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Abstract
For non-small cell lung cancer (NSCLC) patients with epidermal growth factor recep-
tor (EGFR) mutations, the initial therapeutic interventions will have crucial impacts 
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1  |  INTRODUC TION

Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-
TKIs) can provide effective treatment for non-small cell lung cancer 
(NSCLC) patients harboring EGFR mutations, such as the exon 19 de-
letion (19del) and exon 21 L858R point mutation (L858R).1–3 Based 
on the results of several clinical trials, osimertinib was approved 
for use with untreated EGFR-mutated advanced NSCLC patients 
and EGFR-T790M mutated NSCLC patients after the resistance of 
the initial EGFR-TKIs in several countries.4–7 However, almost all 
patients ultimately develop acquired resistance to osimertinib and 
approximately 30% of EGFR-mutated NSCLC patients experienced 
early relapse within 12 months.4 This indicates that the initial thera-
peutic intervention plays a crucial role in the survival of NSCLC pa-
tients with EGFR mutations.

Recently, several concomitant gene alterations, such as tumor 
protein p53 (TP53) mutations, RB transcriptional corepressor 1 (RB1) 
mutations, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit alpha mutations, phosphatase and tensin homolog alter-
ations, and other driver oncogenes, were reported as predictive neg-
ative factors for initial EGFR-TKI treatment in EGFR-mutated NSCLC 
patients.8,9 Of these, p53 mutations are the most common gene al-
terations in EGFR-mutated NSCLC patients, occurring in 55%–65% 
of cases. In a meta-analysis of EGFR-mutated NSCLC patients re-
ceiving first-line EGFR-TKIs, p53 comutations with activating EGFR 
mutations were identified as factors indicating a poorer prognosis.10 
Furthermore, EGFR-mutant NSCLC patients with co-occurring TP53 

mutations had shorter progression-free survival (PFS) under initial 
EGFR-TKI treatment than those without TP53 mutations.11 Thus, 
loss of function due to TP53 alterations was related to poor clinical 
outcomes for EGFR-mutant NSCLC patients treated with first- and 
second-generation EGFR-TKIs. However, it remains unclear whether 
p53 protein expression is associated with the efficacy of osimertinib 
in EGFR-mutated NSCLC patients.

The coexistence of drug tolerant factors, which are revers-
ible nongenetic mechanisms, is reportedly related to poor clinical 
outcomes in EGFR-TKI monotherapies for EGFR-mutated NSCLC 
tumors.12,13 Of them, overexpression of AXL, a tyrosine kinase re-
ceptor belonging to the TAM family, is correlated with poor prog-
nosis in several cancers.14–16 The activation of AXL signaling in 
cancers induced acquired resistance to chemotherapeutic agents 
and targeted molecular therapy drugs, including EGFR-TKIs for 
EGFR-mutated NSCLC.14,17–19 Our preclinical research identified the 
pivotal role of AXL activation in the intrinsic resistance to osimerti-
nib and the emergence of osimertinib-tolerant cells in EGFR-mutated 
NSCLC cells.12,20 However, clinical evidence of the impacts of AXL 
expression on osimertinib treatments in EGFR-mutated NSCLC pa-
tients is still lacking.

Tumor programmed death-ligand 1 (PD-L1), also known as 
cluster of differentiation 274 (CD274), is utilized as a biomarker 
for immunotherapy-containing treatments in NSCLC patients.21 In 
contrast, immune-checkpoint inhibitors (ICIs) are generally less ef-
fective in NSCLC patients harboring driver mutations, such as EGFR 
and ALK.22,23 Elevated PD-L1 expression in tumors is reportedly a 
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negative predictive factor for EGFR-TKI outcomes in NSCLC pa-
tients with EGFR mutations.24–26

In this prospective study, we investigated the effect of drug 
tolerant-related protein expression in tumors on osimertinib ef-
ficacy in the first-setting for EGFR-mutated advanced NSCLC 
patients.

2  |  MATERIAL S AND METHODS

Details of the materials and methods are available in Appendix S1.

