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Abstract: Synthetic 3D multicellular systems derived from patient tumors, or tumoroids, have been
developed to complete the cancer research arsenal and overcome the limits of current preclinical
models. They aim to represent the molecular and structural heterogeneity of the tumor micro-
environment, and its complex network of interactions, with greater accuracy. They are more predictive
of clinical outcomes, of adverse events, and of resistance mechanisms. Thus, they increase the success
rate of drug development, and help clinicians in their decision-making process. Lung cancer remains
amongst the deadliest of diseases, and still requires intensive research. In this review, we analyze
the merits and drawbacks of the current preclinical models used in lung cancer research, and the
position of tumoroids. The introduction of immune cells and healthy regulatory cells in autologous
tumoroid models has enabled their application to most recent therapeutic concepts. The possibility
of deriving tumoroids from primary tumors within reasonable time has opened a direct approach to
patient-specific features, supporting their future role in precision medicine.

Keywords: preclinical models; non-small-cell lung cancer; tumoroids; microfluidic

1. Introduction

Lung cancer is the deadliest cancer worldwide; non-small cell lung cancer (NSCLC)
is the most common form, with 85% of all cases [1]. The survival rate over 5 years for
patients with advanced stage lung cancer remains below 15% despite the diversity of
therapeutic treatments and very important progress in the last two decades [2]. Treatment
options mainly rely on surgery, complemented with radiotherapy, targeted chemotherapy,
or immunotherapy, thanks to the development of specific markers of response [3]. The
5 year survival rate improves to 61.2% when diagnosis is performed at the stage of localized
tumor, but drops to 9.9% when cancer is detected at the metastatic stage [4]. Both the large
National Lung Screening Trial (NLST) conducted in the U.S. from 2002 to 2011, and the
NELSON study in Europe, confirmed that the earlier the diagnosis, the higher the survival
rate [5,6]. However, about 70% of lung cancer patients remain diagnosed at advanced
stages, where heavy systemic treatment is necessary [7].

For patients at advanced stages, platinum-based chemotherapy regimen is the standard
of care but is associated with severe toxicities [8]. In this respect, therapies targeting driver
mutations in EGFR, or more recently, KRAS genes, have been a progress, but often face
occurrence of resistance [9,10]. Immunotherapy has recently revolutionized the treatment
of lung cancer [11]. The main strategy in immunotherapy is to target immune checkpoint
pathways in order to escape local immune tolerance and to boost anti-tumor response [12]. Its
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therapeutic window is quite narrow, and the use of immune-checkpoint-blockers is associated
with a high rate of immune-related adverse events (irAEs), reaching 26.82% of patients treated
with PD-1 inhibitors [13]. These deleterious responses might affect multiple organs (skin,
digestive tract, liver, endocrine gland, lung, thyroid, etc.) [14–16].

To better predict and assess the efficacy, resistance or toxicity of drug candidates
during drug development, experimental advanced models have been designed. The most
relevant are 3D models derived from both normal and tumoral lung epithelial cells. They
aim at recapitulating the heterogeneity of tumoral cells, and at reproducing the complex
network of interactions in the tumor microenvironment (TME). Taking advantage of the
fast evolution of cell culture technologies and microsystems, 3D tumor models represent
a major step forward in the characterization of new drug candidates and pave the way
towards personalized medicine by using patient-derived tumor biopsies. This review aims
to describe state-of-the-art lung cancer preclinical models, their limits in predicting drug
efficacy in complex tumors or adverse events, and recent technological progresses that
might rapidly benefit the search for safe and efficient drugs (Figure 1).
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Figure 1. The variety of applications for tumoroids and organoids models. Directly derived from
patient biopsy or surgery, synthetic tumor models can be used to study tumorigenesis, tumor growth,
and interactions with the normal tissues. The drug discovery process should benefit from higher
predictivity from these models than current preclinical models. The combination with microfluidic
systems allows for better mimicry of the tumor dynamics and makes these tumor models suitable
with high throughput/high content bioassays. Created with BioRender.com.

