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The cell types that trigger the primary pathology in many brain diseases remain

largely unknown. One route to understanding the primary pathological cell type for a

particular disease is to identify the cells expressing susceptibility genes. Although this

is straightforward for monogenic conditions where the causative mutation may alter

expression of a cell type specific marker, methods are required for the common polygenic

disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE)

method that uses single cell transcriptomes to generate the probability distribution

associated with a gene list having an average level of expression within a cell type.

Following validation, we applied EWCE to human genetic data from cases of epilepsy,

Schizophrenia, Autism, Intellectual Disability, Alzheimer’s disease, Multiple Sclerosis and

anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer’s and

Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism

and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range

of cell-types, with the strongest enrichment in interneurons. We hypothesized that the

primary cell type pathology could trigger secondary changes in other cell types and these

could be detected by applying EWCE to transcriptome data from diseased tissue. In

Autism, Schizophrenia and Alzheimer’s disease we find evidence of pathological changes

in all of the major brain cell types. These findings give novel insight into the cellular origins

and progression in common brain disorders. The methods can be applied to any tissue

and disorder and have applications in validating mouse models.

Keywords: single cell genomics, transcriptome, RNA-seq, genetics, schizophrenia, autism, anxiety, Alzheimer’s

Disease

INTRODUCTION

The brain has a highly complex cellular architecture characterized by a diverse set of cell types that
are highly interconnected. Identifying the cell types involved with the pathogenesis of disease is
particularly challenging in heterogeneous tissues where cell types are often poorly defined. In the
majority of brain disorders evidence exists for changes affecting multiple cell types. It has proven
problematic to determine which cells are associated with the primary disease pathology and which
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are altered as secondary “reactive” responses. Genomic
technologies have contributed important mechanistic insights
into the primary genetic basis of pathogenesis through studies
of mutations and variants that increase disease susceptibility.
The recent availability of single cell transcriptomes (SCT) from
brain tissue (Darmanis et al., 2015; Dueck et al., 2015; Saraiva
et al., 2015; Shin et al., 2015; Usoskin et al., 2015; Zeisel et al.,
2015) offer the opportunity to ask which cells express these
susceptibility genes, and thereby identify the primary cellular
pathology. Since changes in primary and secondary cell types
will be reflected in transcriptomic studies of diseased tissue, SCTs
could also be used to identify these two classes of cell types.

A method known as Population Specific Expression Analysis
(PSEA) (Kuhn et al., 2011) was previously developed with the
goal of extracting cell-type data from disease transcriptomes and
has been successfully used to determine the cellular pathology in
Huntington’s and Parkinson’s disease (Capurro et al., 2014). A
limitation with this method was the dependence on predefined
sets of cellular genes that are specific to particular cell types. As
the method depended on linear modeling, it could not be applied
to unquantified gene sets thereby limiting its applicability for use
in gene expression studies. To overcome these limitations, we
have developed the Expression Weighted Cell-type Enrichment
(EWCE) method that statistically evaluates whether a set of
genes has higher expression within a particular cell type than
can be reasonably expected by chance. For the purposes of
the current study, the cell type expression profiles are defined
using data from single cell RNA-sequencing. The method can
be applied to any experimental source that generates a list of
genes, including but not limited to genetic, transcriptomic and
proteomic studies. The workflow for two such experimental
designs are shown in Figure 1A alongside data from an example
gene set, which demonstrates the principles of the methods in
Figure 1B.

The EWCE method has been enabled by single cell
transcriptomes from brain tissue (Darmanis et al., 2015; Dueck
et al., 2015; Saraiva et al., 2015; Shin et al., 2015; Usoskin
et al., 2015; Zeisel et al., 2015). As many of these studies
selected the cells through unbiased sampling, they provide data
on all cells present in the sampled tissues, including less well
studied cells such as vascular endothelial cells (Zeisel et al.,
2015). Furthermore, transcriptomes obtained through RNA-Seq
provide a broader dynamic range than those from microarrays,
allowing more precise quantification of the degree to which
a gene is expressed in a cell (Wang et al., 2009). The major
methodological advance of EWCE lies in taking advantage of this
improved dynamic range and data availability, in that we are able
to use all of the genes expressed within a cell type to determine
enrichment. This yields a significant improvement in capabilities
relative to methods focusing on a small set of selected cell type
markers.

Here, we have used EWCE with single cell mouse brain
transcriptome data to obtain significant interpretative advances
with two important data sources: (1) human disease associated
genes (2) transcriptomic datasets from post-mortem human
brains of diseased and control patients. These applications
inform on the primary and secondary cell types involved with

brain disorders. The EWCE method is a robust approach,
detecting consistent cellular signatures across transcriptome
datasets from 17 Alzheimer’s brain regions and two independent
Autism datasets. The EWCE method enables diverse sets of omic
data to be integrated and can be applied to a wide range of
biological problems in metazoan organisms.

METHODS

Summary of Expression Weighted
Cell-Type Enrichment (EWCE) Method
The EWCE method takes two arguments: (1) a target gene list
of length n denoted as T, and (2) a background set of genes,
indexed by B. The objective of the method is to determine the
probability that the genes in T have higher expression in a cell
type than can be assigned to random chance. To find this we need
the probability distribution of average expression in the cell of
interest amongst gene lists of length n. Assume that one wanted
to test the enrichment of astrocyte genes in T. From single-cell
transcriptome data we know the expression level of every gene
in astrocytes. First we calculate the average expression level in
astrocytes of each gene in T. We then randomly sample 100000
gene lists from the background gene set, each with length n. The
probability distribution is then is estimated from the average level
of expression in astrocytes in each of these random gene lists. We
have released the EWCE package through Bioconductor which
can be used to run the method on novel datasets. The method is
explained in greater detail below.

