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Abstract

Kaposi sarcoma herpesvirus (KSHV/HHV-8) is a B cell tropic human pathogen, which is

present in vivo in monotypic immunoglobulin λ (Igλ) light chain but polyclonal B cells. In the

current study, we use cell sorting to infect specific B cell lineages from human tonsil speci-

mens in order to examine the immunophenotypic alterations associated with KSHV infec-

tion. We describe IL-6 dependent maturation of naïve B lymphocytes in response to KSHV

infection and determine that the Igλmonotypic bias of KSHV infection in vivo is due to viral

induction of BCR revision. Infection of immunoglobulin κ (Igκ) naïve B cells induces expres-

sion of Igλ and isotypic inclusion, with eventual loss of Igκ. We show that this phenotypic

shift occurs via re-induction of Rag-mediated V(D)J recombination. These data explain the

selective presence of KSHV in Igλ B cells in vivo and provide the first evidence that a human

pathogen can manipulate the molecular mechanisms responsible for immunoglobulin

diversity.

Author summary

Kaposi sarcoma herpesvirus (KSHV) infection of human B cells is poorly understood.

KSHV infection in humans is heavily biased towards B cells with a specific subtype of anti-

body molecule (lambda light chain rather than kappa light chain). This has been a conun-

drum in the field for years because there is no known physiological distinction between B

cells with different light chains that might provide a mechanism for this bias. Here, we

develop a novel system for infecting B cells from human tonsil with KSHV and tracking

how the virus alters the cells over time. Using this system, we demonstrate a number of

KSHV-driven alterations in B cells, including the fact that KSHV infection of kappa light

chain positive B cells drives them to become lambda light chain positive by re-inducing

recombination events that are normally restricted to B cell development in the bone mar-

row. We believe that this study is the first demonstration that a virus can alter immuno-

globulin specificity via direct infection of B cells.
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Introduction

Kaposi sarcoma herpesvirus (KSHV), also called human herpesvirus 8 (HHV-8) is the most

recently discovered human herpesvirus, and infection with this virus is linked to the develop-

ment of KSHV-associated malignancy including Kaposi sarcoma, primary effusion lymphoma

(PEL) and multicentric Castleman disease (MCD), particularly in the absence of adequate

immune surveillance (e.g. HIV disease). [1–4]. Although the association of KSHV infection

with pathological lymphoproliferation is well established, very little is known about the early

stages of KSHV infection in B lymphocytes and how the virus drives pathology in this niche.

Moreover, our understanding of the pathogenesis of MCD is specifically hampered by the lack

of an experimental model system. As a human herpesvirus with highly restricted tropism,

KSHV does not lend itself to animal models, and the murine homolog of KSHV, MHV68,

while extensively used to study the immune response to gamma-herpesvirus infection, lacks

many homologs of KSHV proteins, and fails to recapitulate key features of human disease enti-

ties, including MCD[5]. Previous studies have performed infection of human B cells with

KSHV[6–8] and have observed features consistent with MCD phenotypes during in vitro
infection[9], but no studies to date have combined high infection efficiency with culture meth-

ods allowing detailed longitudinal immunophenotyping of lymphocytes during de novo KSHV

infection.

During B lymphocyte development, establishment of tolerance in the bone marrow involves

the sequential production of immunoglobulin light chain rearrangements by V(D)J-recombi-

nation orchestrated by the lymphoid lineage-specific recombinase activating gene (RAG) pro-

tein products, Rag1 and Rag2[10]. This phenomenon, termed B cell receptor (BCR) editing

begins with rearrangements of the immunoglobulin κ (Igκ) locus, and rearrangements in the

immunoglobulin λ (Igλ) locus occur only when Igκ rearrangements fail to produce a func-

tional, non-autoreactive BCR. As such, in the human peripheral B cell repertoire Igκ-express-

ing B lymphocytes outnumber their Igλ counterparts, and the Igκ/Igλ ratio increases as a

function of age[11]. Interestingly, restriction of KSHV infection to Igλ positive B lymphocytes

is a long-recognized feature of MCD in vivo[12,13] and, although PEL are generally immuno-

globulin negative those that express surface immunoglobulins are frequently Igλ [14]. Infec-

tion of total tonsil-derived B lymphocytes in vitro with KSHV has also shown that infected

cells are biased towards Igλ+ cells[9]. This phenomenon is counter-intuitive given the relative

abundance of Igκ lymphocytes as infection targets and the fact that the two subsets should be

physiologically indistinguishable. As such, the restriction of KSHV infection to Igλ+ lympho-

cytes remains a conundrum in the field.

In the current study, we developed an in vitro model system to determine phenotypic

changes associated with KSHV-infection of primary B lymphoyctes from human tonsil tissue.

During infection of naïve B lymphocytes, we observe IL-6 dependent acquisition of an IgD

+CD27+ immunophenotype, termed variously natural effector[15,16], or marginal zone-like

(MZL) B lymphocytes in the literature. Our experiments further reveal that KSHV infection

induces de novo Igλ expression in Igκ tonsil lymphocytes, resulting in skewed Igλ variable

gene usage and significant numbers of isotypically included (Igλ+Igκ+) lymphocytes. We

demonstrate that Igλ expression in originally Igκ+ lymphocytes during infection is associated

with the re-induction of V(D)J recombination, a phenomenon termed BCR revision. Impor-

tantly, these data provide an explanation for restriction of KSHV infection to Igλ+ lymphocytes

in vivo, and represent the first evidence that a lymphotropic human pathogen can induce BCR

rearrangements in mature peripheral lymphocytes.
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Results

For this study, we developed a protocol for flow sorting (S1A Fig) and in vitro infection of ton-

sil-derived primary B lymphocytes with BAC16 recombinant KSHV that met two important

criteria: (1) stable infection of sufficient cell numbers to provide phenotypic data by flow

cytometry (FCM) and (2) maintenance of pre-sort immunophenotypes in mock-infected con-

trols. Concentrated preparations of cell free recombinant BAC16 KSHV virions were able to

infect a variety of B lymphocyte lineages in both bulk infection (Fig 1A and 1B) and isolated

subsets flow sorted from human tonsil (S1B Fig), as evidenced by GFP reporter expression

from the BAC16 KSHV genome. Co-culture with gamma-irradiated feeder cells expressing