2. Current Experimental Models for Drug Development in NSCLC and Their Limits
2.1. Lung Cancer Cell Lines for In Vitro Studies

Lung cancer cell lines have been widely used in cancer research, the “historical” A549
cell counting itself 17,947 entries in PubMed (as of 17 March 2022). The NCI panel of
cancer cell lines comprises more than 200 lung cancer cell lines derived from patients
with either small-cell lung cancer (SCLC) or NSCLC [17,18]. Whereas monotypic cell
cultures are suitable for the study of proliferative mechanisms and the study of signaling
pathways, they have proven insufficient to understand some major interactions within the
TME (e.g., with stromal cells, endothelial cells and/or immune cells). Pro-inflammatory



Biomedicines 2022, 10, 1677 3 of 16

cells and stromal cells were shown to be key in controlling tumor growth, metastasis
and angiogenesis [18]. Another issue with the use of cancer cell lines is genetic variation;
many authors have documented the loss of original phenotypic features from the primary
tumor [19,20]. Despite these drawbacks, lung cancer cell lines still feed the vast majority of
basic studies in cancer research, and of early drug screening campaigns [21].

2.2. Murine Models for In Vivo Studies

(a) Patient-derived tumor xenografts (PDXs)

PDXs have been used for understanding cancer metastasis and for drug screening.
Biopsies and patient-derived tumor materials offer the advantage of encompassing multiple
factors such as cellular heterogeneity, histological structures, malignant genotypes and
phenotypes. Grafted onto immunodeficient mice, they tend to conserve essential features
of the human primary tumor. In particular, somatic and genomic alterations and histologi-
cal subtypes were found to be comparable between primary tumors and corresponding
PDX [22–24]. Nevertheless, major limitations are reported. Genomic variation seems higher
in PDXs, with an enrichment of aberrations in cancer associated genes [22]. Immunodefi-
cient NOD/SCID or NOD/NSG mice are still largely used to avoid tumor rejection but they
are not suitable for the assessment of immunotherapies [23]. Humanized PDX models are
thus recommended in this perspective but are very expansive. The question of implantation
site is also important, orthotopic grating or injection into the circulation are associated with
a higher success rate, up to 30–40%, than subcutaneous grafting [25].

(b) Syngeneic murine models

These immunocompetent models turned out to be essential for understanding both
tumor-host interactions and immune mechanisms [26]. Unfortunately, there is still a limited
panel of murine lung cancer cell lines that can spontaneously form tumors in immunocom-
petent mice [27]. The development and validation of relevant immunocompetent syngeneic
models for lung cancer will be a long process.

(c) Genetically engineered mouse models (GEMMs)

GEMMS were designed to approach genetic characteristics of human tumors that
cannot be reflected in xenograft models, allowing disease modeling in immunocompetent
environments. They are inducible models, enabling either overexpression, shutoff or
functional replacement of selected genes of interest [17]. Lung cancer GEMMs targeting
oncogenic drivers, such as KRAS or EGFR, are available for assessing response to targeted
therapies, and discovering new pathways implicated in malignancy [28]. Resistant models
to EGFR inhibitors were also reported [29]. A major hurdle in their development is that
the establishment of GEMMs is rather expensive and long. Furthermore, validation of
experimental procedures is important, as evolution of GEMMs might be highly variable
within a cohort. Last, but not least, tumors with low malignancy may fail to recapitulate
the tumor–host interactions in the course of cancer progression.

3. Limits of Current Preclinical Models in Lung Cancer Research

Current preclinical models fail to effectively mimic human responses [30]. These
limitations, that impact both basic understanding of human tumor biology, as well as
drug development processes, are summarized in Table 1. Major problems are: (i) murine
stromal components replacing their human counterparts, (ii) the lack of immune system in
most models, and (iii) the lack of the many interactions that characterize a fully functional
TME [31]. Interestingly, the recent progress in 3D cultures of human cancer cells might help
to overcome these limitations.
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Table 1. Advantages and limits of the main preclinical lung cancer models.

