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Abstract: Highly expressible bacteriorhodopsin (HEBR) is a light-triggered protein (optogenetic
protein) that has seven transmembrane regions with retinal bound as their chromophore to sense
light. HEBR has controllable photochemical properties and regulates activity on proton pumping. In
this study, we generated HEBR protein and incubated with lung cancer cell lines (A549 and H1299) to
evaluate if there was a growth-inhibitory effect with or without light illumination. The data revealed
that the HEBR protein suppressed cell proliferation and induced the G0/G1 cell cycle arrest without
light illumination. Moreover, the migration abilities of A549 and H1299 cells were reduced by ~17%
and ~31% after incubation with HEBR (40 µg/mL) for 4 h. The Snail-1 gene expression level of the
A549 cells was significantly downregulated by ~50% after the treatment of HEBR. In addition, HEBR
significantly inhibited the gene expression of Sox-2 and Oct-4 in H1299 cells. These results suggested
that the HEBR protein may inhibit cell proliferation and cell cycle progression of lung cancer cells,
reduce their migration activity, and suppress some stemness-related genes. These findings also
suggested the potential of HEBR protein to regulate the growth and migration of tumor cells, which
may offer the possibility for an anticancer drug.

Keywords: optogenetic protein; non-small cell lung cancer; cytotoxicity; proton pump; migration
ability

1. Introduction

The Halophilic archaea (haloarchaea) are grown in aerobic heterotrophs that dominate
hypersaline environments. Hypersaline conditions, such as salt lakes, salt ponds, and solar
saltern facilities, are usually exposed to strong sunlight, which leads to the higher salinity
than that of sea water [1,2]. To protect the damage from light energy and high salinity,
the haloarchaea generate a proton gradient system through the photo-reactive rhodopsin
proteins [3]. The first discovered microbial rhodopsins (M-Rho) are typically seven-pass
transmembrane helix region bound with retinal to absorb light energy for ion translocation
or phototaxis response [4,5]. The photochemical properties of ion-translocating rhodopsins
fall into several categories, such as the light-driven outward proton transport bacteri-
orhodopsin (BR) [4,6], the light-driven inward chloride transport halorhodopsin (HR) [7,8],
outward sodium transport (KR2) [9], and the nonselective cation channel channelrhodopsin
II (ChR2) [10,11].

Bacterial rhodopsin (BR), a highly stable light-driven proton pump, can excrete proton
out of the cell through light perception and regulate the ion balance of the cell [12,13]. In
the early stage, BR protein was mostly produced from the slow-growing extreme halophilic
microorganisms and few from genetically recombinant Escherichia coli (E. coli). However,
the low availability and high cost of BR protein limited its potential of bioengineering
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applications and commercialization. In a previous study, the high-yield, functional, and
thermally stable BR recombinant protein was successfully produced [14]. This photo-
sensitive membrane protein, named highly expressible bacteriorhodopsin (HEBR), was
generated in E. coli using a mutated bacteriorhodopsin (BR) from Haloarcula marismortui
(HmBRI/D94N) [15], and its structure and biochemical effects were thoroughly evalu-
ated [14,15]. This particular HEBR responded to light with an absorption wavelength at
532 nm (green light) by photocycle measurement and its capability of pumping proton
anions outward under light exposure [16]. According to our earlier study, the engineered
light-sensitive BR proteins can serve as a trigger to influence the mammalian neural stem
cells (NSCs) under light exposure [16]. Besides, another type of optogenetic protein, HR,
can hyperpolarize or inhibit action potentials during the period of after hyperpolarization
in neuron cells [17]. The light-activated proteins are frequently used to investigate the
regulation of neural activity in mammalian cells. However, there are only a few studies on
the effect of light-sensitive BR proteins on cancer cell behavior under light exposure.

