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OBJECTIVE—The study objective was to determine the key early
mechanisms underlying the beneficial redistribution, function,
and inflammatory profile of adipose tissue in 11b-hydroxysteroid
dehydrogenase type 1 knockout (11b-HSD12/2) mice fed a high-
fat (HF) diet.

RESEARCH DESIGN AND METHODS—By focusing on the
earliest divergence in visceral adiposity, subcutaneous and visceral
fat depots from 11b-HSD12/2 and C57Bl/6J control mice fed an
HF diet for 4 weeks were used for comparative microarray analy-
sis of gene expression, and differences were validated with real-
time PCR. Key changes in metabolic signaling pathways were con-
firmed using Western blotting/immunoprecipitation, and fat cell
size was compared with the respective chow-fed control groups.
Altered adipose inflammatory cell content and function after
4 weeks (early) and 18 weeks (chronic) of HF feeding was inves-
tigated using fluorescence (and magnetic)-activated cell sorting
analysis, immunohistochemistry, and in situ hybridization.

RESULTS—In subcutaneous fat, HF-fed 11b-HSD12/2 mice
showed evidence of enhanced insulin and b-adrenergic signaling
associated with accretion of smaller metabolically active adipo-
cytes. In contrast, reduced 11b-HSD12/2 visceral fat accumula-
tion was characterized by maintained AMP kinase activation, not
insulin sensitization, and higher adipocyte interleukin-6 release.
Intracellular glucocorticoid deficiency was unexpectedly associ-
ated with suppressed inflammatory signaling and lower adipocyte
monocyte chemoattractant protein-1 secretion with strikingly re-
duced cytotoxic T-cell and macrophage infiltration, predomi-
nantly in visceral fat.

CONCLUSIONS—Our data define for the first time the novel
and distinct depot-specific mechanisms driving healthier fat
patterning and function as a result of reduced intra-adipose
glucocorticoid levels. Diabetes 60:1158–1167, 2011

A
ccumulation of visceral fat strongly increases
the risk of cardiometabolic disease, whereas
peripheral fat accretion is relatively protective
(1–3). Pronounced visceral adiposity, loss of

subcutaneous adipose tissue, and metabolic disease typify
rare Cushing’s syndrome of plasma glucocorticoid excess.
However, rather than high circulating glucocorticoid levels,
in idiopathic obesity/metabolic syndrome there are high
adipose tissue levels of 11b-hydroxysteroid dehydrogenase
type 1 (11b-HSD1) that catalyze intracellular regeneration
of active glucocorticoids from the inert circulating 11-keto
forms (4,5). Consequently, local intra-adipose glucocorticoid
regeneration may explain the phenotypic similarities between
“Cushingoid” and idiopathic obesity (4,5). Indeed, transgenic
overexpression of 11b-HSD1 selectively in adipose tissue
recapitulates the major features of the metabolic syndrome
(visceral obesity, insulin-resistant diabetes, dyslipidemia,
hypertension), whereas ectopic adipose-selective expres-
sion of the glucocorticoid-inactivating 11b-hydroxysteroid
dehydrogenase type 2 isoform attenuates metabolic syn-
drome (6–8). Consistent with this, 11b-HSD1 knockout
(11b-HSD12/2) mice chronically fed a high-fat (HF) diet
resist metabolic syndrome in part by preferentially accu-
mulating peripheral rather than visceral fat (9).

Chronic inflammation of the adipose tissue is another
prominent feature of obesity that drives subsequent dis-
ease (10). Elevated free fatty acid and adipocytokine levels
impair adipose, liver, and muscle insulin signaling through
stimulation of inflammation- and cellular stress-associated
transcriptional cascades (10–13). Further, there is pro-
nounced recruitment of proinflammatory cells, initially cy-
totoxic T-cells and subsequently macrophages into adipose
tissue (particularly visceral) in obesity, which produce
many of the cytokines/chemokines associated with insulin
resistance (14–19).

The elevated 11b-HSD1 that is characteristic of adipose
tissue in obesity (4,5) thus presents an intriguing paradox.
Glucocorticoids have potent anti-inflammatory effects (20,21),
and elevated 11b-HSD1 might feasibly curtail inflammatory
signaling within the adipocytes and, through paracrine
spillover (22), dampen neighboring proinflammatory cell
function. The therapeutic insulin-sensitizing effect of 11b-
HSD1 inhibition on adipocytes (9) might therefore be
confounded by exacerbating local inflammation in vivo.
Moreover, 11b-HSD1 is expressed in macrophages and is
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increased by acute inflammatory stimuli (23–25) where
glucocorticoids drive anti-inflammatory, proresolution ef-
fects (26,27). Indeed, 11b-HSD12/2 mice exhibited both
a delayed resolution of inflammatory processes (24) and
a more rapid and severe acute inflammatory response
(25,28). Because inhibition of 11b-HSD1 is now in late-
stage clinical development as a therapeutic strategy for the
treatment of obesity (29), it is critical to determine
whether 11b-HSD1 deficiency also exacerbates chronic
inflammation of adipose tissue in obesity. To determine
the basis of the favorably altered fat distribution and ad-
dress the inflammatory paradox in 11b-HSD12/2 mice, we
analyzed the fat depot–specific molecular, cellular, and
adipokine secretory mechanisms underlying disease pro-
tection from exposure to an HF diet.