Technologies Advantages Limits References

In vitro Cancer cell lines

Pure population of
tumor cells
Replicative ability
Large diversity of
genomic backgrounds

- Clonal cells poorly reflect the
patients’ primary tissue

- Genomic instability
- Absence of stromal, endothelial,

and immune cells

[17–20]

In vivo

PDXs Closer to patients’
primary tissues

- Genetic heterogeneity and
epigenomic instability

- Lack of TME components
- Immunodeficiency
- Variable implantation, instability

[17,22–25]

Syngeneic models Functional immune
system

- Poor clinical prediction
- Tedious process [27]

GEMMs
Functional immune
system
Inducible model

- Long process
- Low malignancy potential because

of the long latency period
[17,28,29]

Interestingly, the recent progress in 3D cultures of human cancer cells might help to
overcome these limitations. Numerous advantages have been reported compared with
regular preclinical models, recapitulating complex structural features of natural tumors,
and making them more predictive of patients’ individual responses. They also retain
cancer general features such as hypoxia or necrotic domains, or substructures of drug
resistant cells [32]. The 3D tumor models directly benefit from the large R&D effort
in developing organoids and next-generation preclinical models, matching the ethical
standards associated with the 3R approach.

4. Tumoroids: A Next-Generation Preclinical Model

Table 2 highlights representative examples of recent progress in the field. Kim et al.
demonstrated that lung tumoroids can retain specific histological features of the primary
tumor, as well as spontaneous TP53 and EGFR mutations [24]. The closely related con-
cept “tumor-like organoids”, in other words, tumoroids, has spread to numerous laborato-
ries [24,33–37]. All the 3D models cited use primary cells as starting material, with the aim of
representing heterogeneity inter-patients, to better understand patient-specific drug responses.

Among these different 3D models of lung cancer, we can observe a discrepancy in
the definitions, that may lead to misunderstanding between the terms of “spheroids”,
“organoids” and “tumoroids”. Spheroids are a monotypic cell system that concentrate
more in structure than functionality. They retain less of the tissue architecture, compared
with organoids, that represents the functionality of a healthy organ [46,47]. Similar to
organoids, which are 3D self-organized cultures of organ-derived cells recapitulating major
physiological functions, tumoroids are functional surrogates of native tumors. Derived
from patients’ tumoral tissues, they have become widely used in understanding molecular
pathways of carcinogenesis, in drug development and personalized medicine [35,47]. The
nomenclature of the 3D models should be harmonized, and to make this clearer, we will
refer to “Patient-derived tumoroids” for tumoral cells derived from patients that structurally
and functionally represent the pathology.

Nevertheless, some limitations can be noted, including the lack of stromal and immune
cells in the TME. The development of a relevant model for immuno-oncology is still
needed [48].
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Table 2. Current lung organoid/tumoroid models.

Primary Tumor
Histology, (Mutations) * Technology Name Culture Time Applications Ref.

NS Patient-derived tumor
spheroid (PDS) 120 days

Mechanistic studies
Resistant models
Drug screening

[38]

ADK, SCC, LCC Lung cancer organoids >1 year Drug screening [39]

ADK, SCC, LCC Patient-derived lung cancer
organoids >6 months

Patient-specific drugs screening
Living biobank as support to
xenograft model

[24]

ADK, SCC NSCLC organoids 3 months Drug screening [37]
ADK, SCC NSCLC
(EGFR, KRAS)

Patient-derived organoids
models (PDOs) NS Genomic analyses

Production of treatment response [40]

NSCLC (EGFR, KRAS) Patient lung-derived
tumoroids (PLDTs) NS Drug screening [41]

ADK, SCC, LCC, NSCLC Lung cancer organoids NS Personalized medicine [36]

NS Patient-derived organoids
(PDOs) 2–3 months Drug screening

Comparative analysis [42]

ADK Lung ADK (LADC)-derived
organoid model >50–200 days

Transcriptome analysis
Biomarkers discovery
Drug screening
Living biobank

[35]

ADK and SCC Lung cancer organoids 6 days Drug screening [43]
ADK and SCC primary
or metastatic NSCLC

Patient-derived tumoroids
(PDTs) >13 months Generation of cell lines [44]

ADK Patient-derived tumoroids
(PDTs) 4 days

Mimic the tumor vascular network
PDTs ready to use in microfluidic
device for drug screening

[45]

* ADK: adenocarcinoma; SCC: squamous cell carcinoma; LCC: large cell carcinoma, NS: non specified.