Epithelial to mesenchymal transition (EMT) is an essential process during embryo-
genesis and organ development in which cells transit from epithelial cells to those with
the mesenchymal cells features [18,19]. EMT also plays a vital role in wound healing,
tissue repair, organ fibrosis, cancer progression, and metastases. The EMT process has been
shown to lead to loss of intercellular junctions, disrupt the epithelial polarity, and increase
cell motility [20,21]. During the process, the increased expression of mesenchymal cell
markers (e.g., vimentin, N-cadherin (N-cad), fibronectin) and the repression of epithelial
cell markers (e.g., E-cadherin (E-cad), claudins, occludins) have been observed [22,23]. The
EMT is also regulated by EMT-associated transcription factors such as Snail, Twist, and Zinc
Finger E-box Binding (EZB) family [24]. The downregulation of E-cadherin is controlled
by the transcriptional level by Snail protein [25]. Meanwhile, EMT confers metastatic and
cancer stem cell properties, such as Sox-2, Oct-4, and CD133 to cancer cells and is always
correlated with poor clinical outcomes for cancer patients with malignant transformation
stage [26,27]. Thus, anti-EMT resistance drugs or multidrug therapies could be considered
the prevention strategies for invasion and dissemination of tumor cells, to prevent the
malignant cell migration, repress the cancer stemness, and gain the effectiveness of more
classical chemotherapeutics.

Lung cancers are one of the most common carcinomas, which contain two main
types, namely, small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) [28].
Despite the advances of therapeutic treatment for tumor cells, the aggressiveness and
metastatic potential of NSCLC remain a challenging topic to be overcome [29,30]. Emerging
evidence suggests that the voltage-gated control is a check point of the cell cycle in cell
proliferation [31]. Hence, we hypothesize that artificial depolarization or hyperpolarization
might be used to discover novel mechanisms to control the cell cycle or proliferation of
lung cancer cells. In this study, we evaluated the potential in modulating cancer cell
proliferation, cell cycle, migration ability, and related gene expression by the photosensitive
HEBR associated with ion pumping after light exposure.

2. Results
2.1. HEBR Protein Suppresses the Cell Proliferation of A549 and H1299 Cells

Before light exposure to the HEBR-treated cells, we utilized immunofluorescent stain-
ing to confirm if the HEBR proteins could be delivered into A549 and H1299 cells, after
incubation for 24 h with the culture medium containing 20 µg/mL of HEBR proteins. The
data showed that HEBR proteins were obviously distributed on the cell membrane and
in the cytoplasm of the stained cells, indicated by red arrows in the magnified images
(Figure 1A). These data indicated that the effect of light stimulation on HEBR-treated cells
should be evaluated after 24 h of incubation to ensure that the HEBR protein had entered
cells. After light stimulation, the proliferation of the HEBR-treated cells was determined
by CCK-8 assay (Figure 1B). The data showed that the proliferation of A549 and H1299
cells decreased in a dose-dependent manner after treatment of HEBR protein with or
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without green-light illumination. As shown in Figure 1B, the viability of A549 cells could
be reduced below ~50% at the concentration of 40 µg/mL without the green-light exposure,
while the proliferation of H1299 cells remained above 50% under the same condition. At
the same time, a significantly decreased proliferation of H1299 cells was observed at the
HEBR concentration of 80 µg/mL. For HEBR-treated cells with green-light illumination,
the curve of A549 cells after treatment with HEBR protein was slightly different from
those without light exposure. The results revealed no significantly differences between the
green-light-illuminated or non-illuminated groups on either A549 or H1299 cells after the
treatment of HEBR protein.
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Figure 1. The effect of HEBR on the cell proliferation of A549 and H1299. (A) The distribution of HEBR protein expression
on cell membranes and in the cytoplasm. Immunofluorescent staining HEBR was incubated with the HEBR proteins
(20 µg/mL) on A549 or H1299 cells for 24 h. Immunofluorescence imaging of HEBR-his tag (green) counterstained with
nucleic Hoechst (blue), and then merged. The magnified image of the selected region is shown in the red box. The HEBR
proteins on cell membranes are demonstrated by red arrows. (B) The cell proliferation rate of A549 and H1299 after
treatment with HEBR protein for 48 h evaluated by CCK-8 assay. The data are expressed as the relative proliferation of cells.
The black bar represents the treatment of HEBR protein without green-light illumination, while the gray bar represents
the treatment of HEBR with green-light illumination. The proliferation percentage at different HEBR concentrations was
evaluated by GraphPad Prism 5 software.
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2.2. Cell Cycle Arrest in HEBR-Protein-Treated A549 Cells