RESEARCH DESIGN AND METHODS

Materials. Antibodies were against insulin receptor substrate (IRS)-1 and p85-
PI3K (Upstate Biotechnology, New York, NY). Akt, phospho-Akt (Ser 473),
phospho-tyrosine, AMP-activated protein kinase (AMPK)a, phospho-AMPK
(Thr 172), horseradish peroxidase anti-rabbit, and anti-mouse IgG were
obtained from Cell Signaling Technology (Beverly, MA). Protein A-sepharose
was obtained from Amersham (Little Chalfont, U.K.). Routine reagents were
obtained from Sigma-Aldrich (Suffolk, U.K.).
Animals. All experiments were approved by The University of Edinburgh
ethical committee and were according to the U.K. Animals (Scientific Pro-
cedures) Act 1986. Twelve-week-old male 11b-HSD12/2 mice (9) from .10
generations of backcross with C57Bl/6J were used. Mice were fed an HF diet
(Research Diets D12331) for 4, 10, or 18 weeks. Subcutaneous (from around
the thigh), mesenteric (visceral) fat and liver were dissected and frozen rap-
idly in liquid nitrogen. Our choice of peripheral fat was refined in this study to
the more translational subcutaneous depot. Plasma glucose (Sigma HK assay,
Sigma-Aldrich) and insulin (Crystal Chem ELISA, Crystal Chem Inc., Downers
Grove, IL) were measured after a 6-h fast.
Microarray. Adipose RNA was prepared using Qiagen RNeasy kits (Venlo, the
Netherlands) and hybridized to Affymetrix Mouse Genome 430 2.0 GeneChips
(n = 5 per group), and differential expression was determined using the Bio-
conductor Limma tool and the Benjamini and Hochberg false discovery rate
method. WebGestalt (http://bioinfo.vanderbilt.edu/webgestalt) and the Ingenuity
Pathways Analysis program (http://www.ingenuity.com/index.html) were used
to analyze the gene cluster functions with .1.5-fold genotype differential ex-
pression. Data are deposited in ArrayExpress under the accession number
E-MEXP-1636.
Quantitative RT-PCR. By using oligo(dT)20 primer and Superscript III
(Invitrogen, Paisley, U.K.), 1 mg of total RNA used was reverse transcribed.
Expression of mRNA was quantitated by Light Cycler 480 RT-PCR (Roche,
Burgess Hill, U.K.) with inventoried probes and primer sets (Applied Bio-
systems, Warrington, U.K.) normalized against the TATA-binding protein or
actin level.
Insulin signaling in vivo and Western blotting. Mice fasted 6 h were
injected i.p. with 0.75 mU/g body wt humulinS (Novo Nordisk, Crawley, U.K.) or
saline. Fat depots and liver were dissected after 15 min, snap-frozen, and stored
at 280°C. Tissues were homogenized in ice-cold lysis buffer (50 mmol/L Tris,
pH 7.4, 0.27 mol/L sucrose, 1 mmol/L Na-orthovanadate, pH 10, 1 mmol/L EDTA,
1 mmol/L EGTA, 10 mmol/L Na b-glycerophosphate, 50 mmol/L NaF, 5 mmol/L
Na pyrophosphate, 1% [w/v] Triton X-100, 0.1% [v/v] 2-mercaptoethanol, 1 tablet
of complete TM protease inhibitor [Roche, Hertfordshire, U.K.]), and 50 mg of
protein were run on 4–12% Bis-Tris gels for Western blotting. Protein signals
were visualized using enhanced chemiluminescence (Pierce Biotechnology,
Rockford, IL) by exposure to Amersham HyperfilmTH ECL film (Amersham)
or with secondary goat anti-rabbit Alexa Fluor 700 IgG and IR Dye 800 donkey
anti-mouse (Invitrogen, U.K.) using a Li-Cor Odyssey infrared imaging system.
Fat cell size. Adipocyte number was determined by counting 20 randomly
selected areas in sections from mesenteric and subcutaneous fat depot of
11b-HSD12/2 mice and wild-type mice fed chow or HF diet (10 weeks) using
Imagepro Plus (Mediacybernetics, Beech House, U.K.). The marker was blind
to genotype.
Adipose tissue fractionation. Adipose tissues without lymph nodes were
digested in Krebs–Ringer solution with 2 mg/mL collagenase type I (Wor-
thington Biochemicals, NJ) at 37°C, shaken in an incubator for 1 h, filtered
through 200-mmol/L mesh, and centrifuged to separate adipocytes from stro-
mal vascular cells (SVCs). SVC fractions were refiltered to single-cell sus-
pension through 100-mmol/L mesh and then 30-mmol/L mesh. Erythrocytes

were lysed in 1 mL erythrocyte lysis buffer (Sigma Aldrich, Dorset, U.K.) for
5 min at room temperature.
Flow cytometry. For flow cytometry, 1 3 105 cells were preincubated in 100
mL PBS with 1 mg/mL FcR block (BD Biosciences, Oxford, U.K.) and then
incubated with 0.2 mg each of rat anti-mouse–F4/80 APC, -CD11b FITC, and
hamster anti-mouse-CD11c PE (Caltag, Invitrogen, Paisley, U.K.) in PBS with
10% mouse serum (Sigma Aldrich, Dorset, U.K.) for 30 min at 4°C in the dark. For
T-cells, we used CD45-PerCPC5.5 (BD Biosciences) CD3-PE, CD4-PerCPCy5.5
(Biolegend, San Diego, CA), and CD8a-APC and CD4-FITC (eBioscience Inc.,
San Diego, CA). We found that collagenase digestion of SVC (and spleen)
cleaved the CD4 moiety from the cells and therefore use CD3+CD82 cells to
infer the CD4+ population in SVC preparations. Because genotype differences
were mainly in the CD8+ population, we did not pursue the CD4+ sub-
populations further in this study. Cells were sorted using a FACScalibur (BD
Biosciences) flow cytometer and analyzed using Flowjo8.0 software (Treestar
Inc., Ashland, OR).
Magnetic cell sorting. SVCs (107) were suspended in 90 mL magnetic cell
sorting buffer (PBS w/o Ca2+ Mg2+, 0.5% BSA, 2 mmol/L EDTA) with 10 mL of
anti-mouse CD11b microbeads (Miltenyi Biotech, Surrey, U.K.) and incubated
for 30 min at 4°C. Washed cells were separated using a MACS column mini
separator (Miltenyi Biotech), where CD11b+ cells (macrophages) and CD11b2