5. Towards the Optimization of Lung Tumoroids

Several teams, including ours, have developed cancer models based on patient-derived
tumoroid, and incorporating relevant healthy cells (fibroblasts, macrophages) known to
contribute to the overall function of the tumor. Figure 2 provides an example of such a
model where lung tumoroids are combined with CAFs. The patient-derived material is
cultured within 1 week after biopsy or surgery, in order to fit with the delay of 6 weeks
usually associated with the therapeutic decision.

In a representative example, the lung tumoroid very well reproduced the histological
features of the primary tumor, an acinous adenocarcinoma (Figure 3). Anatomopathological
analysis was positive staining for thyroid transcription factor 1 (TTF-1) and negative for p40,
two markers regularly used to distinguish adenocarcinoma from squamous cell carcinoma.
TTF-1 and Ki-67 staining confirmed the proliferative character of the tumoral cells. Mucin-1
(MUC-1) and cytokeratin-7 (CK-7) were also present in lung epithelia and alveoli. CK-7 was
expressed in 94–100% of lung adenocarcinoma [49]. After 1 week of culture, we observed
enrichment in immune cells. This opens the door to immunophenotypic analysis, and
immunopharmacological studies.
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Figure 2. Example of NSCLC tumoroid model and its applications. Tumor samples were obtained
from NHC (Nouvel Hôpital Civil) in Strasbourg, France. Washing and enzymatic digestion were
performed within 1–2 h after resection. Tumoral cells were centrifuged, and other cell types, such
as cancer-associated fibroblasts (CAFs) were added to reconstitute the TME complexity. Tumor-
oids were grown in a final volume of 200 µL in ultra-low attachment 96-well plates, forming after
5 days of incubation at 37 ◦C. This tumoroid model is aimed at being inserted into a microfluidic
chip to overcome the limit of the static 3D organoid model. Drug toxicity and efficacy assessment
are facilitated to select the best treatment opportunity for each individual patient. Created with
BioRender.com.
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Figure 3. Immunohistochemical features of a patient-derived tumoroid and matched tissue. Patient
2OT 360 suffered from an advanced adenocarcinoma. Scale bar 100 µm.

6. Application to Drug Discovery, Screening, and Study of Mode of Action

The use of tumoroids is expanding, and their utility for basic research and early steps
of drug development has been recognized. They have demonstrated their ability to recapit-
ulate the histology and genetic characteristics of the primary tumor [24]. Li et al. established
a biobank of PDOs of EGFR-mutated tumoroids for the assessment of targeted therapies. In
another example, Zhang et al. reported that cisplatin was less effective in PDOs generated
from NSCLC tissues than from cell lines, thus demonstrating that patient-derived material
should be preferred and can inform on important resistance mechanisms [38]. Interpatient
heterogeneity is another important parameter to take into account during drug develop-
ment. In a study comparing two patients that harbored the same EGFR p.L858R mutations,
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and naïve to any prior treatment, Kim et al. demonstrated that erlotinib, a tyrosine kinase
inhibitor, acted differently. The resistant patient displayed amplification of c-Met protein
and was thus eligible to crizotinib [24]. This example shows that mutational profiling ben-
efits from complementary experimental procedure. Predictive drug assessment involves
the use of an in vitro model with well-known drugs in order to model clinical responses,
and they are now available for large screening campaigns. Li et al. screened a large panel
of 12 anticancer drugs in their model of lung adenocarcinoma organoids, and showed a
large heterogeneity of measurable responses [35]. Tumoroids will also constitute a good
model for testing new treatment perspectives such as photothermal therapy based on near-
infrared irradiation [50,51]. Thus, the use of patient-derived tumoroids has demonstrated
success in predicting patients’ responses and constitute physiologically relevant oncology
models for drug testing and drug discovery [52].