To reveal the anti-proliferative mechanism of the HEBR protein, we assessed the
effect of HEBR treatment on the cell cycle progression. Since the HEBR proteins had
more growth-inhibitory effect on A549 cells than on H1299 cells. The A549 cells were
selected for further investigation. A two-step cell cycle assay was carried out to quantify
the distribution of DNA contents in different cell cycle stages under the concentration
of 20 µg/mL HEBR in combination with (or without) green-light illumination on A549
(Figure 2A). Data showed the cell cycle G0/G1 phase arrest induced by the treatment of
HEBR on A549 cells (Figure 2B). Meanwhile, no apparent differences between the green-
light-illuminated or non-illuminated groups were observed in different cell cycle stages
on either HEBR-treated or non-treated cells. The HEBR protein was found to promote
high DNA contents at G0/G1 phase of the cell cycle with or without green-light exposure,
indicating that A549 cells treated with HEBR protein induced cell cycle arrest at G0/G1
phase. These data suggested that HEBR protein could have growth-inhibitory effects on
lung cancer cells without green-light exposure.

2.3. Scratch Assay on HEBR-Treated Cells

Migration assay is usually used in discovery of antitumor agents, as the agents that
inhibit cell migration ability are potential anti-metastatic drugs. In this study, the scratch
test was utilized to measure the migration ability of A549 and H1299 cells after treatment
of HEBR protein (20 µg/mL or 40 µg/mL) without green-light illumination (Figure 3A)
for a period of 6 h. The cellular migration of each HEBR-treated cells was quantified as
a percentage and represented by bar diagrams at 0 h, 1 h, 2 h, and 4 h (Figure 3B). The
HEBR protein did not reduce the migration ability of A549 cells within 6 h. The A549 cells
treated with 40 µg/mL HEBR protein showed slightly decreased cell migration compared
to A549 cells treated with 20 µg/mL HEBR protein within the 4 h of observation. HEBR
protein at 20 µg/mL demonstrated a low inhibitory effect on the cell migration ability of
H1299 and A549. Notably, the migration rate of H1299 cells was reduced to about 20%
after HEBR treatment of 40 µg/mL for 4 h compare to un-treated cells (Figure 3B). The data
showed that high concentrations of HEBR protein significantly inhibited the migration of
H1299 cells rather than that of A549 cells, and the effect was clearly observed after 4 h of
incubation time.

2.4. Transwell Assay of HEBR Protein on A549 and H1299 Cells

Since HEBR protein of 40 µg/mL showed a strong inhibitory effect on the migration of
H1299 cells in the scratch assay, we further utilized a transwell migration assay to confirm
the inhibitory effects on the cell migration of A549 and H1299 after treatment with HEBR
(40 µg/mL) for 24 h (Figure 4). The results revealed that HEBR protein reduced the number
of each type of lung cancer cells to pass through the transwell membrane compared to
the non-treated cells (Figure 4A). It was evident that after HEBR protein treatment, H1299
cells had a lower number of migrated cells than A549 cells (Figure 4B). The transwell assay
again proved that the dose of 40 µg/mL HEBR had a significantly inhibitory effect on the
migration of H1299 cells.
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Figure 2. The induction of G0/G1 cell cycle arrest by HEBR. (A) The two-step cell cycle assay was used to detect the
cell cycle distribution in A549. Cells were treated with HEBR protein (20 µg/mL) for 24 h with and without green-light
illumination. Cells in different cell cycle stages were demarcated by the markers. (B) The markers of different cell cycle
stages were transformed into histograms by GraphPad Prism 5 software. NL, no light illumination; GL, with green-light
illumination. Asterisks indicate statistically significant differences, * p ≤ 0.05, *** p ≤ 0.001, **** p ≤ 0.0001.
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Figure 3. Inhibition of cell migration by HEBR for A549 and H1299 cells. To determine the effect of
HEBR treatment on cell migration, a confluent monolayer of A549 and H1299 cells was scratched
and then treated with HEBR (20 µg/mL or 40 µg/mL). After 6 h, the scratched area was observed,
demonstrating subsided migration ability upon the treatment of HEBR. (A) The migration rate of
A549 and H1299 treated with HEBR protein were recorded at 0 h, 1 h, 2 h, 4 h, and 6 h. (B) The area of
migrated cells to the wound sides was evaluated. The percentage of cellular migration was calculated
using the following formula: [(Area 0 h − Area determine h)/Area 0 h] × 100. The percentage of
migration ability was calculated by GraphPad Prism 5 software. Data are presented as means ± SD.
(n = 5); asterisks indicate statistically significant differences, * p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 0.0001.
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Figure 4. Inhibition of cell invasion by HEBR protein. (A) Transwell assay for the ability of A549 and
H1299 invasion was conducted after treatment with HEBR (40 µg/mL) for 24 h. The number of A549
and H1299 cells invading through the transwell membrane significantly decreased upon the HEBR
treatment. (B) The cell invasion ability was evaluated by counting cells per field using GraphPad
Prism 5 software. Data are presented as means ± SD (n = 3~4). Asterisks indicate statistically
significant differences, **** p ≤ 0.0001.