cells (SVC) were collected separately. Macrophage enrichment (;85%) was
verified by flow cytometry for CD11b+ and F4/80+, and cells were used for
RNA isolation.
In situ hybridization. Frozen adipose sections were mounted onto Superfrost
Plus slides and stored at 280°C. A 644-base pair F4/80 cDNA fragment was
cloned into a T7 and SP6 promoter plasmid (Clontech, Oxford, U.K.) to make
35S[UTP] (Amersham) labeled sense/antisense mRNA probes. Adipose sec-
tions were paraformaldehyde-fixed (4%) and hybridized with probe overnight
at 50°C. Slides were washed, dried, and exposed to autoradiographic film for
7 days at room temperature. Expression was quantified with Image-Pro Plus
by integrating signal from 20 random areas per tissue section.
Adipocyte cytokine secretion. Equal volumes of fractionated adipocytes and
Dulbecco’s modified Eagle’s medium (Lonza, Berkshire, U.K.) with 10% FCS
were mixed, and 400-mL aliquots were incubated as ceiling cultures for 16 or
24 h at 37°C, 5% CO2. Cytokine secretion was determined by sandwich ELISA
(R & D Systems, Abingdon, U.K.) for monocyte chemoattractant protein
(MCP)-1 and interleukin (IL)-6, and by Cytometric Bead Array (BD Bio-
sciences) for tumor necrosis factor (TNF)a and IL-10 and normalized to total
adipocyte protein.
Cell culture. Mouse 3T3-L1 preadipocyte cells (30) were incubated in
charcoal-stripped FBS-Dulbecco’s modified Eagle’s medium overnight before
IL-6 treatments (24 h) before protein extraction and Western blotting.
Statistical analysis. Data were expressed as means 6 SEM. For statistical
analysis, the groups were compared using a two-way ANOVA as stated or by
Student t test where stated. The Shapiro–Wilk W test (GraphPad Prism) was
used to test for normal distribution. P , 0.05 was considered as significant.

RESULTS

Reduced fat mass in HF-fed 11b-HSD1
2/2

mice. De-
spite similar basal metabolic phenotypes (9), after 4 weeks
of HF feeding, 11b-HSD12/2 mice exhibited a generalized
reduction in fat mass gain, with a trend in the subcuta-
neous depot (222%) but significantly lower mesenteric fat
depot mass (227%) and lower fasting glucose and insulin
levels than congenic C57Bl/6J controls (Table 1).
Differential expression of genes in subcutaneous and
mesenteric fat depot: overall analysis. We examined
underlying gene expression differences at this early stage
of divergence in (visceral) adiposity. Microarray revealed
that 565 (subcutaneous) and 1,622 (mesenteric) transcripts
were differentially expressed between genotypes $1.5-
fold. HF-fed 11b-HSD12/2 mice showed mainly upregula-
tion (79% genes) in subcutaneous but suppression (73% of
genes) in mesenteric fat (Supplementary Tables 1 and 2,
full data are deposited in the ArrayExpress database).
Genes expressed at higher levels in the subcutaneous
fat of HF-fed 11b-HSD1

2/2
mice. Gene ontology analysis

revealed the most significantly affected pathways included
insulin signaling, b-adrenergic signaling, glucose metabolism
(glycolysis), lipid metabolism (lipolysis, b-oxidation), oxida-
tive phosphorylation, mitogen-activated protein/extracellular
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signal–related kinase (MAP/ERK) signaling, and calcium
signaling (selected genes shown in Supplementary Table 1).
Genes expressed at lower levels in the subcutaneous
fat of HF-fed 11b-HSD1

2/2
mice. Among 23 genes

expressed at lower levels in subcutaneous fat of HF-fed
11b-HSD12/2 mice were growth hormone receptor (23.28-
fold) and leptin (21.66-fold), consistent with glucocorticoid
regulation (9,31).
Genes expressed at lower levels in the mesenteric fat
of HF-fed 11b-HSD1

2/2
mice. Genes suppressed in mes-

enteric fat of HF-fed 11b-HSD12/2 mice were related to im-
mune cell trafficking, nuclear factor-kB, stress-activated
protein kinase/Jun NH2-terminal kinase (SAPK/JNK), Jak/
STAT signaling, chemokines, and TNF receptor-related family
members, many of which are associated with inflammatory
cellular stress and insulin resistance (10–19) in obesity/
diabetes (selected genes are shown in Supplementary
Table 2).
Genes expressed at higher levels in the mesenteric
fat of HF-fed 11b-HSD1