Omics technologies are now standard approaches to study patient molecular hetero-
geneity for the purpose of precision medicine [53]. Tumoroid technologies successfully
combine with omic analysis. For instance, Xu et al. used proteomic to decipher drug
resistance mechanisms in a human metastatic lung cancer-derived cell line cultured on
a multi-organ microfluidic chip. The cell viability assay confirmed that metastatic cells
presented acquired resistance to chemotherapy and targeted therapies, and omic analysis
established this was due to an increase in DNA replication and glutathione metabolism [54].
Li et al. developed a patient-derived tumoroid assay for drug screening and used whole
exome sequencing to explain the responses to therapies; in particular to afatinib for EGFR-
mutated patients [35,55]. Peng et al. used transcriptomics to compare primary tissues of
squamous carcinoma or adenocarcinoma to their corresponding tumoroids. Tumoroid
models displayed a higher transcriptional accuracy compared with PDXs or cancer cell lines.
This reliability was attributed to the 3D structures and spontaneous self-organization [56].
Ma et al. explored the potential of LUAD and LUSC organoids with the use of transcrip-
tomic analysis for the identification of genes implicated in NSCLC tumorigenesis process.
Transcriptomic analyses were performed both on tumoral tissue and normal tissue, and
also on matching tumoral and healthy organoids. They constitute an interesting study
where they discovered the expression of three genes (CDK1, CCNB2 and CDC25A) that
may predict a poor prognosis in an adenocarcinoma patient [57]. Furthermore, their finding
on the CDK1 was supported by Wang et al. who found its implication in lung cancer
progression and development. Similarly, Wang et al. studied the CCNB2 gene by knocking
it down and observed an inhibition of tumoral growth in some adenocarcinoma cell lines
(2D cultures) [58].

7. Modelling the Tumor Microenvironment (TME)

TME is implicated in tumorigenesis and tumor progression, and has a strong influence
on drug response, either positively or negatively. It might explain some difference of drug
sensitivity usually observed between models [59]. Overall, TME controls immunocompe-
tence, as nicely illustrated by Finnberg et al., in their study comparing tumor-infiltered
immune cells and blood immune cells. An increased proportion of myeloid-derived sup-
pressor cells (mDSCs) and a decreased proportion of NK cells and monocytes in a tumor
site are hallmarks of an immunosuppressive microenvironment that would not respond
to immunotherapy [60]. A tumor’s interactions with the immune cells as illustrated in
Figure 4 shows their influence toward lung cancer progression [61].

The introduction of immune-checkpoint inhibitors (ICIs) targeting programmed death
protein (PD-1) and its ligand (PD-L1) or cytotoxic lymphocyte antigen 4 (CTLA-4) has
improved the overall survival of advanced NSCLC patients. However, it should be kept in
mind that only 20% of patients are responders to ICIs in advanced NSCLC, and mechanisms
of resistance are not yet fully elucidated [62,63]. Several ICIs have been approved since
2015 for advanced NSCLC patients, but still, adverse effects or non-responder profiles are
observed (Table 3). To understand patients’ heterogeneity that are observed at the clinical
level, the format of tumoroids seems particularly relevant for modelling the immune cells
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of the TME. This kind of model will help to understand how tumor and immune cells
contribute to therapies’ responses [64,65].
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Table 3. ICIs approved and on ongoing clinical evaluation for advanced NSCLC patients.

Drug Target(S) Indications FDA Approval Ref.