3  |  RESULTS

3.1  |  Patient characteristics

Ninety-two untreated EGFR-mutated NSCLC patients, from whom 
tissue blocks were obtained prior to the osimertinib treatment, were 
enrolled. Patient characteristics are summarized in Table  1. The 
median age was 71.0 years (range, 35.0–87.0); 65 patients (70.7%) 
were female, 77 patients (83.7%) indicated performance status (PS) 
of 0 and 1, and 56 patients (60.9%) were nonsmokers. The most 
prevalent history of disease included incidence of adenocarcinoma 
(95.7%); 17 patients (18.5%) had relapse after surgery. The EGFR mu-
tation status of the patients indicated that 47 (51.1%) had 19del and 
43 (46.7%) had L858R. The median follow-up time was 26.4 months 
(range, 1.3–35.0 months).

3.2  |  Evaluation of AXL and p53 expression in 
EGFR-mutated NSCLC tumors

We evaluated AXL and p53 expression levels in the 92 EGFR-mutant 
NSCLC specimens obtained from the 92 patients. Strong (3+), inter-
mediate (2+), weak (1+), and negative (0) tumor AXL expression was 
observed in 24 (26.1%), 29 (31.5%), 29 (31.5%), and 10 (10.9%) patients, 
respectively. We defined tumor AXL expression 3+ as the AXL-high 
group (26.1%), and tumor AXL expression 2+, 1+, and 0 as the AXL-
low group (73.9%), and these were utilized in the subsequent study. 
Positive and negative p53 expression was observed in 49 (53.3%) and 
43 (46.7%) patients, respectively (Figures 1A and S1). The site for bi-
opsy and the method of analysis at diagnosis did not cause any sig-
nificant differences in AXL or p53 expression (Table S1). Moreover, 
there were no significant differences between the AXL-high and -low 
groups in clinicopathologic features, except clinical staging (Table S2).

3.3  |  Impacts of AXL and p53 expression on clinical 
outcomes of osimertinib treatment

We examined the impacts of AXL and p53 expression levels 
in tumors based on the clinical outcomes of initial osimertinib 

TA B L E  1  Characteristics of patients with non-small cell lung 
cancer (n = 92)

n = 92

Median age, years (range) 71.0 (35.0–87.0)

Age categorization, years; n (%)

<75 60 (65.2)

≥75 32 (34.8)

Sex, n (%)

Male 27 (29.3)

Female 65 (70.7)

PS, n (%)

0, 1 77 (83.7)

2, 3 15 (16.3)

Stage, n (%)

III, IV 75 (81.5)

Postoperative relapse 17 (18.5)

Brain metastasis, n (%)

Positive 27 (29.3)

Negative 65 (70.7)

Histology, n (%)

Adenocarcinoma 88 (95.7)

Others 4 (4.3)

EGFR mutation, n (%)

19del 47 (51.1)

L858R 43 (46.7)

Others 2 (2.2)

Smoking status, n (%)

Current or former 36 (39.1)

Never 56 (60.9)

Response, n (%)

CR 3 (3.3)

PR 65 (70.7)

SD 15 (16.3)

PD 4 (4.3)

NE 5 (5.4)

ORR (95% CI) 78.2% (68.0%–86.3%)

DCR (95% CI) 95.4% (88.6%–98.7%)

IHC for AXL, n (%)

3+ 24 (26.1)

2+ 29 (31.5)

1+ 29 (31.5)

0 10 (10.9)

IHC for p53, n (%)

Positive 49 (53.3)

Negative 43 (46.7)

PD-L1 TPS, n (%)

≥50% 13 (14.1)
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treatments for NSCLC patients with an EGFR mutation. In all EGFR-
mutated NSCLC patients, the objective response rate (ORR) of the 
osimertinib treatment was 78.4% (Figure S2). The ORR value of the 
osimertinib treatment in patients with low AXL expression levels 
was 82.8%, whereas for those with high AXL expression it was 
66.7% (p = 0.145). There was no remarkable difference in the ORR 
with osimertinib treatment, regardless of the p53 expression level 
(Figure S2). With the highest percentage change for the osimerti-
nib treatment, there was no significant difference in the tumors of 
patients with high and low levels of AXL or positive and negative 
p53 (Figure S3).

Of the 90 patients evaluable for primary resistance, 12 EGFR-
mutant NSCLC patients were classified as having a primary resis-
tance to the osimertinib treatment. The frequency of the primary 
resistance to the osimertinib treatment tended to be higher in pa-
tients with high AXL levels than in those with low AXL levels (25.0% 
vs. 8.8%, respectively, p = 0.073). Patients who were p53-positive 
also tended to have an increased frequency of primary resistance 
to osimertinib, when compared to those who were p53-negative 
(18.4% vs. 7.3%, respectively, p = 0.212) (Figure S2).