2/2
mice. Genes upregulated in

the mesenteric fat of HF-fed 11b-HSD12/2 mice included
regulators of sarcoendoplasmic reticulum Ca2+-ATPase ac-
tivity (Pln, 2.25-fold, Kcnk2, 2.63-fold), retinol binding protein-
transthyretin (2.3-fold), neurotransmitters Vip (2-fold) and
tachykinin (2-fold), and cell surface receptors Gnao1, Htr2b,
Gpr85, Cap2, Tac1, and Galr2.
Microarray quantitative RT-PCR validation. Micro-
array changes were validated to check for diet and
depot-specificity of the highlighted pathways. Higher
subcutaneous fat expression of the adipogenic insulin-
sensitizing Pparg, insulin-sensitive glucose transporter
Glut4, oxidative AMP kinase subunit Prkaa2, lipid oxidizing
Cpt1b, a target for 11b-HSD1 inhibitors (32), and adrenergic
signaling-related Hspb6 (33) were confirmed. Unexpectedly,
PPARg and Prkaa2 were also elevated in mesenteric fat
(Fig. 1A, Supplementary Table 3).
Functional validation of adipocyte peroxisome
proliferator–activated receptor g and adrenergic
signaling. To test whether elevated peroxisome pro-
liferator–activated receptor (PPAR)g was of functional
significance, we exposed subcutaneous adipocytes from
HF-fed 11b-HSD12/2 mice to rosiglitazone and found higher
basal levels of Glut4 mRNA and a more marked Glut4 in-
duction by rosiglitazone (Supplementary Fig. 1).

To test for altered b-adrenergic signaling, we injected
fasted C57BL/6J and 11b-HSD12/2 mice with the b3-agonist

CL-316, 243 (CL: 0.33 nmol/g BW, n = 4) and measured
nonesterified fatty acid release after 30 min. 11b-HSD12/2

mice exhibited a significantly greater increase from basal
in plasma nonesterified fatty acid (P , 0.01) in response to
the b3-agonist (C57BL/6J before CL: 0.62 6 0.01 mEq/L,
C57BL/6J after CL: 1.07 6 0.002; 11b-HSD12/2 before CL
0.60 6 0.02, 11b-HSD12/2 after CL: 1.13 6 0.02).

Suppression of mesenteric fat cytotoxic T-cell (Cd8), che-
mokine signaling (Stat4), immunocyte adhesion (L-selectin),
and macrophage/dendritic cell scavenger receptor (Marco)
differences were confirmed by quantitative RT-PCR in only
the HF-fed group (Fig. 1B, Supplementary Table 3).
11b-HSD1

2/2
subcutaneous fat has enhanced insulin

signaling in vivo. The depot-selective insulin sensitization
implied by differential Glut4, but not PPARg expression,
was assessed in vivo. Insulin-stimulated phosphorylation of
IRS1, IRS-1 association with the p85 subunit of PI3K, and
phosphorylation of AKT in subcutaneous fat were decreased
in HF-fed control C57BL/6J (Fig. 2A) but not 11b-HSD12/2

mice. Indeed, AKT phosphorylation was maintained despite
lower PI3K-associated IRS1 levels in the 11b-HSD12/2 mice
in further support of increased insulin sensitization. Insulin
signaling was comparable between genotypes in mesenteric
fat with the HF diet (Fig. 2B) and in both depots with the
chow diet (Supplementary Fig. 2).
11b-HSD1

2/2
visceral fat has activated AMPK. Despite

higher Prkaa2 (AMPKinase a2-subunit) mRNA in both fat
depots of HF-fed 11b-HSD12/2 mice, AMPK activation
(phosphorylation) was maintained only in the mesenteric
fat of HF-fed 11b-HSD12/2 mice (Fig. 2B). Subcutaneous
fat (HF-fed) phosphoAMPK/AMPK ratio was unchanged
(C57BL/6J: 0.85 6 0.11, 11b-HSD12/2: 0.83 6 0.1).
Reduced subcutaneous adipocyte hypertrophy in
11b-HSD1

2/2
mice. To test for beneficial b-adrenergic/

oxidative fat remodeling (34,35), we measured fat cell size
after a 10-week HF diet. Cells per unit area (cpu) decreases
as fat cell size increases. C57BL/6J mice showed a fivefold
increase in subcutaneous fat cell size (chow: 64 6 13 cpu,
HF diet: 13 6 2 cpu, P , 0.001), whereas 11b-HSD12/2

mice showed only a 2.5-fold increase (chow: 42 6 10 cpu,
HF diet: 17 6 5 cpu, P , 0.001) despite comparable
fat depot mass. Visceral fat cell hypertrophy was simi-
lar (;twofold increase) in both genotypes (C57BL/6J
chow: 50 6 5 cpu, HF diet: 20 6 4 cpu, P , 0.001,
11b-HSD12/2 chow: 40 6 9 cpu, HF diet: 19 6 2 cpu,
P , 0.001).

TABLE 1
Physiologic characteristics of 11b-HSD12/2 and control mice fed chow or HF diet for 4 weeks

Parameter C57Bl/6J chow C57Bl/6J HF 11b-HSD12/2chow 11b-HSD12/2HF

Body weight (g) 32.3 6 1.5 38.7 6 1.5** 32.7 6 0.7 35.8 6 0.5**
Cumulative weight gain (g) 1.13 6 0.1 6.2 6 0.7** 1.31 6 0.1 3 6 0.6**†
Mesenteric fat mass (mg/g body wt) 32.8 6 2.82 2.65 6 0.1* 39 6 3.33 1.99 6 0.1*†
Absolute weight (mg) 94 6 5* 69 6 6*†
Subcutaneous fat mass (mg/g body wt) 1.87 6 0.16 4.2 6 0.3* 1.720.17 3.4 6 0.1*
Absolute weight (mg) 54.2 6 3.97 157 6 17** 51.4 6 5.22 122 6 9**
Liver mass (left lobe; mg/g body wt) 4.97 6 0.1 4.8 6 0.1 5.1 6 0.1 4.76 6 0.1
Absolute weight (mg) 145 6 3.01 174 6 7* 150.03 6 5.01 165 6 5*
Fasting glucose (mg/dL) 140.7 6 12.3 211.5 6 4.8** 165.4 6 8.0 157.5 6 3.4†††
Fasting insulin (pg/mL) 12.8 6 4.6 18.3 6 1.9** 10.6 6 2.0 7 6 1.1††
Corticosterone (nmol/L) 53.5 6 13.8 44.3 6 22 60.1 6 18.5 56.2 6 19