Pembrolizumab
KEYTRUDA® PD-1

• First-line systemic therapy for NSCLC patients with
PD-L1 expression > 50% and without EGFR or ALK
mutations

• Second-line advanced stage NSCLC after progression
on first-line chemotherapy (PD-L1 > 1%)

• First-line for metastatic non-squamous NSCLC in
combination with pemetrexed and carboplatin
(regardless of PD-L1 expression)

2015

2015

2017

[66]

[67]

Nivolumab
OPDIVO® PD-1

• Advanced squamous and non-squamous NSCLC as
second-line systemic therapy after progression on
first-line chemotherapy (regardless of PD-L1
expression)

• First-line treatment for metastatic or recurrent NSCLC
without EGFR or ALK mutations, in combination with
Ipilimumab YERVOY® (anti CTLA-4) and 2 cycles of
platinum-doublet chemotherapy

2015

2020

[68]

[69]

Durvalumab
IMFINZI® PD-L1 Unresectable stage III NSCLC patients that have not

progressed after chemoradiation therapy 2018 [70]

Atezolizumab
TECENTRIQv PD-L1 First-line treatment in metastatic NSCLC with PD-L1 > 50% 2020 [71]

Cemiplimab-
rwlcLIBTAYO® PD-1

First-line treatment in locally or metastatic advanced stage
NSCLC (no eligible to surgical resection nor definitive
chemoradiation) with PD-L1 > 50%

2021 [72]
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Thus, an autologous immune cell population in the tumoroid model will facilitate the
identification of patients who are likely to develop primary or acquired resistance. Primary
resistance is characterized by two parameters: (i) tumor-infiltrating lymphocytes (TILs)
and (ii) PD-L1 expression as defined in the Immunoscore. Galon et al. have pioneered
the assessment of CD3+ and CD8+ TILs in colorectal cancer. Following their studies, they
created the Immunoscore, which is defined by the density of CD3+ and CD8+ T cells
(low, intermediate or high) in tumor stroma, invasive margin and tumor center [73]. The
prognostic value of TILs was demonstrated in patients with colorectal cancer, but not yet
for lung cancer.

Dijkstra et al. developed a co-culture of autologous T cells with NSCLC organoids,
where they convincingly demonstrated specific tumor reactivity with the use of peripheral
cells, showing the possibility of recreating an important function of the TME, namely, anti-
gen presentation [74]. Very few studies have dealt with immune-competent organoids either
in NSCLC or any other therapeutic areas. In a co-culture of PDOs and THP-1, human mono-
cytes (that differentiate into macrophages after stimulation with IFNγ) were developed [75].
In this model, trastuzumab induced a THP1-dependent cytolysis on PDOs that was iden-
tified as an antibody-dependent cell-mediated cytotoxicity (ADCC). In the same study,
nivolumab and pembrolizumab were assessed in the presence of enteroxin-stimulated
PBMCs. Both ICIs induced a higher percent cytolysis. In another study, melanoma patient-
derived explants were co-cultured in the presence of CD8+ T cells, Tregs and macrophages,
to reproduce T-cell mediated tumor lysis and its regulation [76]. In order to test ICIs
in vitro, some studies analyzed whether PD-L1 expression in tumoroids correlated with
that measured in primary tumors [77].

An original approach to generate an immune-competent tumor model in vitro was
to connect a patient-derived tumoroid with an artificial lymph node containing mature
antigen-presenting cells. The tumoroid microsystem was shown to maintain functional
class I and class II cross-presentations of antigens enhanced with organoids produced
from a patient’s lymph nodes and was shown to maintain functional class I and class II
cross-presentations of antigens [78]. This was for melanoma; we are not aware of such
development in lung cancer research.