2.5. Gene Expression of A549 and H1299 Cells after Treatment with HEBR Protein

The mRNA expression levels of EMT genes (Snail-1, Twist-1, E-cad, and N-cad) and
stemness genes (Sox-2, Oct-4, and CD133) for the illuminated or non-illuminated groups of
HEBR-treated cells were quantified by qRT-PCR, and the results are shown in Figure 5. The
gene expression level of Snail-1 for HEBR-protein-treated A549 cells was decreased either
with or without green-light illumination (Figure 5). In contrast, the Twist-1 expression in
A549 cells after treatment of HEBR protein was upregulated when compared with non-
treated A549 cells. Meanwhile, HEBR protein did not significantly influence the expression
levels of E-cad and N-cad for A549 cells under different conditions of light exposure.
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Figure 5. Gene expression of EMT HEBR treatment in A549 and H1299 cells. The cells were treated
with HEBR proteins for 72 h with and without green-light illumination. The gene expression levels
of markers for EMT, including Snail-1, Twist-1, E-cad, and N-cad, were analyzed for A549 or H1299
cells by qRT-PCR and calculated by GraphPad Prism 5 software. The expression of each marker was
normalized to that of GAPDH in each group and then presented as the relative expression level to
the mock group. L: treated with green-light illumination. Asterisks indicate statistically significant
differences, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.

The expression of stemness-related genes in A549 and H1299 cells after treatment with
HEBR protein with or without green-light exposure is displayed in Figure 6. The expression
levels of Oct-4 did not display obvious difference between HEBR-treated and non-treated
A549 cells. In addition, A549 cells in the non-treated groups expressed more Sox-2 gene
than those in HEBR-treated groups. However, the expression level of CD133 in A549
cells was significantly increased in the HEBR-treated groups than that in the non-treated
groups. The results showed that the HEBR protein significantly upregulated the expression
of both Sox-2 and Oct-4 genes in H1299 cells, while increased the expression of CD133
(Figure 6). The expression of these stemness-related genes had no dramatic difference
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between green-light-illuminated groups and non-illuminated groups for both A549 and
H1299 cells. These findings were consistent with the results of cell viability.
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Figure 6. Gene expression of stemness after HEBR treatment in A549 and H1299 cells. The cells were treated with HEBR
proteins for 72 h with and without green-light illumination. The gene expression levels of stemness markers included
Sox-2, Oct-4, and CD133, for A549 and H1299, respectively. The expression of each marker was normalized to that of
GAPDH in each group and then presented as the relative expression level to the mock group and analyzed by GraphPad
Prism 5 software. L: treated with green-light illumination. Asterisks indicate statistically significant differences, * p ≤ 0.05,
** p ≤ 0.01, **** p ≤ 0.0001.