The median PFS with osimertinib was 17.4 months in all EGFR-
mutated NSCLC patients (Figure S2). Furthermore, the median PFS 
with osimertinib was significantly shorter in patients with high levels 
of AXL expression than in those with low levels (8.9 months [95% 
CI, 6.1–17.4 months]; and 21.5 months [95% CI, 15.4–24.0 months], 
respectively, p = 0.026). Patients who were p53-positive tended to 
have shorter PFS with osimertinib than those who were p53-negative 
(14.7 months vs. 21.5 months, respectively, p = 0.144) (Figure 1B). 
Subgroup analyses showed that the median PFS of the osimertinib 
treatment was significantly shorter in patients with a poor PS as well 
as high AXL and high PD-L1 expression (Table 2, Figure S4).

The median overall survival (OS) with osimertinib was not 
reached by any EGFR-mutated NSCLC patient (Figure S2). For those 
who did, the median OS with osimertinib was not significantly af-
fected by AXL expression levels in tumors (HR 1.60; 95% CI, 0.67–
3.84; p = 0.290). Meanwhile, patients who were p53-positive had 
significantly shorter PFS with osimertinib than those who were p53-
negative (HR 2.22; 95% CI, 1.00–4.91; p = 0.044) (Figure 1C).

In contrast, for p53-positive patients in the AXL-high group, 
there was no significant difference in clinical outcomes with osim-
ertinib treatment (Figure S5).

These observations indicate that AXL and p53 protein expres-
sion in pretreatment tumors could potentially be useful for the pre-
diction of EGFR-mutated NSCLC patients with poor outcomes under 
osimertinib treatment.

3.4  |  AXL expression impacts the clinical 
outcomes of osimertinib treatment according to EGFR 
mutation status

We investigated the correlations between AXL expression and the 
clinicopathologic features of EGFR-mutant NSCLC patients with 
19del and L858R mutations. There was no significant difference 
in the incidence of high AXL expression levels or clinicopathologic 
features between those with 19del and L858R mutations (Figure S6, 
Table S3). The ORR value for the osimertinib treatment in patients 
with the 19del mutation was higher than in those with the L858R 
mutation (89.1% vs. 70.0%, respectively, p  =  0.032). In addition, 
the ORR value for osimertinib treatment in patients with the 19del 
mutation with low AXL expression levels was relatively higher than 
in those with high AXL expression levels (94.3% vs. 72.7%, respec-
tively, p  =  0.080). For patients with the L858R mutation, there 
was no remarkable difference in the ORR value with osimertinib 
treatment, regardless of AXL expression level (71.4% vs. 66.7%, 
p = 1.000) (Figure S6). The median PFS with osimertinib tended to be 
prolonged in patients with the 19del mutation compared with those 
with the L858R mutation (21.8 months vs. 14.7 months, p = 0.112) 
(Figure  2A). In contrast, there was no significant difference in OS 
between the two groups (p = 0.992) (Figure 2B).

We further investigated the impact of AXL expression on the 
outcome of osimertinib treatment according to the EGFR mutation 
status. The median PFS with osimertinib when ranked from highest 
to lowest in patients was as follows: 19del mutation plus low AXL 
expression; L858R mutation plus low AXL expression; and high AXL 
expression. Although the groups with high AXL expression levels 
tended to have the worst PFS among those examined, there was no 
remarkable difference in the PFS between those with the 19del or 
L858R mutation or high AXL expression levels (10.1 months [95% CI, 
4.4 months–not reached] and 8.9 months [95% CI, 3.0–23.2 months], 
respectively) (Figure 2C). In contrast, there was no significant differ-
ence in OS among these groups. Of them, patients with the 19del 
mutation plus high AXL expression levels tended to have relatively a 
shorter OS (Figure 2D).

3.5  |  AXL expression level is positively related to 
PD-L1 protein in NSCLC tumors

Our previous data indicated that high PD-L1 expression levels 
are associated with shorter PFS with osimertinib in untreated 
advanced NSCLC patients harboring an EGFR mutation. 26 We 
further investigated the high levels of PD-L1 in relation to AXL 
and p53 for the EGFR-mutated NSCLC patients. Interestingly, the 

n = 92

1%–49% 24 (26.1)

<1% 27 (29.3)

Unknown 28 (30.4)

Abbreviations: 19del, exon 19 deletion; CI, confidence interval; 
CR, complete response; DCR, disease control rate; IHC, 
immunohistochemistry; L858R, exon 21 L858R point mutation; NE, not 
evaluable; ORR, objective response rate; PD, progressive disease; PD-
L1, programmed death-ligand 1; PR, partial response; PS, performance 
status; SD, stable disease; TPS, tumor proportion score.