8. Looking for Biomarkers in Lung Cancer Therapeutic Management and Lung
Cancer Progression

The identification of molecular alterations in NSCLC has opened new therapeutic
options. About 60% of lung adenocarcinoma and 50–80% of squamous cell carcinoma
present a known oncogenic driver mutation [9]. Different types of mutations have been
identified, five amongst them being considered as clinically relevant biomarkers: EGFR,
ALK, MET, ROS-1 and KRAS. For NSCLC patients at advanced stages, the monitoring of PD-
L1 expression is also recommended by clinical guidelines to orient the treatment with either
anti-PD-1 or anti-PD-L1 [79]. The field of therapeutic biomarkers has greatly improved
but research is still required; most NSCLC patients do not present an actionable mutation
and high PD-L1 expression is only detected in 29.5% of them [80]. However, the predictive
value of PD-L1 % was brought into question as many patients with low expression of
PD-L1 were shown to respond to nivolumab in the Checkmate 063 clinical study. The FDA
approved pembrolizumab in first-line treatment for metastatic non-squamous NSCLC in
combination with pemetrexed and carboplatin regardless of PD-L1 expression [81,82].

Tumoroid technologies constitute interesting and affordable tools for biomarker dis-
covery in the era of precision medicine [34]. We previously referenced the work by Li
et al. who showed how patient-derived tumoroids allowed the identification of four genes
(RHOF, SLC16A3, ANXA10, CDHR1) as predictive biomarkers for survival [35].

9. Convergence of Technologies into Microfluidic Systems

Tumoroids have shown their maturity in conventional applications, but combination
with microfluidics allows dynamic control of the TME that further expands their poten-
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tial [83]. By providing a direct control of physical conditions (temperature, pH, nutrient
and oxygen supply and waste elimination), microfluidics greatly improves the culture
of tumoroids. Moreover, this controlled environment allows researchers to more closely
attain in vivo conditions, mimicking the venous and lymphatic draining. A combination of
sensors in the chip format enables more precise monitoring and environmental lymphatic
draining infusion and control. Hypoxia is an essential regulator of the TME function, pro-
moting tumor angiogenesis. Hypoxia involves activation of HIF-1α that induces secretion
of VEGF-A. Abnormal vasculature is a consequential damage that affects antitumor efficacy.
Indeed, homing of immunocompetent cells is hindered by the development of abnormal
vasculature. Thus, microfluidic systems could largely improve our understanding of im-
mune cells in the TME, and efficacy of immunotherapeutic candidates, compared with
static models based on co-culture of tumoroids and immune cells [84,85]. With microfluidic
chips, it is also possible to study the characteristics of tumor vasculature including tumor
angiogenesis and metastasis that are part of tumor physiopathology [86].

Responses to drugs largely differ between static conditions and fluidic conditions.
Yildiz-Ozturk et al. studied the effect of panaxatriol on 3D spheroids in static conditions ver-
sus fluidic conditions (applied flow rate was 2 µL/min) and they observed that panaxatriol
was more effective in fluidic systems. Microfluidic better mimics in vivo conditions and
will increase the predictivity of new potential drugs for NSCLC patients [87]. Microfluidics
offer a dynamic drug screening as described by Schuster et al.; real-time monitoring of the
drugs effect is possible with imagery, drugs’ exposure time can be controlled, continuous
flow or fixation of drugs’ pulses and combination drugs’ regimen can be applied (including
sequential regimen) [88].

Advanced tumoroid models can help immunotoxicology. As previously mentioned,
immune-related adverse events (irAEs) can occur in most patients under ICI treatment.
These irAEs can affect multiple organs systems (skin, digestive tract, liver, endocrine
gland, lung, thyroid, etc.) that are now well modeled in organoid technology. With the
implementation of these different model organs on-a-chip, their link with intratumoral
mechanisms can be approached. The development of multi-organs-on-chips to study ICI
toxicity represents a great solution, helping clinicians in therapeutic management [84].
These multi-organs-on-chips are obviously important in drug discovery, and provide
supplementary data for the development of safer and more efficient drugs [89].