Fig 1. A variety of B lymphocyte lineages from human tonsil are susceptible to infection with BAC16 KSHV. Magnetically sorted total B lymphocytes from four

tonsil specimens were infected with KSHV or mock-infected and analyzed by FCM at indicated timepoints for (A) GFP expression and (B) immunophenotypic

markers for lineage. In both cases, cells were gated for singlet/viable/CD19+. Memory B cells were further defined as CD38low/IgD-/CD27+, naïve B cells were

CD38low/IgD+/CD27-, natural effector (Nat Effector) cells were CD38low/IgD+/CD27+ and germinal center (GC) cells were CD38hi/IgD-. (C) In similar infection

experiments with four tonsil specimens, total RNA was extracted at 2, 4 and 6 days post-infection and viral gene transcription was verified in two technical replicates

by RT-PCR. Replicate RT negative cDNA reactions for KSHV infected samples at 6 days post-infection were included as a control for DNA contamination and mean

NRT Cq values (n = 8) for each target were as follows: 39.44 for LANA, 40.52 for ORF59 and>40 (not detectable) for K8.1. For a 40-cycle reaction, non-amplifying

samples were set to Cq = 41 for the purposes of calculation. The lowest Cq value obtained in a mock infected sample was assigned as the limit of detection for each

target, and data points that fall below this threshold are denoted with red shading. Yellow shading highlights values between 1.7 and 3.3 cycles lower than the limit of

detection and corresponds to 5–10 fold increases in gene expression. Green shading highlights values more than 3.3 cycles lower than the limit of detection and

corresponds to gene expression levels greater than 10-fold above the limit of detection. ANOVA analysis of raw Cq values revealed a statistically significant effect of

KSHV infection for all target genes when comparing aggregate trends for mock vs KSHV samples over time: LANA p = 0.0006; K8.1 p = 0.02, ORF59 p<0.0001.

Student’s T test revealed no significant difference between Cq values for Mock and NRT samples for any target gene. (D) Magnetically sorted naïve B lymphocytes

from four tonsil specimens were infected with KSHV or mock-infected and analyzed as in (A) for GFP expression.

https://doi.org/10.1371/journal.ppat.1006967.g001
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FcgRII (CDw32) allowed survival for 2–3 weeks in culture and good maintenance of immuno-

phenotypes in many primary B lymphocyte lineages including naïve (CD19+, CD38low, IgD+,

CD27-) and memory (CD19+, CD38low, IgD-, CD27+) cells (S1C Fig). When total B lympho-

cytes were used for infections, the proportion of specific lineages expressing GFP generally

paralleled the overall percentage of the same lineage in corresponding mock-infected cultures,

thus revealing no significant bias towards infection of a particular lineage (Fig 1B). Moreover,

we were able to validate viral gene expression in total B lymphocyte infections by RT-PCR

(Fig 1C). In these assays, KSHV transcript levels generally increased over time in the infected

cultures, which is consistent with our observation of increased numbers of GFP+ cells over

the same timecourse (Fig 1A). LANA expression >5-fold above the limit of detection was

observed for 3/4 tonsil samples, 4/4 samples displayed greater than 5-fold increases in ORF59

and greater than 10-fold increases in K8.1 expression were observed in 3/4 tonsil samples.

Taken together, these data indicate that tonsil-derived B lymphocytes are susceptible to recom-

binant KSHV infection in vitro and that there is consistent early lytic gene expression and fre-

quent late lytic gene expression associated with these infections, which may indicate a mixture

of lytic and latently infected cells in these mixed B lymphocyte cultures.

Having established a robust infection model, we sought to characterize immunophenotypic

changes induced by KSHV infection in B lymphocytes. We used naïve B lymphocytes for the

remainder of the experiments described herein because they displayed two features ideal for

tracking virus-induced phenotypic changes over time. First, naïve cells were highly susceptible

to KSHV infection (Fig 1D and S1B Fig) with variable levels of infection based on the virus

stock and tonsil sample used, but generally showing infection rates >10% by 7 days post-infec-

tion. Second, uninfected cells robustly maintained their pre-sort immunophenotype over time

in culture (S1C Fig). Moreover, previous histological studies have shown data consistent with

KSHV infection of naïve B lymphocytes in MCD [12], and infection of the related Epstein-

Barr virus in humans (EBV) is thought to fist occur in naïve B cells in the oral mucosa [17].

In our KSHV-infected naïve B lymphocyte cultures we observed several reproducible immu-

nophenotypic shifts. There were consistently elevated levels of IL-6 in culture supernatants (Fig

2A), We employed a species-specific cytokine assay in order to ensure that cytokines were being

secreted by B cells and not the murine feeder cells. In contrast, levels of IL-2, IL-4, IL-10 and

TNFα remained unchanged in the same supernatants. Concurrently, we observed upregulation

of CD27 during KSHV infection producing a substantial population of cells with an IgD+CD27

+ immunophenotype (Fig 2B & 2C), termed variously natural effector or marginal zone-like

(MZL) B lymphocytes in the literature[15,16]. These results are consistent with a previous study

demonstrating both IL-6 production and CD27 acquisition in tonsil lymphocytes infected with

PEL-derived wild-type KSHV[9]. Interestingly, although statistically significant trends in IgD

+CD27+ subsets were observed in both GFP+ and GFP- populations in KSHV-infected cultures

compared to mock-infected cultures, the stronger effect occurred in the GFP- (bystander) pop-

ulation (Fig 2B and 2C). Circulating MZL B cells are currently the subject of considerable inter-

est and debate, and are thought to represent a T cell-independent, extrafollicular maturation

pathway[18]. Moreover, both IL-6 secretion and MZL B lymphocyte phenotypes are seen in

KSHV-infected cells in primary cases of MCD[12,19]. Thus, our in vitro infection system reca-

pitulates key features of KSHV infection in vivo and MCD pathogenesis, supporting the conclu-

sion that KSHV infection may drive an extrafollicular maturation pathway.