TA B L E  1  (Continued)
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F I G U R E  1  Evaluation of AXL and p53 expression in relation to the clinical outcomes of osimertinib treatment in epidermal growth factor 
receptor (EGFR)-mutated non-small cell lung cancer (NSCLC) tumors. (A) AXL and p53 expression levels in tumors from patients with EGFR-
mutated NSCLC. (B,C) Kaplan–Meier survival curves for (B) progression-free survival (PFS) and (C) overall survival (OS) of EGFR-mutated 
NSCLC patients receiving osimertinib treatment between the low and high AXL expression groups, and negative and positive p53 expression 
groups. CI, confidence interval; HR, hazard ratio; NE, not evaluable
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frequency of patients with high PD-L1 levels was significantly 
higher in patients with high AXL levels than in those with low AXL 
levels (45.0% vs. 9.1%, p = 0.002), but not p53 (18.9% vs. 22.2%, 
p = 0.763) (Figure 3A). Moreover, tumor AXL expression was sig-
nificantly associated with PD-L1 expression levels in patients 
with EGFR mutations (r = 0.4126, p < 0.001). However, tumor p53 
expression did not correlate with PD-L1 expression (r  =  0.0048, 
p = 0.970) (Figure 3B). The Cancer Genome Atlas (TCGA) database 
revealed that AXL mRNA expression positively correlated with 

CD274 (PD-L1) in patients with lung adenocarcinoma (r = 0.4701, 
p < 0.0001) (Figure 3C). Additional analysis showed that the com-
bination of AXL and PD-L1 expression in tumors was substan-
tially correlated with PFS, which indicated the positive effect of 
their combined use. For the prognostic factors in EGFR-mutated 
NSCLC patients receiving osimertinib monotherapy (AXL-low vs. 
AXL-high with PD-L1-low, p = 0.376, or AXL-high with PD-L1-high, 
p = 0.028), there was no significant difference in the OS among the 
three groups (Figure 3D,E).

No. of patients
Median PFS, months 
(95% CI) p value

Age categorization, years

<75 60 17.4 (12.5–22.8) 0.656

≥75 32 15.6 (11.8–23.2)

Sex

Male 27 16.5 (13.5–23.2) 0.857

Female 65 18.1 (11.9–23.8)

PS

0, 1 77 21.6 (14.7–24.0) <0.001

2, 3 15 8.9 (2.4–15.4)

Disease stage

III, IV 75 15.6 (11.9–21.8) 0.610

Postoperative relapse 17 23.8 (13.5–26.6)

Brain metastasis

Positive 27 12.9 (8.0–18.1) 0.058

Negative 65 21.5 (14.4–24.4)

Histology

Adenocarcinoma 88 18.1 (14.4–22.1) 0.444

Others 4 4.0 (1.5–NE)

EGFR mutation

19del 47 21.8 (15.4–26.6) <0.001

L858R 43 14.7 (9.9–21.6)

Others 2 3.0 (1.0–NE)

Smoking status

Current or former smoker 36 13.8 (9.0–21.6) 0.169

Never smoker 56 21.5 (14.7–24.4)

IHC for AXL

High 24 8.9 (6.1–17.4) 0.026

Low 68 21.5 (15.4–24.0)

IHC for p53

Positive 49 14.7 (10.3–21.6) 0.144

Negative 43 21.5 (14.4–26.6)

PD-L1 TPS

≥50% 13 6.5 (2.4–14.4) 0.005

<50% 51 17.4 (12.9–21.8)

Unknown 28 26.1 (14.7–29.1)

Abbreviations: 19del, exon 19 deletion; CI, confidence interval; IHC, immunohistochemistry; 
L858R, exon21 L858R point mutation; NE, not evaluable; PD-L1, programmed death-ligand 1; PFS, 
progression-free survival; PS, performance status; TPS, tumor proportion score.