3. Discussion

The HEBR protein is a light-trigger proton pump that has optogenetic effects to
regulate the function of ion flow artificially, which has been used to investigate new photo-
modulable treatments via specific lighting stimulation on neural cells in our previous
reports [16,32,33]. Modulation of light-triggered proteins has been reported to develop
novel treatments based on light-driven control of neural activity in many optogenetic
experiments [34]. For instance, the strategy of optogenetic activation increased the possible
effects on serotonin nerve conduction to retrieve lost memory in Alzheimer’s disease
through proton inflow [35]. Artificial manipulation of neural activity could induce the
activation of glutamate receptors through action potentials for improving recognition
memory in mouse models [36]. However, a few studies have developed photoactivatable
cancer drug based on the function of ion channels under light control [37]. In many recent
studies, optical control of intracellular signals was frequently used to design cancer drugs
via regulation of signaling pathways [38–40]. Therefore, controllable ion channels might be
an alternative optogenetic tool to develop antitumor drugs. In the present study, we used
different concentrations of HEBR protein to evaluate the effect on lung cancer cells under
different light-illuminated conditions. After treatment with proton ion pump proteins on
A549 cells without light illumination, significant effects of growth inhibition on cancer cells
by HEBR protein of the concentration of 40 µg/mL were observed. This is different from
a previous study which demonstrated that HEBR-plasmid-transfected cells could pump
out proton ion after green-light illumination [33]. No dramatic difference effects in the
proliferation of A549 and H1299 cells was observed between the green-light group and
the no-light group after the application of HEBR proteins. Thus, the effects of light-driven
proton-pump activity may not play a major role in reducing the cell growth of the two
types of cancer cells examined in this study. In addition, we noticed that the growth
of human fibroblasts was not strongly affected by the treatment of HEBR protein under
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different conditions of light exposure (Figure S1), indicating that normal cells experienced
less cytotoxic effects than the two types of cancer cells upon HEBR treatment.

Since the HEBR protein was more cytotoxic to A549 versus H1299 cells, we further
investigated if the cell death of A549 was induced by HEBR-protein treatment under green-
light stimulation. The cell cycle distribution showed that 20 µg/mL HEBR protein could
induce cell cycle arrest at G0/G1 stage for A549 cells. However, there was no significant
difference between light-illuminated and non-illuminated A549 cells after the treatment of
20 µg/mL HEBR protein for 24 h. This finding was consistent with the proliferation assay
of A549 cells after the treatment of HEBR protein under different green-light-exposure
conditions. These observations again suggested that the HEBR protein could cause growth-
inhibitory effects on A549 cells without activation of the proton pump.

The metastasis of brain and bone is the leading cause of mortality in patients with lung
cancer [41]. Wound healing and transwell assays are commonly used to quantify cellular
migration ability. In the present study, we showed that HEBR effectively inhibited the
migration of A549 and H1299 cells (Figures 3 and 4). Besides, the epithelial-mesenchymal
transition (EMT) program is a variable and dynamic multi-step process that occurs prior to
tumor cell metastasis. Cancer cell metastasis relies on the migratory abilities of mesenchy-
mal cells, which allow their entry into the surrounding blood vessels and lymph channels
for distant metastasis [42]. In this study, HEBR significantly inhibited the migration ability
of A549 and H1299 cells (Figures 3 and 4), which suggested that HEBR may prevent cell
metastasis by inhibiting the EMT program of lung cancer cells. When the EMT process
starts, Snail is upregulated and E-cad is downregulated, both of which promote the shift of
epithelial cells to a mesenchymal phenotype to increase tumor metastasis ability [43]. The
HEBR treatment significantly upregulated the Twist-1 gene expression levels but down-
regulated the Snail-1 gene expression levels of A549 cells, which led to the decrease in cell
migration ability. Meanwhile, the N-cad gene expression levels were downregulated, but
the Snail-1 gene expression levels were upregulated in H1299 cells after the treatment of
HEBR. These results suggested that HEBR might inhibit the EMT of A549 and H1299 cells
by a different signaling pathway.