At early times post infection, we observe that KSHV infects both Igκ+ and Igλ+ naïve B

cells equally (Fig 2D, top right panel). However, later in infection we see profound shifts in

immunoglobulin light chain expression. Specifically, we found a substantial loss of Igκ+Igλ-

lymphocytes coincident with the emergence of an isotypically included (Igκ+Igλ+) subset and

an increased proportion of Igκ-Igλ+ cells (Fig 2D & 2E). Interestingly, both the GFP+ and

BCR revision by KSHV
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GFP- cells in the infected cultures lost Igκ expression, indicating that the phenotype may be

influenced by a soluble factor.

Because IL-6 signaling is known to be a critical driver of pathogenesis in MCD[19], we

determined whether the immunophenotypic alterations we observe in vitro were a result of IL-

Fig 2. KSHV infection of naïve B lymphocytes recapitulates features of MCD. (A) Concentrations of human IL-6 in culture supernatants were determined in

mock and KSHV-infected naïve B lymphocyte cultures at timepoints between 3 and 10 days post-infection by bead-based immunoassay (BD Cytokine Bead

Array). Data represent 9 independent experiments with 4 tonsil specimens. p<0.0001 for aggregate data comparing Mock vs. KSHV. p = 0.003 for Mock vs. KSHV

at 5 days post-infection and p = 0.004 for Mock vs. KSHV at 6 days post-infection. Primary naïve B lymphocytes were magnetically sorted from total tonsil

lymphocytes and infected with KSHV or Mock infected. At timepoints between 3 and 13 days post-infection 2e5 cells were removed from each culture and

analyzed by FCM (B) representative plots gated on single, CD19+ population from a representative experiment at 5 and 10 dpi. (C) Aggregate data for 6

independent experiments from 5 tonsil specimens showing the percent of each subset, which expressed both IgD and CD27 at indicated timepoints post-infection.

Additional linear mixed model regression on each independent experiment followed by ANOVA (Type II Wald F tests with Kenward-Roger df) analysis revealed a

significant effect of KSHV infection (F = 16.5, p = 0.0005) and both GFP negative (p<0.0001) and GFP positive (p = 0.02) populations were significantly different

from Mock based on post-hoc Tukey test. (D) FCM plots gated on CD19+GFP- or CD19+/GFP+ populations from a representative experiment at 3, 7 and 10 dpi.

(E) Aggregate data for 11 experiments from 8 individual tonsil specimens showing the percent of the CD19+ population with each light chain phenotype (Igκ+,

Igκ+Igλ+ and Igλ) over the timecourse of infection. Linear regression was performed in R software using least means method and gray shading represents a 95%

confidence interval. Additional linear mixed model regression on each independent experiment followed by ANOVA (Type II Wald F tests with Kenward-Roger

df) analysis revealed significant effects of KSHV infection for each light chain immunophenotype (for Igκ: F = 147.7, p = 2.3E-15; for Igκ+Igλ: F = 52.4, p = 6.3E-9;

for Igλ: F = 16.5, p = 0.0002).

https://doi.org/10.1371/journal.ppat.1006967.g002
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6 signaling. Neutralization of either hIL-6 or the gp130 receptor had no effect on KSHV-medi-

ated shifts in Ig light chain expression (Fig 3A). However, we observed that the emergence of

the MZL immunophenotype (IgD+CD27+) in our infected cultures was highly correlated with

the magnitude of IL-6 induction (Fig 3B), and neutralization of hIL-6 or its receptor abrogated

the induction MZL phenotypes in KSHV-infected cultures (Fig 3C), indicating that the induc-

tion of hIL-6 by KSHV drives B cell maturation. Moreover, cells in which light chains were

modified by KSHV (isotypically included and revised) did not display alterations in CD27

expression, suggesting that CD27 acquisition and light chain revision are mutually exclusive

phenomena in our experiments.

In order to determine whether the loss of Igκ+ lymphocytes in KSHV infected cultures is

due to selective toxicity or phenotypic shift we performed experiments in which Igκ+ naïve

lymphocytes were purified by flow sorting and subsequently infected with KSHV. The full gat-

ing scheme for this analysis is provided in S2A Fig. In these experiments, mock-infected Igκ
+ cultures displayed no significant shift in Igκ expression over the experimental time course.

In contrast, we observe a rapid and profound shift of KSHV-infected Igκ+ lymphocytes to Igκ
+Igλ+, which is followed by the emergence of a small but reproducible Igκ-Igλ+ population at

later timepoints (Fig 4A and Fig 4B, bottom panel). This phenotype is robust, and the shift for

each light chain population (Igκ+, Igκ+Igλ+ and Igλ+) is statistically significant compared to

mock infected samples (Fig 4B). As with our unsorted experiments, we observe that GFP- cells

in the KSHV infected culture also undergo a significant shift to Igκ+Igλ+ (Fig 4A, middle pan-

els). Interestingly, although both populations display isotypic inclusion, the kinetics are slower

in the GFP- population. This bystander effect could be due to a soluble factor other than IL-6

or direct interactions between infected and uninfected cells. Alternatively, the revised GFP-

cells could represent a population of lymphocytes in which KSHV infection was aborted at a

stage prior to GFP expression. Similar experiments performed in flow sorted Igλ lymphocytes

revealed no alterations in light chain expression (S2B Fig). Moreover, we have identified six

lymph node biopsies from four HIV+ patients with AIDS-related lymphadenopathy (ARL),

which did not have histological features of MCD but had rare KSHV-positive cells. In these

cases, like in MCD, the infected cells were Igλ+ (S3 Fig). Thus, the Igλ bias of KSHV infection

in vivo is a feature of KSHV infection itself, rather than a phenotype specific to MCD. Taken

together, these data support the conclusion that the Igλ-bias observed in KSHV infected cells

in vivo is a result of immunophenotypic shift after infection rather than a bias towards infec-

tion of Igλ+ lymphocytes.

