on previous methods and approaches (19, 36), we further extended the
standard dFBA implementation and introduced novel concepts. In particular, standard
dFBA approaches assume that fluxes can instantaneously change to adapt to new
environmental conditions, and flux solutions at subsequent time steps might differ
significantly. This is an obvious limitation when aiming to capture diauxic shift, where
lag phases, highly dependent on the environmental conditions, are typically observed.
We implemented the MOMA algorithm (originally developed to model the response to
genetic perturbations in static FBA) in dFBA to minimize the metabolic adjustments
between different time points. Furthermore, we integrated dynamic mechanisms into
dFBA that cannot be included in metabolic models, such as population transitions.
Indeed, although the use of dFBA to model subpopulations bears some similarities to
the use of other platforms for the simulation of microbial communities, a notable
difference in our formulation is the capacity of subpopulations to interconvert. The
current study relied on the a priori knowledge that only two carbon sources would be
available to E. coli, thus motivating the development of a two-subpopulation commu-
nity, but in principle, an arbitrary number of subpopulations can be defined and more
generic transition functions introduced. Further experiments, in particular, single-cell
studies, could be designed to define and parameterize these transition functions.
Thanks to the object-oriented (OO) design of the framework, it is relatively easy to
introduce other functions regulating the constraints on specific reaction fluxes in the
FBA problem. In this way, different hypotheses can be extensively tested to improve
understanding of how to capture regulatory dynamics in dFBA. Notably, the methods
developed in this framework to study population heterogeneity could then be trans-
ferred to other platforms that are more specific for microbial community modeling
where different features are implemented (e.g., spatial structure [19] or community-
level objectives [37]). Finally, the framework could also be developed further to include
stochastic mechanisms, such as mutations that would alter the function of metabolic
genes. Indeed, our implementation of the dFBA algorithm is able to call different
methods at each time step, e.g., to update the flux rates, and a regulatory function with
random components could in principle be defined.

Outlook. There is extensive experimental evidence that bacteria differentiate into
subpopulations as a result of survival strategies (25, 27). Simulations based on standard
dFBA model the dynamics of cells by predicting the putative average behavior of a
whole population. For example, if a population of cells globally utilizes a combination
of two carbon sources, dFBA would predict metabolic states in which the two carbon
sources are utilized simultaneously. Our model assumes that cells are either in the
glucose-consuming state or the acetate-consuming state, with an instantaneous tran-
sition between these two subpopulations that follows a simplistic rule which cannot
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capture intermediate states. This simplification is both practical and plausible for
observing population dynamics as the emergent properties of individual behavior, and
it works well in dynamically changing environments with a continuous transition.
However, rather than having a well-defined metabolic state, especially during the
transition between states, cells might exhibit a mixed state, which could be described
as a superposition of “pure” states, analogous to the state vectors in quantum physics.
Furthermore, our approach suggests a fundamental difference in the strategies used to
account for metabolic fluxes in heterogeneous populations, because the average fluxes
in a uniform population might differ from the cumulative average fluxes of subpopu-
lations. Further investigations of this novel concept of superimposed metabolic states
will provide a promising new approach to study the principles of metabolic regulation.

MATERIALS AND METHODS
FBA methods. In stoichiometric models, the stoichiometric matrix S�m � n� is defined with the row

and column dimensions corresponding to the numbers of metabolites m and reactions n respectively,
the elements sij being the stoichiometric coefficients of metabolite i taking part in reaction j. FBA defines
and solves the following LP problem:

maximize z� (1)

subject to:

Sv� � 0 (2)

l.b.j � vj � u.b.j (3)

with l.b.j and u.b.j representing, respectively, a lower and upper bound on flux vj.
The steady-state assumption (equation 2) gives a system of equations that is underdetermined and

has an infinite number of solutions. Constraints on the fluxes (equation 3) allow us to restrict the
solutions to a convex solution space but still result in an infinite number of solutions. The definition of
an objective (equation 1) selects one solution, but this is still generally not unique for large (genome-
scale) metabolic networks.