Adipose depot fat mass was assessed in C57Bl/6J (control) and 11b-HSD12/2 mice after 4 weeks exposure to chow or HF diet. Glucose and insulin
were measured in plasma samples obtained after 6 h of fasting. Data are the means 6 SE (n = 5–7) analyzed by two-way ANOVA. *P , 0.05. **P ,
0.01 indicates a significant effect of diet. †P , 0.05, ††P , 0.01, and †††P , 0.001 indicate an effect of genotype within diet (interaction).

ADIPOSE REMODELING WITH 11b-HSD1 DEFICIENCY
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11b-HSD1
2/2

decreases T-cell infiltration of mesen-
teric fat. Cytotoxic CD8+ T-cell infiltration is an early
event in the inflammatory response of adipose tissue in
obesity (17,19). Immunohistochemistry showed that CD3+

cells (a general T-cell marker) were reduced in 11b-
HSD12/2 mesenteric adipose tissue (Fig. 3A). Moreover,
fluorescence-activated cell sorting analysis of the adipose
SVCs showed that 11b-HSD12/2 mice had fewer CD8+

T-cells irrespective of the dietary effect (Fig. 3B). SVC
CD3+CD82 cell numbers (a surrogate for T-helper CD4+

cells) were comparable between genotypes (Fig. 3B). In
contrast with the SVC, mesenteric fat-associated lymph
node T-cell content (CD8+ and CD4+) was reduced in both
genotypes with HF feeding (Fig. 3C), as described by
others (36). Note the anti-CD4 fluorescence-activated cell
sorting antibody used with lymph nodes as collagenase
digestion (which removes CD4 antigen in SVC prepara-
tions) is not required.
Decreased macrophage infiltration into fat of
11b-HSD1

2/2
mice. Macrophage infiltration into adipose

tissue (14–19) occurs as obesity develops. 11b-HSD12/2mice
had fewer visceral fat SVC macrophages on control diet
(Fig. 4A). Moreover, 11b-HSD12/2 mice had significantly
reduced macrophage infiltration into both subcutaneous and
visceral adipose tissues after an 18-week HF diet (Fig. 4B).
Similarly, in mice deficient in both leptin (genetically
obese) and 11b-HSD1 (11b-HSD12/2-Lepob mice), there
was reduced visceral fat macrophage infiltration (Fig. 4C)
associated with reduced visceral fat mass (depot/body
weight ratio: 11b-HSD12/2-Lepob: 0.0343 6 0.001 vs. Lepob:
0.0384 6 0.002, P = 0.017, n = 6) but not subcutaneous

fat mass (11b-HSD12/2-Lepob: 0.0698 6 0.008 vs. Lepob:
0.0681 6 0.006).
Adipose macrophage 11b-HSD1 expression is unex-
pectedly decreased in obesity. 11b-HSD1 expression is
induced in classically activated macrophages (23–25). We
tested whether this also occurs in MACs-isolated adipose
macrophages in obesity. 11b-HSD1 expression was highest
in non-macrophage SVC cells (Fig. 5A and B), consistent
with its expression in preadipocytes (30). Unexpectedly,
HF-induced and genetic obesity (Lepob) were associated
with low adipose tissue macrophage 11b-HSD1 expression
(Fig. 5A and B, left).

Macrophage polarization into pro- (M1-type) or anti-
(M2-type) inflammatory phenotypes is influenced by glu-
cocorticoids and therefore possibly 11b-HSD1 (23–28).
However, proinflammatory TNF-a, MCP1, migration in-
hibitory factor, IL-6, anti-inflammatory IL-10, and arginase I
mRNA levels were comparable in adipose macrophages
from 11b-HSD12/2 and C57BL/6J mice in both depots
(Supplementary Table 4).
11b-HSD1

2/2
adipocytes secrete less MCP-1 but show

depot-specific changes in IL-6 secretion.We next tested
whether altered adipocyte adipokine secretion might drive
reduced macrophage infiltration with an 18-week HF diet.
MCP-1 secretion was significantly lower from 11b-HSD12/2

adipocytes regardless of depot or diet (11b-HSD12/2 mice:
32 6 3 ng/mg/24 h vs. C57BL/6J mice: subcutaneous: 41 6 2
ng/mg/24 h, mesenteric: 50 6 4 ng/mg/24 h, P = 0.04). In ad-
dition, 11b-HSD12/2 subcutaneous adipocytes secreted less
IL-6 (696 6 37 pg/mg/24 h vs. C57BL6J control: 1,129 6 175
pg/mg/24 h, P = 0.014), and this lower level was maintained