We next sought to determine whether V(D)J recombination drives the emergence of Igλ
expression in KSHV-infected Igκ+ B lymphocytes using the diagnostic BIOMED2 primer set

[20]. This is a standard assay to document the presence of V(D)J rearrangements revealing

polyclonal and monoclonal B cells. We were able to detect polyclonal V-J genomic rearrange-

ments in the Igλ locus in flow sorted Igλ lymphocytes and in KSHV-infected Igκ+ lympho-

cytes, but not in mock-infected Igκ+ lymphocytes. This can be appreciated by the intensity of

the smear, as expected for a polyclonal B cell population (Fig 5A). We further verified the

expression of functionally rearranged Igλ mRNA sequences in KSHV-altered Igκ lymphocytes

by nested RT-PCR. For these experiments, we flow sorted Igκ+ lymphocytes, infected them

with KSHV and then performed a secondary sort at 7 days post-infection, capturing single

cells that were GFP+ and had transitioned to Igκ-Igλ+. cDNA was made from these single

cells and Igλ transcripts were amplified by nested RT-PCR. We used the amplification of Igλ
transcripts from mock infected Igλ+ controls, which had been sorted for Igλ expression, then

mock-infected, cultured and post-sorted in parallel with KSHV samples as a technical control

for our ability to detect Igλ expression in single cells for each experiment. Three independent

experiments of�96 single cells per condition using three distinct tonsil specimens revealed
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Fig 3. IL-6 signaling does not affect BCR revision, but controls MZL phenotype in KSHV-infected cultures. (A)

Naïve B lymphocyte cultures were infected with KSHV or Mock infected and treated with PBS (Control), IL6

neutralizing antibody at 200ng/ml or gp130 neutralizing antibody at 2μg/ml. At 6 days post-infection, cells were

analyzed by FCM and subsets were gated as in Fig 2D. Results were verified in two independent experiments with two

tonsil specimens. (B) Aggregate data for 10 individual observations from 6 independent experiments correlating the

induction of IL6 (KSHV/Mock) from Fig 2A with the MZL (IgD+CD27+) population in the same sample at the same

timepoint. Log regression was performed in R software using least means method (r2 = 0.82, p = 0.0003) and gray

shading represents a 95% confidence interval. (C) Mock or KSHV infected naïve B lymphocytes were treated with IL-6

or gp130 antibodies and analyzed as in Fig 1B. Plots shown are from a singlet/viable/CD19+CD38low gating hierarchy

in a representative experiment and results were verified in two independent experiments with two tonsil specimens.

https://doi.org/10.1371/journal.ppat.1006967.g003
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significant numbers of KSHV-modified Igκ lymphocytes expressing Igλ transcripts (Fig 5B).

Similarly, we were able to validate the isotypically included (Igκ+Igλ+) population by single

cell RT-PCR (Fig 5C). Expression of the lymphocyte-specific recombinases Rag1 and Rag2 is

normally restricted to immature B lymphocytes in the bone marrow and the expression of

these proteins regulates V(D)J recombination and BCR editing during B lymphocyte develop-

ment[10]. In order to determine whether KSHV-associated BCR revision was Rag-mediated

we performed nested RT-PCR for Rag transcripts and were able to detect both RAG1 and

RAG2 mRNA at early time points post-infection (Fig 5D). This result was reproducible in six

tonsil specimens at time points <6 hours post-infection. However, due to the very early in-

duction of RAG transcripts which was consistently observed prior to the expression of GFP in

our infected cultures, we were unable to determine whether expression of Rag proteins was

restricted to KSHV infected cells or was more widespread within the culture. We hypothesized

that if V(D)J recombination was being re-induced in these cultures, limiting the repair of Rag-

mediated double stranded DNA breaks would result in apoptosis. Indeed, pharmacological

inhibition of DNA-PKcs (a critical enzyme in the double stranded break repair pathway used

in V(D)J recombination) resulted in selective toxicity in KSHV-infected cultures (S4 Fig).

Taken together, these data clearly demonstrate the re-induction of V(D)J recombination activ-

ity in mature primary B lymphocytes during de novo KSHV infection.

In order to explore the specific nature of the Igλ rearrangements in KSHV-infected B lym-

phocytes, we used cDNA from flow sorted single cells analyzed in Fig 5B to sequence Igλ vari-

able regions from control (Mock Igλ+) and KSHV-revised (Igκ+ at infection, GFP+ Igκ-Igλ+

Fig 4. KSHV-infected Igκ+ lymphocytes become Igλ+ via an isotypically included intermediate. Primary naïve B lymphocytes were magnetically

sorted from total tonsil lymphocytes, then subsequently flow sorted based on light chain expression and infected with KSHV or mock-infected. At 3,

5 and 7 days post-infection 2e5 cells were removed from each culture and analyzed by FCM for expression of Igκ and Igλ. (A) FCM plots gated as

shown in S2A Fig from a representative experiment. (B) Aggregate data for 6 experiments from 6 individual tonsil specimens showing the percent of

the single, viable, CD19+ population with each light chain phenotype (Igκ+, Igκ+Igλ+ and Igλ+) based on gates shown in (A) over the time course of

infection. Linear regression on the aggregate data was performed in R software using least means method and gray shading represents a 95%

confidence interval. Additional linear mixed model regression on each independent experiment followed by ANOVA (Type II Wald F test with

Kenward-Roger df) analysis revealed highly significant and dominant effects of KSHV infection for each light chain immunophenotype (for Igκ:

F = 58.05, p = 5.8E-8; for Igκ+Igλ: F = 27.95, p = 1.8E-5; for Igλ: F = 35.06, p = 3.5E-6). (C) Aggregate data as in (b) for KSHV-infected samples only

separating GFP+ and GFP- events. Biexponential regression was performed in R software using least means method and gray shading represents a