TA B L E  2  Univariate analysis for 
progression-free survival (PFS) among 
patients with non-small cell lung cancer 
(n = 92)
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These observations indicated a positive correlation between the 
tumor expression of AXL and PD-L1, which are related to the poor 
outcomes of osimertinib monotherapy, in EGFR-mutated NSCLC pa-
tients treated with osimertinib.

3.6  |  AXL activation promoted osimertinib 
resistance and was involved in cMyc and PD-L1 
expression in EGFR-mutated in vitro models

To further elucidate the underlying mechanisms of AXL-induced 
osimertinib resistance, we undertook a pathway analysis using AXL 
activation in Ba/F3 cells. Cell line-based analysis showed that AXL 
overexpression promoted resistance to osimertinib in Ba/F3 cells 
harboring both 19del and L858R mutations in EGFR (Figure 4A). AXL 
overexpression increased the expression levels of the transcrip-
tion factors cMyc and PD-L1 in Ba/F3 cells harboring both 19del 
and L858R mutations (Figure 4B). Treatment with osimertinib had 

little impact on cMyc and PD-L1 expression in Ba/F3 cells harbor-
ing 19del and L858R mutations, regardless of AXL overexpression 
(Figure  4C). Specific siRNA-mediated AXL knockdown restored 
cMyc and PD-L1 expression in EGFR-mutated cells, whereas cMyc 
knockdown restored the expression of PD-L1, but not AXL, in EGFR-
mutated cells when AXL was overexpressed. This indicated that 
AXL activates the cMyc-PD-L1 axis (Figure  4D). Moreover, a cell 
growth assay showed that cMyc or PD-L1 knockdown marginally af-
fected osimertinib sensitivity in AXL-overexpressing EGFR-mutated 
cells (Figure 4E). These findings indicated that AXL activation pro-
motes insensitivity to osimertinib and is involved in the expression 
of cMyc and PD-L1, which are downstream molecules in cells har-
boring EGFR activating mutations. The TCGA data for patients with 
lung adenocarcinoma revealed that tumors with high AXL mRNA 
expression showed remarkably increased CD274 mRNA levels com-
pared with those with intermediate and low AXL mRNA expression 
(p < 0.0001), but there was no significant correlation in mRNA levels 
between MYC and AXL (Figures 4F,G and S7).

F I G U R E  2  Evaluation of AXL expression in relation to the clinical outcomes of osimertinib treatment according to epidermal growth 
factor receptor (EGFR) mutation status. (A,B) Kaplan–Meier survival curves for (A) progression-free survival (PFS) and (B) overall survival 
OS of EGFR-mutated non-small cell lung cancer (NSCLC) patients with exon 19 deletion (19del) and exon 21 L858R point mutation (L858R) 
mutations receiving osimertinib treatment. (C,D) Kaplan–Meier survival curves for (C) PFS and (D) OS of EGFR-mutated NSCLC patients 
receiving osimertinib treatment according to EGFR mutation status and AXL expression levels. CI, confidence interval; HR, hazard ratio; NE, 
not evaluable
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F I G U R E  3  AXL expression is positively 
related to programmed death-ligand 1 
(PD-L1) protein expression in non-small 
cell lung cancer (NSCLC) tumors. (A) 
Distribution of tumor PD-L1 expression 
(% of cases) in epidermal growth factor 
receptor (EGFR)-mutated NSCLC patients 
according to their AXL and p53 expression 
levels. (B) Distribution of tumor PD-
L1 expression (% of positive cells) in 
EGFR-mutated NSCLC patients according 
to the AXL and p53 expression levels. 
(C) Correlation between the log10-
transformed AXL and CD274 expression 
data, using the RNA sequencing data 
of The Cancer Genome Atlas datasets. 
Positive correlation was determined 
using the Pearson correlation (r = 0.4701, 
p < 0.0001). (D,E) Kaplan–Meier survival 
curves for (D) progression-free survival 
(PFS) and (E) overall survival (OS) of 
EGFR-mutated NSCLC patients receiving 
osimertinib treatment among the AXL-low, 
AXL-high–PD-L1-low, and AXL-high-PD-
L1-high expression groups. CI, confidence 
interval, NE, not evaluable
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F I G U R E  4  AXL activation promoted osimertinib resistance and was involved in cMyc and programmed death-ligand 1 (PD-L1) expression 
in epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC). (A) After the exon 19 deletion (19del) and exon 21 
L858R point mutation (L858R) mutations were introduced into EGFR, Ba/F3 cells transfected with the pWPXL plasmid expressing either 
empty vector (Vec) or human AXL (AXL-wt) were incubated with osimertinib for 72 h and the cell viability was determined using WST-8 
assays. (B) The cells were lysed, and the indicated proteins detected by western blot analysis. (C) Ba/F3 cells harboring the 19del and L858R 
mutations were further transfected with either Vec or AXL-wt and incubated with or without osimertinib (1.0 nmol/L) for 48 h, lysed, and 
the indicated proteins were detected by western blotting. (D) Nonspecific siRNA was used as a control, specific siRNAs for AXL and MYC 
siRNAs were introduced into Ba/F3 cells harboring the 19del and L858R mutations, and the indicated proteins were detected by western 
blotting. (E) The indicated siRNAs were introduced into Ba/F3 cells transfected harboring the 19del and L858R mutations. After 24 h, the 
cells were incubated with or without osimertinib (1.0 nmol/L) for 72 h and cell viability was determined using WST-8 assays. (F) Heatmap 
indicating the expression levels of AXL, CD274, and MYC across 510 patients according to their AXL expression level classification. Patients 
were sorted in descending order of their AXL expression data, which were converted to a z-score. (G) Expression data from The Cancer 
Genome Atlas were used to compare the expression levels of CD274 and MYC between the groups with high AXL expression levels and the 
groups with intermediate and low AXL expression levels. Two-sided Welch's t-test was used for the statistical evaluation. Tumors expressing 
high levels of AXL mRNA had significantly increased levels of CD274 mRNA when compared with the others (p < 0.0001), but there was no 
significant correlation for the MYC or AXL mRNA levels (p < 0.4562)
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4  |  DISCUSSION