FIG. 1. Quantitative RT-PCR validation of microarray gene expression differences between HF-fed C57BL/6J and 11b-HSD1
2/2

adipose. C57BL/6J
(▨) and 11b-HSD1

2/2
(▤) mice were fed an HF diet for 4 weeks. Levels of mRNA were measured in two fat depots: subcutaneous (sc) and

mesenteric (mes). A: Representative genes involved in lipid and glucose metabolism altered in subcutaneous fat. B: Representative genes involved
in inflammatory cell signaling and function altered in mesenteric fat. Data are presented as a mean 6 SEM of two independent HF diet studies and
are expressed as a ratio of the gene of interest to the TATA-binding protein internal control. n = 7–10. Analyses were by two-way ANOVA. Sig-
nificant effects of genotype are shown: *P < 0.05. Significant genotype-by-depot interaction is shown: †P < 0.05.
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with the HF diet (699 6 104 pg/mg/24 h). Similarly, IL-6 se-
cretion was lower from 11b-HSD12/2 mesenteric adipocytes
on control diet (615 6 170 pg/mg/24 h vs. C57BL/6J control:
1015 6 170 pg/mg/24 h). However, IL-6 secretion markedly
increased with the HF diet in 11b-HSD12/2 mesenteric adi-
pocytes (1069 6 95 pg/mg/24 h, P = 0.028), whereas the HF
diet reduced IL-6 secretion from C57BL/6J mesenteric adi-
pocytes. Adipocyte TNF-a and IL-10 secretion were un-
affected (Supplementary Table 5).
Glucocorticoids constrain IL-6–induced AMPK activa-
tion in adipocytes. To test whether adipocyte IL-6 secretion
might link the pro-oxidative phenotype and increased AMPK
activation in 11b-HSD12/2 mesenteric fat, we treated differ-
entiated 3T3-L1 adipocytes in vitro with IL-6. IL-6–induced
adipocyte AMPK phosphorylation was prevented by coincu-
bation with the 11b-HSD1 substrate 11-DHC (Fig. 6).

DISCUSSION

This study focused on the critical early mechanisms un-
derlying the metabolically protective adipose phenotype of
HF-fed 11b-HSD12/2 mice. This derives from the follow-
ing: 1) PPARg and b3-adrenergic-driven subcutaneous fat

remodeling with more small, insulin-sensitized adipocytes;
2) reduced visceral fat accumulation due to maintained
AMPK kinase-mediated induction of lipid oxidation path-
ways; and 3) reduced proinflammatory T-cell and macro-
phage infiltration into (predominantly visceral) fat.

Peripheral (e.g., subcutaneous) fat is intrinsically more
insulin sensitive than visceral fat, and its accumulation
offers relative metabolic protection (1–3). Conversely,
visceral fat expresses higher levels of the glucocorticoid
receptor (2,5,6), which may contribute to its reduced in-
sulin sensitivity and exaggerated expansion in response to
increased plasma cortisol (Cushing’s syndrome) or adi-
pose 11b-HSD1 (idiopathic obesity). These intrinsic dif-
ferences likely shape the distinct depot-specific responses
to PPARg, adrenergic, and AMPK system activation. Al-
though this has been inferred in previous work (9), we
provide the first mechanistic evidence for insulin sensiti-
zation through PI3K, IRS1, and AKT in adipose tissue of
11b-HSD12/2 mice showing this is maintained only in pe-
ripheral fat on exposure to an HF diet. We show sub-
cutaneous fat of 11b-HSD12/2 mice exhibits elevated Glut4
that remains PPARg agonist-inducible after the HF diet,
which is consistent with depot-specific insulin sensitization.

FIG. 2. Phosphorylation of proteins in the insulin and AMPK signaling pathways in adipose tissues of C57BL/6J and 11b-HSD1
2/2

mice. A: Im-
munoprecipitation using an anti-IRS1 antibody followed by Western blotting for IRS1-phosphotyrosine and p-85 PI3K and Western blot for
phospho-AKTser473 (AKT

p
) and pan-AKT (AKT) in insulin-treated C57BL/6J mice fed control (B6, ■) or HF (B6HF,▨) diet and 11b-HSD1

2/2

mice on control (KO, □) or HF (KOHF,▤) diet. B: Western blot for phospho/pan-AKT in mesenteric fat and for phospho-AMPKthr172 (AMPK
p
)

and pan-AMPK in mesenteric fat. n = 6–8. Effects of diet are shown as significant: †P< 0.05. Effects of genotype are shown as significant: *P< 0.05.
(A high-quality color representation of this figure is available in the online issue.)
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This is consistent with both PPARg induction (37) and
glucocorticoid-mediated suppression of Glut4 (38). En-
hanced b-adrenergic remodeling may explain reduced fat
cell size (34,35) with increased glucose uptake (39) of
11b-HSD12/2 subcutaneous fat. Glucocorticoids suppress
adrenergic processes in (brown) fat (40), suggesting similar
mechanisms may facilitate increased oxidative capacity of
11b-HSD12/2 white fat. Increased expression of CPT-1 and
genes of oxidative phosphorylation in 11b-HSD12/2 adipose
support this notion. Induction of Hsp6 that protects car-
diomyocytes from chronic (b-3) adrenergic induction of
apoptosis (33) may similarly protect 11b-HSD12/2 adipo-
cytes from increased cellular stress with an HF diet. The
coexistence of elevated PPARg and adrenergic signaling
may seem contradictory given that PPARg activation sup-
presses sympathetic drive to white and brown fat despite
upregulating thermogenic components of the adrenergic
system in vivo (41). We suggest that intra-adipose gluco-
corticoid deficiency in 11b-HSD12/2 may therefore not only
drive increased expression of these distinct systems but
also attenuate their functional antagonism. Of note, 11b-
HSD12/2 mice on the C57BL/6J strain have increased

hypothalamic glucocorticoid receptor levels and thus cor-
rect the HPA axis feedback deficiency seen in the original
129-based strain (42). Although this argues for a dominant
effect of intra-adipose glucocorticoid deficiency as the un-
derlying basis of healthier fat patterning, whether or not this
corrective effect pertains to glucocorticoid control of the
sympathetic system at the hypothalamic or brain stem level
is uncertain.