95% confidence interval.

https://doi.org/10.1371/journal.ppat.1006967.g004
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at 7dpi) lymphocytes and determined IGLV gene usage using IgBLAST. As expected[21], con-

trol Igλ clones were biased towards IGLV gene families 1–3 with few clones utilizing IGLV4-

10. In contrast, KSHV-modified Igλ+ cells displayed increased usage of upstream IGLV family

genes including a significant number of clones from the VL4 gene family (Fig 5E). Interest-

ingly, despite enriching for functional rearrangements by sorting Igλ-expressing lymphocytes,

more of the KSHV-modified Igλ clones we sequenced were non-productive rearrangements

(defined as out-of-frame rearrangements or those incorporating a premature stop codon): (6/

20) in KSHV-modified samples compared to the Igλ controls (2/17). This increased rate of

non-productive rearrangements (although not statistically significant based on the low num-

bers of antibody clones) is consistent with the high error rate for V(D)J recombination[22],

Fig 5. Validation of V(D)J recombination in KSHV infected cultures. (A) Primary naïve B lymphocytes were magnetically sorted from total tonsil lymphocytes, then

subsequently flow sorted based on light chain expression and infected with KSHV or mock-infected. At 4 days post-infection total genomic DNA was harvested and

BIOMED2 primers were used to amplify functional V-J rearrangements by PCR. (B) Mock Igλ+ or KSHV Igκ+ cultures were flow sorted at 7dpi for Igλ+ (Mock

Control) or GFP+Igλ+ (KSHV-modified) and single cells were collected in 96-well PCR plates. RT-PCR was performed from single cell cDNA for Igλ transcripts. Data

represents the percent of single cells expressing Igλ transcripts from three individual tonsil donors in three independent experiments. n�96 for each sample. (C) KSHV

Igκ+ cultures were flow sorted at 7dpi and GFP+Igκ+Igλ+ single cells were collected in 96-well PCR plates. RT-PCR was performed from single cell cDNA for both Igλ
and Igκ transcripts. Data represents the number of single cells amplifying the indicated light chains or with no amplification (NA), overall n = 480 from three individual

tonsil donors in two independent experiments. (D) Primary naïve B lymphocytes were KSHV or mock-infected. Total mRNA was harvested at 4 hours post-infection

and RAG1 and RAG2 transcripts were amplified by nested RT-PCR. RT-PCR results were verified in 6 individual tonsil samples. (E) KSHV-modified Igλ transcripts

(from Fig 4B, representing single infections from three individual tonsil donors) were sequenced and immunoglobulin lambda variable (IGLV) gene families were

determined using IgBLAST (NCBI). Data displays the histogram actual frequency and Gaussian kernel density distribution for each IGLV gene family for Control

(Mock Igλ+) and KSHV-modified (Igκ+ at infection, GFP+Igλ+ at sorting) sequences. Kolmogorov-Smirnov test indicates a statistically significant difference between

the distributions (p<0.0001).

https://doi.org/10.1371/journal.ppat.1006967.g005
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and further supports the conclusion that de novo V(D)J recombination is occurring in these

cultures. Moreover, the high prevalence of non-productive Igλ rearrangements in KSHV-

infected Igκ cells sorted for Igλ expression suggests that mechanisms of allelic exclusion may

not be functional in this system.

Discussion

Our data demonstrating that KSHV induces BCR revision during de novo infection of human

B lymphocytes is the first evidence that a lymphotropic human pathogen can alter immuno-

globulin specificity by direct infection of B lymphocytes. These results could imply that KSHV

infection can shape the immune repertoire. MYC-activating translocations involving the

immunoglobulin loci present in Burkitt’s lymphoma (BL) were once thought to be a product

of EBV-mediated re-induction of V(D)J recombination [23]. While infection of B cells with

EBV has been shown to induce expression of RAG1 and RAG2[24], these were not detected in

early passage lymphoblastoid cells[25] or most EBV-associated lymphomas[26]. Moreover,

there is no apparent bias towards Igλ expression in EBV-associated tumors or EBV-infected

cells in vivo as is seen with KSHV infection. However, the phenotypic shifts to Igλ we observe

during infection in vitro explain the longstanding enigma of KSHV restriction to Igλ+ lympho-

cytes in primary patient specimens. Certainly, the implications of KSHV-mediated alteration

of the human immunoglobulin repertoire are potentially far-reaching and deserve further

study. KSHV-mediated BCR editing might represent a novel immune-evasion mechanism

directed at altering the adaptive immune response to infection. This hypothesis is consistent

with clinical evidence that antibody responses to KSHV in infected human populations are

inconsistent and highly variable over time[27–29].

For this study, we rely on a new ex vivo culture model for primary B lymphocytes in which

mouse L cells expressing FCγRII/CDw32 receptor are able to maintain lymphocyte immuno-

phenotypes in isolated B lymphocyte lineages over time. The choice of these feeder cells was

largely empirical based on trial and error, and the robust maintenance of naïve B lymphocytes

in this system was surprising because naïve cells lack IgG expression and thus should not bind

CDw32. This discrepancy certainly deserves further study as it may hint at an uncharacterized

quorum sensing mechanism present in lymphoid organs. Although the data presented herein

uses primarily naïve B lymphocytes, the target cell type(s) for KSHV infection in vivo are still a

subject of debate [30]. Indeed, we show that multiple lineages are susceptible to KSHV infec-

tion both in bulk (Fig 1B) and sorted cultures (S1B Fig). Certainly, additional studies into the

specific biology associated with KSHV infection of a variety of B cell lineages are warranted.

Moreover, our use of tonsil lymphocytes derived from routine tonsillectomy may raise ques-

tions about the contribution of the baseline inflammatory state and the presence of co-patho-

gens in inflamed tonsil tissue to KSHV infection. There is epidemiological evidence that

KSHV transmission is inefficient[31] and the prevalence of KSHV infection in the developing

world is suggestive of a correlation between the presence of co-pathogens and KSHV transmis-

sion. As such, we would suggest that lymphocytes from inflamed tonsil specimens represent a

relevant model for KSHV transmission.