In EGFR-mutated NSCLC patients, intervention with osimertinib pro-
motes tumor evolution and induces acquired resistance, following 
which there is no optimal therapeutic strategy. Several therapeutic 
strategies that are potentially followed by therapy with osimerti-
nib have been approved in several countries as first-line treatments 
for EGFR-mutated NSCLC patients, including combination with an 
antiangiogenesis agent or chemotherapy.27,28 Therefore, predictive 
factors to detect nonresponders to osimertinib monotherapy are 
needed to ensure that the most promising initial therapeutic strat-
egy for EGFR-mutated NSCLC patients can be selected.

Our preclinical study revealed the AXL activation in response to 
osimertinib treatment elicited an intrinsic resistance to osimertinib 
and the emergence of osimertinib-tolerant cells in EGFR-mutated 
NSCLC cells.12 Moreover, a cell-line-derived tumor xenograft model 
showed that the combination of a novel AXL inhibitor ONO-7475 
with osimertinib was effective for the initial treatment phase in AXL-
overexpressing EGFR-mutated NSCLC cells.29 These preclinical ob-
servations led to the initiation of a phase I clinical trial of osimertinib 
and ONO-7475 combination therapy for advanced EGFR-mutated 
NSCLC patients in Japan (jRCT2051210045).

In this prospective study, we validated the impact of tumor AXL 
and p53 protein expression levels, which are potentially related to 
the primary resistance to osimertinib and clinical outcomes of EGFR-
mutated NSCLC tumors. We revealed that high AXL expression lev-
els in pretreatment tumors were associated with a shorter PFS with 
osimertinib monotherapy in EGFR-mutated NSCLC patients. To the 
best of our knowledge, this is the first prospective study reporting 
the importance of high AXL expression levels in tumors as a clinically 
relevant predictive factor for osimertinib monotherapy in untreated 
EGFR-mutated NSCLC patients.

Expression of PD-L1 in tumors is used as a positive predictive 
biomarker for advanced NSCLC patients treated with ICIs.21 In con-
trast, subpopulations with EGFR mutations tend to show a reduced 
response to PD-1/PD-L1 inhibitors, and tumor PD-L1 expression 
does not predict sensitivity to ICIs.30 Several predictive biomarkers 
for clinical outcomes with immunotherapy in EGFR-mutated NSCLC 
patients have been reported, including the duration of response and 
a shorter response to a prior EGFR-TKI treatment.22,31,32 Kunimasa 
et al. reported that changes in intratumoral heterogeneity influenced 
the therapeutic response of EGFR-mutated NSCLC tumors showing 
high PD-L1 expression to ICIs and first-generation EGFR-TKI erlo-
tinib.33 These observations suggest that the effectiveness of these 
therapies might be influenced by the resident tumor burdens with 
neither EGFR mutations nor PD-L1 expression for NSCLC tumors 
harboring EGFR mutations. Our observations showed that, when 
combined with the PD-L1 status, high AXL expression levels were 
associated with the worst PFS in the EGFR-mutated NSCLC tumors 
treated with osimertinib monotherapy. In addition, cell line-based 
analysis revealed that the underlying AXL signaling pathway, through 
the cMyc-PD-L1 axis, induces osimertinib resistance in Ba/F3 cells 
harboring EGFR activating mutations. Notably, PD-L1 knockdown 