We consider two extensions to the FBA problem definition, namely, pFBA (14) and MOMA (15). We
then use these two methods to solve the FBA problem in an approach similar to dFBA (16). Assuming
that metabolism evolves toward the efficient utilization of resources, pFBA finds the minimal flux
distribution that returns the same objective as that defined by the FBA problem. We use the pFBA
implementation from COBRApy (38) with maximal flux through the biomass reaction as the objective
function. Considering that metabolism must respond quickly to perturbations, MOMA implements a
quadratic algorithm to find the FBA solution after gene deletion that is most similar to the optimal
wild-type configuration. In our case, we do not introduce modifications to the metabolic network but
rather require that the MOMA solution obtained at time ti-1 is used to compute the MOMA solution at
time ti as the minimally different solution that satisfies the objective function. Also in this case, the
objective function is maximal flux through the biomass reaction. We use the MOMA implementation
from COBRApy (38) in the linear approximation, with a slight modification to allow the LP problem to be
reset in an iterative manner, which is necessary to run MOMA within the dFBA approach.

Modeling framework integrating ODE and FBA. In the SOA of dFBA, the boundary conditions in
equation 3 are updated at discrete time steps according to the solution of the FBA problem in the
previous time interval. Assuming quasi-steady-state conditions, i.e., that metabolism readjustments are
faster than external environmental changes, dFBA can approximate the dynamic response of a GEM to
a changing environment. Our approach is an extension of dFBA. The model is built as a system of ODEs,
whose dimension depends on the dynamics to be modeled. Each ODE describes the variation in time of
biomass, metabolites, or other regulatory/dynamic processes. The biomasses and the metabolites can be
but are not necessarily linked to the corresponding variables in a GEM. Their ODEs vary according to a
function that can then depend on the flux solutions v� as follows:

dqi

dt
� �(p� ;v�, q�, t) (4)

The ODE system is then solved using integration routines with an automated choice of time step.
Each integration step solves the FBA problem (or pFBA or MOMA problem) to obtain the current reaction
rates for equation 4, updates the metabolite quantities according to the FBA solution, recomputes the
flux boundaries of equation 3 according to specific reaction kinetics (typically Michaelis-Menten enzyme
kinetics), and redefines the FBA problems with the new boundaries and/or other regulatory mechanisms
defined by the user.

The modeling framework is written in Python (Python Software Foundation, https://www.python
.org/) following the object-oriented programming (OOP) paradigm for efficiency and flexibility. The
framework uses functionality from the following third-party packages: numpy (39), scipy (40), matplotlib
(41), COBRApy (38), and pandas (42). In particular, we use COBRApy methods to solve the FBA problems
and Python integrators from the scipy.integrate method ode to solve the system of ODEs.

E. coli uniform population model. We used a previously reported core version of E. coli GEM (43)
downloaded from http://bigg.ucsd.edu/models/e_coli_core. The E. coli ECany model is constrained with
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respect to the consumption of “any” carbon source (i.e., glucose [Gl] and acetate [Ac]) solely by the
environmental conditions, and the lower bound of the exchange reactions (EX_Gl_e and EX_Ac_e,
respectively) follows two simple Michaelis-Menten kinetics equations:

l.b.EX_Gl_e
ECany � 	VM

Gl [Gl]

[Gl] 
 KM
Gl (5)

l.b.EX_Ac_e
ECany � 	VM

Ac [Ac]

[Ac] 
 KM
Ac (6)

The ODE system is defined as follows:

dBMECany

dt
� v�

ECany · BMECany
	 �BMECany

(7)

dGl

dt
� vEX_Gl_e

ECany · BMECany

 �fed-batch (8)

dAc

dt
� vEX_Ac_e

ECany · BMECany
(9)

where v� is the reaction rate of the biomass function (proxy for growth rate) in the FBA model, � is the
cell death rate, and �fed-batch is a positive rate under fed-batch conditions and zero under batch
conditions. Parameters and initial conditions are summarized in Table 2. Either pFBA or MOMA can be
used to solve the FBA problem.