Based on these results, we propose that KSHV infection represents an interesting experi-

mental method for perturbing human B cell physiology ex vivo. A robust in vitro infection and

culture system, coupled with our ability to manipulate the KSHV genome represents a unique

opportunity to use viral subversion of B cell biology to investigate obscure aspects of human

immunology. For example, our observation that KSHV-infected cells acquire MZL B cell

immunophenotypes dependent upon IL-6 signaling provides novel insight into the develop-

ment of this enigmatic lineage, and investigations of the KSHV-mediated mechanisms driving
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the emergence of MZL B cells from naïve progenitors could reveal previously undiscovered

pathways regulating extrafollicular B cell maturation in humans. Moreover, BCR revision in

human immunology remains highly controversial[32–35], and our current model system

using human cells provides a method to study the cell biology underlying this phenomenon.

Interestingly, both isotypic inclusion and BCR revision have been implicated as potential

drivers of autoimmune disease[36–38]. This is particularly interesting given that HIV disease

[39] and KSHV-associated lymphoproliferative diseases[40–42] frequently co-present with

autoimmune manifestations. Although it would be difficult to determine whether KSHV infec-

tion plays a direct role in promoting autoimmune disease in humans, study of the B cell-spe-

cific pathways targeted by KSHV to affect BCR revision could provide critical insights into the

pathogenesis of autoimmune diseases in which BCR revision plays a role.

Materials and methods

Reagents and cell lines

IL-6 and gp130 neutralizing antibodies were from R&D systems. NU7441 was from Sigma.

FCM antibodies were from BD and are detailed below. CDw32 L cells (CRL-10680) and con-

trol L cells (CRL-2648) were obtained from ATCC and were cultured in DMEM supplemented

with 10% FBS (Atlanta Biologicals) and 50μg/ml gentamicin. For preparation of feeder cells, L

cells were trypsinized and resuspended in 30ml of media in a 50ml conical tube and irradiated

with 3000 rad using a gamma source. Irradiated cells were then counted and cryopreserved

until needed for experiments.

Preparation of cell-free recombinant KSHV

iSLK[43] bearing BAC16[44] recombinant KSHV WT (BAC16 producer cells were kindly pro-

vided by Ashlee Moses, OHSU) were grown in DMEM supplemented with 10% FBS, 50μg/ml

gentamicin, 250μg/ml G418, 1μM Puromycin, and 1.2mg/ml Hygromycin B. Eight confluent

T175 flasks were induced for 72 hours with 3mM Sodium Butyrate and 2μM Doxycycline.

Culture supernatants were clarified twice by centrifugation at 2000rpm for 5 minutes and

7000rpm for 15 minutes. Virus was pelleted out of clarified supernatants over a 25% sucrose

cushion by ultracentrifugation at 22,000 rpm for 90 minutes. Virus pellets were resuspended

in a total of 2ml TNE buffer and stored at -80˚C.

Preparation, infection and culture of primary lymphocytes from human

tonsil

De-identified primary human tonsil specimens were obtained after routine tonsillectomy from

the Weill Cornell/New York Presbyterian Immunopathology Laboratory Biorepository with

approval from the Institutional Review Board of Weill Cornell Medical College. Lymphocytes

were extracted by dissection and masceration of the tissue in RPMI media. Lymphocyte-con-

taining media was passed through a 70μm filter and pelleted at 400g for 7 minutes. RBC were

lysed for 5 minutes in RBC lysing solution (0.15M ammonium chloride, 10mM potassium

bicarbonate, 0.1M EDTA). After dilution to 50ml with RPMI, lymphocytes were filtered

through a 0.4μm filter, counted and pelleted a second time. Aliquots of 1(10)^8 cells were

resuspended in 1ml of freezing media containing 90% FBS and 10% DMSO and cryopre-

served. For experiments, lymphocytes were thawed rapidly at 37˚C, diluted to 10 ml with 10%

RPMI and pelleted at 400g for 5 minutes. Cells were resuspended in 1ml RPMI with 20% FBS

and 100μg/ml Primocin (Invivogen) and incubated at 37˚C for 4–18 hours. For experiments

utilizing magnetic cell sorting, untouched total B cells (Miltenyi Cat# 130-091-151) or naïve B
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cells (Miltenyi Cat# 130-091-150) were isolated according to manufacturer instructions. For

experiments utilizing fluorescence activated cell sorting (FACS), lymphocytes were washed

1x with PBS and resuspended in PreSort Buffer (BD Biosciences) containing antibodies to

CD19 (BD Cat# 340720, 16μl/1(10)^6 cells), Immunoglobulin Lambda Light Chain (BD Cat#

561379, 4μl/1(10)^6 cells) and Immunoglobulin Kappa Light Chain (BD Cat# 561319, 4μl/1

(10)^6 cells) and incubated on ice for 15 minutes. Cells were washed 2x with PreSort Buffer,

resuspended in 2ml PreSort Buffer and sorted on a Custom Order FACSAria Cell Sorter. For

infection with KSHV, 1(10)^6 lymphocytes were pelleted into 12x75mm round bottom tubes

and resuspended in 400μl serum free RPMI containing TNE (Mock) or KSHV. Doses of virus

used for infections were calculated based on per cell infection volume required to achieve 20%

infection of HUVEC at 48 hours based on GFP expression, and correspond to 0.1–5 genomes/

cell depending upon the specific virus preparation. Cells were centrifuged at 1000rpm in inoc-

ulating medium for 30 minutes at 4˚C and transferred to 37˚C for a further 30 minutes. 100μl