Hassell et al. designed a chip by gathering elements from the TME, such as epithelial
cells, endothelial cells and two compartments reproducing mechanical breathing motions.
They could successfully analyze the functions of the T790M mutation responsible for
resistance to the third generation of tyrosine kinase inhibitors, which was not possible under
static culture conditions. The system also reproduces the reduction in IL-8 levels upon
TKI treatment, that was observed during clinical development, but never observed under
static culture conditions [90]. Ruppen et al. cultured primary lung tumor cells alone or in
co-culture with pericytes on-a-chip and found that pericytes formed a protective barrier
against cisplatin treatment [91]. These recent works support the value of microfluidics, and
tumoroid-on-chip technology to model resistance mechanism. From the perspective of
precision medicine, it offers the advantage of making maximum use of a patient’s sample
by combining different assays such as histology, imagery, cell-based assays, genomic,
transcriptomic and proteomic. Miniaturized systems allow smaller samples and multiplex
analysis, among others. The field of biosensing opens up detections of a large number of
biomarkers. A microfluidic chip integrated with a biosensor for the detection of cytokeratin
fragments from NSCLC in the order of 0.1 pg/mL to 100 ng/mL was developed by Feng
et al. to study cancer biomarkers for disease diagnosis and prognosis [92,93].

Microfluidics can help to decipher many interrogations concerning the lung cancer
physiopathology or the drugs’ assessment; these applications are summarized in Table 4.
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Table 4. Summary of integrative microfluidics systems in NSCLC.

Microfluidic Model Applications Ref.

Microfluidic device for lung cancer
organoids

Drug screening

	 Predictive modelling of chemotherapy response (cisplatin and
etoposide)

	 Presence of chemo-resistant cells in the inner core of organoids

[83]

Lung carcinoma spheroid based
microfluidic platform

Drug assessment of panaxatriol in fluidic conditions with a perfusion
function on cancer cells and healthy cells [87]

Human organ chip model

Recapitulation of human cancer with its specific microenvironment
Assessment of tyrosine kinase inhibitors’ (TKI) responses to physical cues
mimicking breathing motions

	 TKI resistance is modelled on a lung-cancer-on-a-chip with breathing
motions

[90]

Lung cancer cell spheroids in a perfused
microfluidic platform Cell viability assessment of chemotherapeutical drug [91]

Detection of cytokeratin 19 fragments Biomarkers study of diagnosis and prognosis [93]
Chip for study of lung cancer brain
metastasis Study metastasis [54]

Figure 5 summarizes this fast-evolving environment that will directly improve the rep-
resentativity of patient-derived tumoroids, and favor their use in pharmacology, toxicology,
and precision medicine.
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10. Discussion and Perspectives

We predict therapeutic innovation and precision medicine will be the main drivers of
the tumoroid technology. The attrition rate for anti-cancer drugs has been two to four times
higher than for other drugs in the period from 1979 to 2014 [94]. For NSCLC indication,
in particular, only 10 anticancer drugs were approved by the U.S. FDA compared with 25
in breast cancer indication, due to the clinical success of hormonotherapy. Therefore, to
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decrease this high attrition rate, being 92% for NSCLC drugs, the solution largely relies on
the progress and refinement of preclinical models, including tumoroids [95].

However, the field is still in its emergence phase, with many researchers developing
their own tumoroid prototypic models. This results in large variability among laboratories,
and for the various factors to consider: tumor sampling, culture conditions, co-culture
conditions, bioanalytical methods, quality control, etc.

As tumoroids become more widely recognized, standardization and harmonization of
the protocols for a validated procedure will help regulatory acceptance. Once standardized,
tumoroids and microfluidics models may undoubtedly find their place in all steps of drug
development, from target discovery, drug testing, polymorphism analysis, to predictive
toxicology [96].

We suggest that tumoroids and microfluidics models have a key role to play in the
transition from preclinical to clinical phases. Sura et al. highlighted the role of patholo-
gists in these next-generation models, as they already play an important role in animal
models [97]. Bioengineers, cell biologists, immunologists, physicists, and physicians are
also expected to work together to overcome the current challenges. In this first review,
which has focused on lung cancer and highlighting some pioneering studies, we aimed to
demonstrate the fast emergence of patient-derived tumoroids, and its natural integration
within the most innovative research technologies. The field has not reached its maturity,
with the best certainly yet to come.
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