Indeed, the application of HEBR significantly reduced Sox-2 gene expression in A549
and H1299 cells. Many reports have suggested that SOX-2 plays an important role in cancer
and cancer stem cells [44]. The downregulation of transcription factor SOX-2 in cancer stem
cells (CSCs) was correlated with the suppression of lung cancer growth and metastasis
behavior [45]. The SOX-2 knockdown in murine lung carcinoma cells inhibited tumor
growth and metastases in C57BL/6 mice in vivo [45]. In gastric tumor cells, Sox-2 and
Oct-4 play main roles in the proliferation, migration, invasion, and tumorigenicity [46]. The
overexpression of Oct-4 and Sox-2 is linked to a greater migration ability [46]. In the current
study, the gene expression of Sox-2 and Oct-4 decreased the HEBR-treated lung cancer cells,
especially for H1299 cells (Figure 5). This result was consistent with the weaker migration
ability observed in HEBR-treated H1299 cells compared with A549 cells (Figures 3 and 4).

In summary, we showed that HEBR protein significantly inhibited the proliferation
and migration of lung cancer cells in vitro regardless of whether the green light was
employed. The phenomenon was positively correlated with the suppression of stemness of
CSCs and EMT activity of the lung cancer cells.

4. Materials and Methods
4.1. Cell Culture

Human epithelial lung cancer cell lines (A549 and H1299) were cultured in the Roswell
Park Memorial Institute medium (RPMI 1640, Gibco, Paisley, UK). Human dermal fibrob-
lasts were isolated from the human foreskin (IRB#100-05-251) [32,47], which was main-
tained in the high-glucose Dulbecco’s modified Eagle medium (DMEM, Gibco, Grand
Island, NY, USA). The two abovementioned culture media contained 10% fetal bovine
serum (FBS, Gibco, Grand Island, NY, USA) and 1% Antibiotic-Antimycotic (Gibco, Grand
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Island, NY, USA). The cultured cells were incubated under the condition of 5% CO2 at a
stable temperature of 37 ◦C.

4.2. Preparation of Purified HEBR Protein

HEBR-protein expression was established by the Escherichia coli (E. coli) system ac-
cording to previous literature [15,16]. E. coli strain C43 (DE3) was used as the host cell to
prepare the protein. The protein concentration was calculated by UV-VIS spectroscopy.

4.3. Immunostaining for HEBR Protein in A549 and H1299 Cells

Immunostaining assay was performed by following the procedures previously de-
scribed [16]. Briefly, 7500 cells were seeded on each well of a 24-well plate overnight. The
cells were then treated with HEBR protein (20 µg/mL) for 24 h. After incubation, the cells
were washed with PBS and fixed with 4% paraformaldehyde (PFA) for 15 min. The cells
were rinsed with PBS and blocked with 1% bovine serum albumin (BSA) for 1 h. Cells
were then incubated with 6X His tag antibody (GTX628914, GeneTex, Hsinchu, Taiwan) at
4 ◦C overnight, followed by treatment of Alexa Fluor 488 anti-Rabbit (ab150080) secondary
polyclonal antibody. Cell nuclei were counterstained with Hoechst 33258. After staining,
the coverslip was mounted in Fluoro-Gel (Electron Microscopy Sciences, Hatfield, PA,
USA), and the fluorescence was observed by a fluorescence microscope (Nikon EClipse 80i,
Tokyo, Japan).

4.4. Cell Viability Analysis

The cell viability of A549 or H1299 treated with HEBR protein was further analyzed by
the Cell Counting Kit-8 (Dojindo, Kumamoto, Japan) assay according to the manufacturer’s
instructions [16]. A549 or H1299 cells with a density of 1500 cells/well were seeded
into 96-well culture plates for 24 h and incubated with several concentrations of HEBR
protein in a culture RPMI medium. After incubation for 24 h, the cells were stimulated
with (or without) the green (525 nm)-light-emitting diode (LED) for three times per day.
Each illumination lasted for 10 s, and the exposure distance between the light source and
cultured cell lines was ~2 cm. After incubation for 48 h, the medium was switched to
the culture medium with 100 µL of the CCK-8 reagent to obtain orange-colored solution.
After incubation for 60 min, absorbance at the wavelength of 450 nm was detected. The
percentage of cell viability was measured as the percentage of viable cells relative to
untreated cells.

4.5. Cell Cycle

The cell cycle of A549 was performed as previously described [16]. Briefly, A549 cells
were cultured under the serum-deprived RPMI medium for 18 h to synchronize the cell
cycle before the HEBR protein treatment. The cells were incubated to the complete culture
RPMI medium containing 40 µg/mL HEBR proteins for 24 h. The profile of cell cycle of
A549 was determined by a two-step cell cycle assay (Chemometec, Allerød, Denmark) using
the NucleoCounter® NC-3000TM instrument according to the manufacturer’s instructions.