E. coli mixed-population model. Two E. coli core models are loaded and defined as either a glucose
consumer (ECGl) model or an acetate consumer (ECAc) model by switching off uptake of the other carbon
source as follows:

l.b.EX_Gl_e
ECGl � 	VM

Gl [Gl]

[Gl] 
 KM
Gl (10)

l.b.EX_Gl_e
ECAc � 0 (11)

l.b.EX_Ac_e
ECGl � 0 (12)

l.b.EX_Ac_e
ECAc � 	VM

Ac [Ac]

[Ac] 
 KM
Ac (13)

The ODE system is defined as follows:

dBMECGl

dt
� (v�

ECGl 	 � 	 �) · BMECGl

 ��BMECAc

(14)

dBMECAc

dt
� (v�

ECAc 	 � 	 �) · BMECAc

 ��BMECGl

(15)

dGl

dt
� vEX_Gl_e

ECGl · BMECGl

 vEX_Gl_e

ECAc · BMECAc

 �fed-batch (16)

dAc

dt
� vEX_Ac_e

ECGl · BMECGl

 [vEX_Gl_e

ECAc 
 
 · H(t 	 tx)] · BMECAc
(17)

where 
 · H(t � tx) is a heaviside function activated at time tx of glucose exhaustion in order to keep the
acetate level constant, � and � are functions that model the cellular shift from ECGl to ECAc and from ECAc

to ECGl, respectively, and 0���1 is a positive factor representing the transition efficiency. The � and �

functions are modeled as Hill functions with a noise offset as follows:

�([Ac]) � �0 
 VM
� [Ac]n

[Ac]n 
 KM
� n (18)

�([Gl]) � �0 
 VM
� [Gl]n

[Gl]n 
 KM
� n (19)

where they are constant transition rates for VM
� � VM

� � 0. For the simulations presented here, we used
a Hill coefficient value of n � 5. Indeed, the simulations seemed to work best for a transition function
with a high degree of cooperativity, and the results are robust with respect to small deviations relative
to this value. The other parameters and initial conditions, specific to the different simulations, are
summarized in Table 2. For mixed-population simulations, pFBA is used to solve the FBA problem.

Switch experiment simulations. Two E. coli mixed-population model simulations are run as “mother
cultures” as shown in Table 2 for M9G and M9GA conditions (glucose and glucose plus acetate,
respectively). From each mother culture, we sample 11 time points between –1 and �1.5 h from the
corresponding GE time (4.6 h for M9G and 3.9 h for M9GA) to obtain the biomass ratio between ECGl and
ECAc used as the initial condition for the reinoculation simulations. The percentage of ECGl biomass at
these time points is shown in Table 3. The daughter cultures are then grown under M9G glucose-only
or M9A acetate-only conditions (see Table 2), yielding 44 simplified simulations, corresponding to 11 for
each of the following 4 switch experiments: M9G to M9G, M9G to M9A, M9GA to M9G, and M9GA to M9A.
For each simulation, the lag time is computed according to Enjalbert et al. (22):
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tlag � t1 	
ln(X1 ⁄ X0)

�max
(20)

where X0 is the total initial E. coli biomass, X1 is the total E. coli biomass value at time t1 (1.5 h as described
previously [22]), and �max values are used as described by Enjalbert et al. (22).

Published experimental data. Experimental data (values with standard deviations, when available)
from Enjalbert et al. (22) were kindly provided by B. Enjalbert. The data from Varma and Palsson (18) were
extracted from the original publication using WebPlotDigitizer (44).

Data availability. The version of the modeling framework used to obtain the results presented in
this manuscript (v1.1) is publicly available with instructions to install and run simulations at https://
github.com/QTB-HHU/daphne_ecoli-diauxie. The development version is hosted on https://gitlab.com/
asuccurro/dfba-ode-framework, and people interested in contributing can request access by contacting
A. Succurro (corresponding author).
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