FBS (20% of the final culture volume) and Primocin were added and cells with inoculum were

transferred to gamma-irradiated mouse L CDw32 feeder cells. At 3 days post-infection, the

media was replaced with fresh 20% RPMI+Primocin, removing residual virus inoculum and

cells were fed with fresh media every 3 days over the experimental timecourse

Multi-color flow cytometry for B cell immunophenotyping

At indicated times post-infection a proportion of lymphocyte cultures representing ~200,000

cells were pelleted at 400g for 3 minutes into 96-well round bottom plates. Cells were washed

once with PBS and resuspended in 200μl PBS containing (0.4ng/ml) fixable viability stain (BD

Cat# 564406) and incubated at room temperature for 10 minutes. Cells were pelleted and

resuspended in 100μl cold PBS without calcium and magnesium containing 5% FBS, and 0.1%

Sodium Azide (FACS Block) and incubated on ice for 15 minutes after which 100μl cold PBS

containing 0.5% FBS and 0.1% Sodium Azide (FACS Wash) was added. Cells were pelleted

and resuspended in FACS Wash containing B cell phenotype panel as follows for 15 minutes

on ice: (volumes indicated were routinely used for up to 0.5(10)^6 cells and were based on

titration of the individual antibodies on primary tonsil lymphocyte specimens) Ig Lambda

Light Chain-V450 (2μl), CD19-PE (8μl), CD38-PECy7 (3μl, BD Cat# 560667), IgD-PerCP

Cy5.5 (2.5μl, BD Cat# 561315), CD138-APC (4μl, BD Cat# 347207), CD27-APC H7 (2.5μl BD

Cat# 560222), Ig Kappa Light Chain-Alexa700 (2μl). After incubation, 100μl FACS Wash was

added and pelleted lymphocytes were washed with a further 200μl of FACS Wash prior to

being resuspended in 200μl FACS Wash for analysis. Data was acquired on a BD LSR2 Flow

Cytometer and analyzed using FlowJo software.

RT-PCR for viral gene expression

For viral gene expression assays, primary naïve lymphocytes from four independent tonsil

specimens were magnetically sorted and infected with KSHV or mock-infected. 1e6 cells were

harvested at indicated timepoints and total RNA was extracted using Directzol RNA Miniprep

Kit (Zymo Research) according to manufacturer instructions. A second DNase step was per-

formed on 50ng total RNA using Ambion DNA free Kit (Cat #AM1906) and cDNA was syn-

thesized from 50ng total RNA using Thermo High Capacity cDNA synthesis kit. 3μl of cDNA

was used for duplicate RT-PCR reactions with Taqman Fast Advanced Mastermix (Cat #:

4444556). Primer and probe (FAM/BGH) sequences were as follows (5’ to 3’): LANA Fwd:

GCCTATACCAGGAAGTCCCA, LANA Rev: GAGCCACCGGTAAAGTAGGA, LANA

Probe: ACACAAATGCTGGCAGCCCG K8.1 Fwd: TGCTAGTAACCGTGTGCCAT, K8.1

Rev: AGATGGGTCCGTATTTCTGC, K8.1 Probe: TGCGCGTCTCTTCCTCTAGTCGTTG;
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ORF59 Fwd: TTAAGTAGGAATGCACCCGTT, ORF59 Rev: GGAAGCCGGTGGTAGGAT,

ORF59 Probe: CCAGGCTTCTCCTCTGTGGCAA.

PCR for genomic immunoglobulin rearrangements

Primary naïve lymphocytes were flow sorted based on light chain expression and infected with

KSHV, as above. At 4 days post-infection lymphocytes were harvested and genomic DNA was

extracted using Wizard SV kit protocol (Promega Cat #A2360) and eluted in 2 x 75-μL water

containing 1 μL RNase A. 12.5-ng and 40-ng of extracted genomic DNA was used as PCR tem-

plate for mock samples and KSHV-infected samples, respectively. 50-μL of Platinum Supermix

Hifi (Thermo Cat # 12532) was used, in addition to 0.5-μL of each 10 μM Lambda Forward

and Reverse primers (Forward: Vl1/2–5’ ATTCTCTGGCTCCAAGTCTGGC 3’ and Vl3- 5’

GGATCCCTGAGCGATTCTCTGG 3’; Reverse: Jl1/2/3–5’ CTAGGACGGTGAGCTTGGT

CCC 3’). The PCR program was as follows: 7-minutes at 95˚C, 50 cycles of 30-seconds at 95˚C,

30-seconds at 64.7˚C, and 30-seconds at 72˚C, followed by 10-minutes at 72˚C [20]. The PCR

products from the first amplification were used for a second identical PCR amplification using

2-μL of previous reaction as template. The PCR products from the re-amplification reaction

were analyzed on a 2% agarose gel.

Single cell RT-PCR for immunoglobulin light chains

Single cells were harvested by flow sorting into 96-well PCR plates containing 4μl of RNA lysis

buffer (0.5x PBS+10mM DTT+4U SUPERas-In (Thermo Cat #AM2694)). Plates were sealed

and stored at -80˚C. cDNA was synthesized directly in wells using Thermo High Capacity

cDNA synthesis kit (Cat #4368814). PCR primers for amplification of immunoglobulin light

chains were from Tiller et. al.[45]. Outer RT-PCR reactions were assembled with Illustra Pure-

Taq Ready-to-go PCR beads (GE Cat #27-9557-02), mixtures of 0.2μl of each 10μM outer

primer and 3μl of single cell cDNA in total 25μl reaction volumes. Cycling parameters for

outer PCR were 50 cycles of 30-seconds at 95˚C, 30-seconds at 60˚C for Igλ or 58˚C for Igκ,

and 55-seconds at 72˚C, followed by 5-minutes at 72˚C. Nested PCR was assembled with 15μl

2x Phusion Flash Mastermix (Cat # F548L), 0.05μl of each 10μM inner primer mixture and 3μl

of outer PCR reaction in 30μl total reaction volume. Primer sequences were adapted from

[45,46]. Cycling parameters for nested PCR were 40 cycles of 10-seconds at 95˚C, 15-seconds

at 60˚C for Igλ or 58˚C for Igκ, and 10-seconds at 72˚C. PCR products were analyzed on 2%

agarose gel or purified for Sanger sequencing by isopropanol precipitation.