4.6. Migration Assay

The migration ability of A549 or H1299 after the treatment treated of HEBR protein
was evaluated by the scratch-migration assay and transwell migration assay as previously
described [48,49]. For the scratch-migration assay, the cells (2.5 × 106 cells/well) were
seeded in 24-well plates for 24 h and a gap region was made using a sterile 200 µL pipette tip
across the cell monolayer (>90% confluent). HEBR proteins of two different concentrations
were incubated with the cells and the gap region was tracked by a time-lapse recording
system (Real Time Cell Culture Monitoring (CCM) System, Astec, Fukuoka, Japan ) in RPMI
medium. A series of the scratching images was captured from 0 h to 6 h. Quantification of
migration rate was carried out using the MRI wound healing tool of NIH Image J software.
For transwell migration assay, 4 × 105 cells were seeded on each 24 mm-diameter transwell
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membrane (0.8 µm pore size, Corning, NY, USA) with 1.5 mL serum-free RPMI medium in
the upper chamber. In the lower chamber, 2 mL basal culture RPMI medium with 10% FBS
was used as a chemoattractant for cells to promote cell migration. Cells were treated with
HEBR (20 µg/mL) and incubated for 24 h. The cells that did not migrate were removed by
a cotton swab and stained with crystal violet (0.2%). The images of migrated cells were
captured under an inverted microscope and the quantification of the cell number was
conducted by the cell-counter tool of Image J software.

4.7. RNA Extraction and Quantitative Real-Time Reverse Transcription Polymerase Chain
Reaction (qRT-PCR) Analysis

The experiments were carried out as previously described [16]. The total RNA of
the A549 or H1299 cells was isolated using the Trizol reagent (Invitrogen, Carlsbad, CA,
USA) after the treatment of the HEBR (40 µg/mL) with or without light illumination
for 48 h. The RNA strands were extracted by RevertAid™ First Strand cDNA Synthesis
Kit (Thermo Scientific, Vilnius, Lithuania) to synthesize complementary DNA (cDNA).
The gene expression level was labeled by the KAPA SYBR green fast qPCR Master Mix
Kit (KAPA Biosystems, Cape Town, South Africa) and performed on a StepOnePlus™
Real-Time PCR System (Applied Biosystems, Singapore). The EMT and stemness gene-
expression markers such as Snail-1, Twist-1, E-cad, N-cad, Sox-2, Oct-4, and CD133 were
evaluated after the treatment of HEBR protein. The expression levels were normalized by
endogenous housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH).

4.8. Statistical Analyses

The experimental data were displayed as the mean ± standard deviation (SD). Each
quantitative experiment was independently performed three times for each group. A
one-way ANOVA test was conducted to examine the statistical difference for two or more
experimental groups, using GraphPad Prism 5 software.

5. Conclusions

This study demonstrated that the optogenetic HEBR protein significantly influenced
lung cancer cell proliferation and cell cycle progression, reduced migration activity, and
suppressed some stemness-related genes. The administration of HEBR has a substantially
different effect on cancer cells compared to normal cells, which could serve as a novel
therapeutic strategy for the treatment of lung cancer metastasis. In the current study, we
obtained the optimal concentration range of HEBR to repress the migration activity of
cancer cells. In the future, we will use the mice model and combine multidrug treatment to
further investigate the effect of HEBR on the progression and migration behavior of tumor.
Meanwhile, Sox-2 and Oct-4 are well known to be involved in maintaining the stemness,
cancer progression, and the resistance towards cancer therapies of cancer cells. Therefore,
HEBR protein may be combined with cancer drugs to suppress the Sox-2 and Oct-4 gene
expression of lung cancer stem cells. Taken together, we propose that the HEBR protein
may be useful in cancer therapeutics, and the control mechanism of cancer cell migration
ability may be independent of light exposure.

Supplementary Materials: Figure S1: Cell viability of human fibroblasts after treatment with HEBR
protein for 72 h.
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