11b-HSD12/2 mice showed elevated AMPK mRNA levels
in both subcutaneous and visceral fat, but maintained
AMPK phosphorylation (activation) only in visceral fat
after the HF diet. PPARg activation (43) and adrenergic
stimulation (44) increase AMPK activation, whereas this is
suppressed by glucocorticoids (45), suggesting that in-
creased PPARg sensitivity, presumably to the higher cir-
culating free fatty acid PPARg ligands with the HF diet,
may be the underlying mechanism for the elevated AMPK.
Notably, AMPK activity is inhibited by insulin (46), which
seems the likely explanation for the lack of maintained
AMPK phosphorylation—despite higher AMPK mRNA
levels—in subcutaneous fat. This makes some teleo-
logic sense, because AMPK signals for oxidation and lipid

FIG. 3. T-cell levels in adipose tissues of C57BL/6J and 11b-HSD1
2/2

mice fed HF diet for 4 weeks. A: Anti-CD3 staining in mesenteric adipose
sections from C57BL/6J (B6) and 11b-HSD1

2/2
mice (KO) fed control or HF diet (B6HF, KOHF) (representative of n = 5). Note fat cell expansion

causes the appearance of lower CD3
+
cells/area, but there is actually an increase per depot as shown in B. FACS quantification of T-cell numbers in

mesenteric (B) adipose SVC, and (C) adipose lymph nodes from C57BL/6J mice fed control (■) or HF (▨) diet and 11b-HSD1
2/2

mice fed control
(□) or HF (▤) diet. CD8+ cytotoxic T-cells are shown on the left, and CD3

+
CD8

2
(a surrogate for CD4

+
T-helper cells) FACS data are shown on

the right; n = 4, with adipose pooled from two mice per condition. Effects of diet are shown as significant: †P< 0.05. Effects of genotype are shown
as significant: *P < 0.05. (A high-quality digital representation of this figure is available in the online issue.)
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mobilization, whereas insulin is anti-lipolytic and lipogenic
in adipocytes. Activation of these opposing pathways is mu-
tually exclusive in subcutaneous fat where 11b-HSD12/2mice
exhibit insulin sensitization. Notably, 11b-HSD1 inhibitors

increase CPT-1–mediated oxidative drive in visceral adi-
pose tissue, while driving lipogenic effects in peripheral-like
fat of rats (32), further supporting a depot-specific effect of
glucocorticoid deficiency.

The current work therefore provides a novel mecha-
nistic framework for the early depot-specific responses
to an HF diet resulting from intracellular glucocorticoid
deficiency: combined adrenergic remodeling with insulin
sensitization in peripheral fat and maintained AMPK-fat-
oxidation in visceral fat. Although distinct, these effects
are nevertheless consistent with a coordinated response
through increased PPARg action that drives a similar ben-
eficial fat redistribution in rodents and humans (47,48).
Given that the early generalized reduction in fat mass
(4-week HF diet) of 11b-HSD12/2 mice is later followed by

FIG. 4. Macrophage numbers in adipose tissues from C57BL/6J and 11b-HSD1
2/2

mice after 18-week HF diet. A: FACS quantification of total
macrophages (Mf) content (Cd11b

+
) in subcutaneous and mesenteric fat, as a percentage of the total SVC number, in C57BL/6J (■) or

11b-HSD1
2/2

mice (□) on control diet. B: FACS quantification of macrophage number (CD11b
+
) as cells per gram of adipose tissue in sub-

cutaneous and mesenteric fat after 18-week HF diet in C57BL/6J (▨) and 11b-HSD1
2/2

mice (▤); n = 6 with adipose pooled from two mice per
condition. C: Quantitative results from in situ hybridization with an antisense riboprobe (top) hybridized against the macrophage marker F4/80 in
mesenteric fat of C57BL/6J mice fed control (B6: ■) or HF (B6HF:▨) diet and in genetically obese Lepob mice (Ob: ) and Lepob mice that are
11b-HSD1 deficient (Ob HSD1

2/2
: ); n = 6, effects of genotype are shown as significant: *P < 0.05. (A high-quality color representation of this

figure is available in the online issue.)

FIG. 5. 11b-HSD1 mRNA levels in MACS-enriched adipose macrophages
from 18-week HF diet–induced and genetically obese mice. Adipose
stromal macrophages (Mf) (CD11b

+
, left) were enriched with magnetic-

bead cell sorting using the anti-CD11b antibody from other SVCs
(CD11b

2
, right) in A the subcutaneous and mesenteric adipose tissues

of C57BL/6J mice fed control (B6: ■) or HF (B6HF:▨) diet or in B
genetically obese Lepob mice (Ob: ). Effects of genotype (†) and diet
(*) are shown as significant: P < 0.05.

FIG. 6. 11b-HSD1 activity suppresses IL-6–mediated activation of AMP
kinase in 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes were
exposed to increasing concentrations of IL-6 (□) alone or in the
presence of the 11b-HSD1 substrate 11-DHC (200 nM,■) for 24 h. Cells
were homogenized, and levels of phosphorylated (activated) AMPK
were determined by Western blot. *P < 0.05 for effects of 100 ng/mL
IL-6 compared with basal and †P < 0.05 for effects of 11-DHC on IL-6–
stimulated AMPK activation. Data are mean 6 SEM, n = 4.
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preferential peripheral fat accumulation (18-week HF diet),
it may be that an early adrenergic, oxidative component is
replaced by a dominant though still protective fat redis-
tribution effect due to increased fatty acid flux-mediated
PPARg activation (Fig. 7). The exact sequence of events
from glucocorticoid deficiency to increased PPARg-related
action will require further in-depth dissection but could
suggest a therapeutic synergy between the two systems.