did not reverse AXL-induced resistance to osimertinib, which sug-
gested that PD-L1 might not work as an effector for AXL activation 
but for resistance to osimertinib in EGFR-mutated cells. However, 
how AXL and PD-L1 affect the association of clinical outcomes 
during osimertinib treatment remains unknown. Further evidence is 
required to understand the impact of tumor PD-L1 expression and 
to determine whether AXL signal transduction in tumors is related 
to the outcomes of osimertinib for EGFR-mutated NSCLC patients.

Recently, much attention has been paid to the efficacy of osim-
ertinib in the first-line setting and the clinical differences between 
19del and L858R mutations in EGFR due to differences in their mo-
lecular structures and tumor heterogeneity.34–36 Our current obser-
vations showed a superior PFS of osimertinib in NSCLC patients with 
the 19del mutation compared with those with the L858R mutation, 
consistent with previous reports. In addition, tumors with high AXL 
expression had a poor prognosis regardless of the type of EGFR mu-
tation, and the difference in clinical outcomes between the AXL-low 
and -high groups was more remarkable for the 19del mutation than 
for the L858R mutation.

Comutations with TP53 tumor suppresser genes were reported 
as predictive biomarkers for shorter PFS in first-generation EGFR-
TKIs for NSCLC patients with EGFR mutations.11 Although we did not 
evaluate the correlation between the protein and gene expression of 
TP53, the expression of tumor p53 proteins was a prognostic factor 
for OS in patients treated with osimertinib. Thus, it is suggested that 
tumor p53 expression might have an influence on the clinical out-
comes of EGFR-mutated NSCLC patients receiving osimertinib treat-
ment. Among the mechanisms of acquired resistance to osimertinib, 
the frequency of histologic transformation to small-cell lung cancer 
has been reported to be approximately 5%, which is related to the 
gain of TP53 mutations.11,37 A clinical trial of osimertinib plus carbo-
platin and etoposide is being carried out for EGFR-mutated NSCLC 
patients with TP53 and RB1 mutations (NCT03567642). Further 
investigations are thus required to validate whether enriched p53 
proteins in tumors leads to small cell transformation after acquired 
resistance to osimertinib.

There were several limitations to this study. First, the enrolled 
cohort was limited to 92 cases. Second, the EGFR mutation status 
was detected using PCR analysis, which is limited in its ability to 
identify compound mutations. Finally, follow-up times were insuf-
ficient to evaluate the OS of untreated EGFR-mutated NSCLC pa-
tients. However, several novel findings were notable, and further 
large-cohort investigations are warranted to confirm the roles of 
pretreatment tumor AXL and PD-L1 expression levels in the clinical 
outcomes of osimertinib treatment.

In summary, we have uncovered the clinical impacts of tumor 
AXL and p53 expression levels in patients receiving osimertinib 
treatment for EGFR-mutated lung cancer. High levels of AXL and 
positive p53 expression were detected in 26.1% and 53.3% of the 
pretreatment EGFR-mutated NSCLC tumors, respectively. The 
high levels of AXL expression were associated with significantly 
shorter PFS with osimertinib than low levels of AXL expression, 
irrespective of EGFR activating mutation status. Our observations 
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revealed that high AXL and PD-L1 expression levels in pretreat-
ment tumors were predictors of poor PFS with osimertinib. A cell 
line-based assay indicated that AXL protein overexpression accel-
erated PD-L1 expression and induced insensitivity to osimertinib. 
In the TCGA database, AXL RNA levels were positively correlated 
with PD-L1 expression in a lung adenocarcinoma cohort. Based 
on our observations, further clinical verifications are expected to 
confirm the relationship between high pretreatment AXL expres-
sion levels and reduced sensitivity to osimertinib monotherapy in 
EGFR-mutated NSCLC patients.
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