RT-PCR for Rag recombinase

Naïve tonsil lymphocytes were magnetically isolated and infected as above. 2(10)^6 mock or

KSHV-infected lymphocytes were harvested into 400μl Tri-Reagent at 4 hours post-infection

and total RNA was extracted using Directzol RNA Miniprep Kit (Zymo Research) according

to manufacturer instructions. A second DNase step was performed on 50ng total RNA using

Promega RQ1 DNase kit (Cat #M6101) and cDNA was synthesized from 50ng total RNA

using Thermo High Capacity cDNA synthesis kit. Outer RT-PCR reactions were assembled

with 30μl of Platinum Hifi Supermix, 0.5μl of each 10μM outer primer (RAG1 Forward: 5’-AA

GGAGAGAGCAGAGAACAC-3’, RAG1 Reverse: 5’-GTCCCAACTCAGCCATTGTT-3’,

RAG2 Forward: 5’-AGTCAGCCTTCTGCTTGC-3’, RAG2 Reverse: 5’- AGGCAGCTTGGAG

TCTGAAA-3’) and 3μl of cDNA. Cycling parameters for outer PCR were 40 cycles of 30-sec-

onds at 95˚C, 30-seconds at 53˚C, and 45-seconds at 68˚C, followed by 5-minutes at 68˚C.

Nested PCR was assembled with 30μl Platinum Hifi Supermix, 0.5μl of each 10μM inner

primer (RAG1 Forward: 5’-TTCTGCCCCAGATGAAATTC -3’, RAG1 Reverse: 5’-CTGGA
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CAAGGCTGATGGTCA-3’, RAG2 Forward: 5’-TCTCTGCAGATGGTAACAGTCAG-3’,

RAG2 Reverse: 5’-CTACCTCCCTCCTCTTCGCT-3’) and 3μl of outer PCR reaction. Cycling

parameters for nested PCR were 50 cycles of 30-seconds at 95˚C, 30-seconds at 64˚C for

RAG1 and 63˚C for RAG2, and 30-seconds at 68˚C, followed by 5-minutes at 68˚C. For

GAPDH the nested PCR reaction was performed with conditions identical to RAG2 using 3μl

cDNA. PCR products were visualized on 2% agarose gel

Bead-based cytokine immunoassay

200μl supernatants were harvested from primary cell cultures at various times post-infection,

clarified by centrifugation and stored at -80˚C. Supernatants were thawed and subjected to

bead-based immunoassay (BD CBA Cat# 561521) according to manufacturer’s instructions.

Briefly, standard curve samples were prepared and processed together with experimental sam-

ples. Human IL-6 Capture beads (BD Cat# 558276) were incubated with supernatants for 2

hours at room temperature, then detection reagent was added and incubated for another 2

hours at room temperature followed by two washes. Samples were then incubated for 1 hour at

room temperature with enhanced sensitivity detection reagent, washed twice and data was

acquired by FCM using a BD LSR2 flow cytometer and analyzed using FlowJo software. Two

technical replicates were performed for each sample. Standard curves and absolute cytokine

values were calculated using R software.

Immunohistochemistry

Dual immunohistochemistry for KSHV LANA and immunoglobulin light chains was per-

formed as previously described[12].

Statistics

Data plots and statistical analysis were performed in R software[47] using ggplot2[48] and

RColorBrewer[49] packages. Additional statistical analysis was performed on aggregate data

using R packages car[50], lme4[51], lmerTest[52]. Specific methods of statistical analysis and

resulting values for significance are detailed in the corresponding figure legends.

Supporting information

S1 Fig. Multiple B lymphocyte subsets are susceptible to KSHV infection in vitro. (A) gat-

ing scheme for flow sorting of tonsil B lymphocyte lineages: GC (CD19+, CD38hi, IgD-),

Naive (CD19+, CD38low, IgD+, CD27-) and Memory (CD19+, CD38low, IgD-, CD27+). (B)

KSHV infection over time of flow-sorted B lymphocyte subsets based on GFP fluorescence

gated based on a parallel Mock culture at each timepoint. GC were plated on gamma-irradi-

ated CD40L feeder cells, Memory and Naive were plated on gamma-irradiated CDw32 feeder

cells. (C) immunophenotypes over time based on the defining criteria for each lineage at sort-

ing (A).

(PDF)

S2 Fig. Supplemental material relating to BCR revision. (A) Full gating scheme for flow

sorted BCR revision experiments shown in Fig 4 (B) Igλ+ Naive B lymphocytes were sorted,

infected with KSHV and analyzed in parallel with Igκ lymphocytes shown in Fig 4.

(PDF)

S3 Fig. Igλ restriction is a feature of KSHV infection in both MCD and non-MCD lymph

node biopsies. Primary samples with H&E staining at 4x and 20x and corresponding
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immunohistochemistry for LANA (red) and immunoglobulin light chains (brown) demon-

strating that both KSHV-infected lymphocytes (red arrows) in MCD (top) and non-MCD

AIDS-related lymphadenopathy (bottom) do not express Igκ (black arrows, left) but are posi-

tive for Igλ (black arrows, right).

(PDF)

S4 Fig. Inhibition of DNA-PKcs is selectively toxic to KSHV-infected lymphocytes. Naive B

lymphocytes were flow sorted based on Igκ-expression and pre-treated with DMSO or 5μM

NU7441 for 1 hour. Cells were subsequently infected mock-infected or infected with KSHV in

the presence of treatments and plated on irradiated CDw32 feeder cells. At 5 days post-infec-

tion cells were harvested and analyzed by FACS for (A) cell viability using an exclusion dye

and (B) light chain expression. Singlet-gated viable cells were included in the analysis. For (B)

light chain expression for total CD19+ (green) and CD19+, GFP+ (blue) in a representative

experiment is shown.

(PDF)
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