Maintained AMPK activation with an HF diet occurs
alongside elevated 11b-HSD12/2 adipocyte IL-6 release.
The role of IL-6 in insulin resistance is controversial (49).
However, IL-6 activates (50) whereas glucocorticoids sup-
press (45) AMPK in adipocytes. We show IL-6–mediated
AMPK activation is constrained by 11b-HSD1 activity in
adipocytes, and this delineates a novel local mechanism
constraining visceral fat accumulation with 11b-HSD1 de-
ficiency. On the other hand, IL-6 secretion is lower from
subcutaneous adipocytes of HF-fed 11b-HSD12/2 mice,
where insulin sensitization predominates, and this may also
contribute to reduced AMPK activation despite higher
AMPK mRNA levels in this depot.

Visceral fat of HF-fed 11b-HSD12/2 mice expressed lower
levels of genes involved in proliferation, differentiation,
movement, and adhesion of immune cells, including T-cells.
We confirmed reduced T-cell numbers in 11b-HSD12/2 vis-
ceral adipose, indicating beneficial regulation of the earliest

inflammatory cell responses to HF feeding. Indeed, 11b-
HSD12/2 mice have fewer resident adipose CD8+ T-cells and
macrophages even on control diet. Although this suggests
a role for adipose 11b-HSD1 in normal immune cell turn-
over and suppression, the manifestation of the protective
effects of reduced immune cell burden only becomes ap-
parent when the challenge of the HF diet induces insulin
resistance and increases cell recruitment. Thus, reduced
macrophage number contributes to the anti-inflammatory
phenotype of 11b-HSD12/2 adipose and is likely to im-
prove insulin sensitization, particularly at later stages of
obesity. This is due in part to reduced macrophage re-
cruitment as a result of lower adipocyte MCP1 secretion,
rather than altered macrophage polarization. Because high-
dose dexamethasone inhibits MCP1 secretion from clonal
adipocytes in vitro (51), our findings may suggest secondary
insulin sensitization or PPARg action drives reduced adi-
pose MCP1 secretion from 11b-HSD12/2 adipocytes, in
agreement with the effects of 11b-HSD1 inhibition in vivo
(52). Indeed, lower MCP-1 might also improve systemic
insulin sensitivity (53) in 11b-HSD12/2 mice.

A recent comparison of gene expression patterns con-
firmed induction of 11b-HSD1 in macrophages that were
classically (M1) rather than alternately (M2) activated (23).
It was therefore unexpected that 11b-HSD1 levels were
reduced in adipose tissue macrophages with dietary and

FIG. 7. Summary of the effects of 11b-HSD1 deficiency (low intracellular glucocorticoid action) on subcutaneous and visceral fat in obesity after
early (4-week) and chronic (18-week) HF diet exposure. HF feeding causes a differential expansion of adipose mass (pink double-sided arrow) in
the genotypes. After an initial period of generally attenuated fat mass accumulation (4-week HF diet), fat becomes favorably redistributed toward
safer peripheral (subcutaneous) fat stores and away from detrimental visceral (mesenteric) fat stores in 11b-HSD1

2/2
mice (11b-KO) with chronic

(18-week) HF diet (9). In subcutaneous fat, higher PPARg (and b-adrenergic) remodeling drives increased numbers of small metabolically
competent adipocytes that maintain insulin sensitivity, increased glucose uptake, and potentially oxidative drive, despite overall greater fat mass
with chronic HF diet (9). In visceral fat, higher PPARg and increased adipocyte IL-6 secretion drives maintained AMPK-mediated fat oxidation,
independently of insulin sensitization. Reduced visceral fat inflammatory responses in 11b-HSD1

2/2
mice become accentuated with HF diet,

particularly an early (4-week) reduction in CD8+ T-cells and a later reduction in macrophage content due, in part, to reduced adipocyte MCP1
secretion from 11b-HSD1

2/2
adipocytes. Visceral fat of 11b-HSD-1

2/2
mice also exhibits reduced adipogenesis (30). WT: C57BL/6J mice, 11b-KO:

11b-HSD1
2/2

mice.
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genetic obesity, where macrophage activation occurs
(10–15). Our data suggest two possibilities. First, 11b-
HSD1 may be downregulated in a subpopulation of al-
ternatively activated (M2-like) adipose macrophages, which
also accumulate in diet-induced and genetic obesity (14).
Second, the low-grade chronic activation of adipose mac-
rophages that occurs in obesity is mechanistically distinct
to that of acute classic inflammation and is not sufficient
to induce the higher macrophage 11b-HSD1 expression
associated with these more severe inflammatory insults
(24,25).

Our data clarify early and novel pathways invoked by
11b-HSD1 deficiency that confer protection from visceral
obesity and its consequent chronic adipose inflammation.
We further demonstrate that the main protective contri-
bution originates in the adipocytes and not the infiltrating
macrophages. Our findings were transposable to a model
of extreme genetic obesity (Lepob), indicating a beneficial
impact of 11b-HSD1 deficiency in a wider context. Un-
expectedly perhaps, adipose tissue macrophage 11b-HSD1
is reduced with obesity and does not seem to regulate
macrophage polarization in this context. Crucially, our
data imply that therapeutic inhibition of adipose 11b-HSD1
will not cause a potentially confounding exacerbation of
adipose tissue inflammation in obesity.
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