Processing of Single Cell Transcriptome
Data
Raw cell type mRNA expression data was downloaded from the
Linnarsson lab webpage (data annotated as being from 17th
August 2014) (Zeisel et al., 2015). Throughout the methods
section we refer to this as the Single-Cell Transcriptome (SCT)
dataset. The data downloaded provides annotations of the cell
type (e.g., “astrocyte,” “interneuron,” “oligodendrocyte”) and sub-
cell type annotations (e.g., Int1 [“interneuron type 1”], Int2
[“interneuron type 2”], Int15 [“interneuron type 15”], Peric
[“Pericyte”], Vsmc [“Vascular Smooth Muscle Cell”]) which
are expected to be analogous to either particular cell types
(e.g., basket cells) or maturational stages (e.g., differentiating
oligodendrocytes). We refer to these as “cell types” and “sub-
cell type” annotations. The annotations were not known prior
to sequencing and were instead determined using the backspin
algorithm as described in the manuscript associated with the
dataset. The cells were sampled from two brain regions, SS
(somatosensory cortex) and hippocampus CA1: the pyramidal
neurons are divided at a cell-type level into these groups. The
cell types analyzed in this study are specified and described in
Supplementary Table 1.

The dataset contains data from w cells associated with k sub-
cell types. Each of the k sub-cell types can be associated with a
numerical index from the set

{

1, .., k
}

. The cell type annotations
for cell i are stored using a numerical index in mi, while sub-
cell type annotations are stored in li. For the EWCE algorithm,
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FIGURE 1 | Depiction of the expression weighted cell-type enrichment method. (A) Flow diagram showing the steps involved in going from either genetic or

transcriptional data to a probability of enrichment. (B) Demonstration of the principles of EWCE method using four Alzheimer’s genes (target list) and three randomly

generated lists. In the left most column, the cell type expression proportions for the target list is shown. The row with blue bars shows the average over the genes

shown above. All four of the target genes are not specific marker genes for microglia; Apoe for instance also has high expression in astrocytes. Nonetheless, when

averaged together, there is a higher mean expression in microglia than in the averaged random list.

we need a single number to describe the relationship between a
gene and a sub-cell type. When the number of cells from the cell-
type indexed by c is given by Nc we calculate the mean level of
expression for gene g as

eg,c =

∑|L|
i= 1 F

(

g, i, c
)

/Nc

∑k
r= 1

(

∑|L|
i=1 F

(

g, i, r
)

/Nr

)

F
(

g, i, c
)

=

{

rg,i, li = c
0, li 6= c

where rg,i is the expression of gene “g” in cell “i” as described in
the data file downloaded from the Linarsson lab website. Because
eg,c is independent of the overall expression level of a gene, it
is desirable to drop genes with very low expression levels, as a
small number of reads in one cell can make the gene appear to
be a highly specific cell marker. We thus drop all genes for which
∑|L|

i= 1 F
(

g, i, c
)

/Nc is not greater than 0.2 for at least one sub-cell
type.

For some of the analyses (when testing enrichment in genetic
susceptibility genes) the values for expression in cell types
rather than sub-cell types are used (definition stated above). For
this, the values for the expression matrix E are first calculated
separated for sub-cell types (i.e., S1 Pyramidal cells from Layer
6b) then summed to get the values for grouped cell types (i.e., S1
Pyramidal cells). To get the expression level of gene g for the cell
type indexed by e:

pg,e =
∑k

i= 1
G(g, i, e) where G

(

g, i, e
)

=

{

eg,i mi = e
0 mi 6= e

For the remainder of the methods section all the formula’s are
provided using eg,c (the measure of expression in subcell types)

but pg,e should be used instead if it is desired to apply the method
to full cell types instead.

Bootstrapping Enrichment within Gene
Lists
The background set used for EWCE analysis depends on the
analysis being performed. For gene set (but not transcriptome)
enrichment the background gene set is comprised of all genes
which have orthologs between human and mice—including
those in the target list—but excluding any which were not
detected in the SCT dataset. For transcriptome enrichment
analysis the background set has an additional restriction
relative to simple gene set analysis, in that the background
genes must also be expressed in the disease transcriptome
dataset. Human genes are converted to mouse orthologs
using Biomart.

The proportion of expression in each cell type is calculated as a
matrix for each gene, then summed to get total expression in each
cell type across the whole gene list. Thus, for a gene list indexed by
X we calculate the average expression in the sub-cell type indexed
by c as:

γ (X, c) =
∑

g∈X

eg,c

This calculation is then repeated for 100,000 randomly generated
gene lists, having the same length as the target gene list, with the
genes randomly selected from the background gene set. Sampling
of random gene sets is done without replacement. When the
target gene list has length n, Dj denotes the jth set of n indices
for bootstrapping genes, with j ∈ {1,. . ., 100000}. The probability
of cellular enrichment is then calculated based on the number of
bootstrapped gene lists with higher cell type specific expression
than the target list
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P
(

X enriched for cell type c
)

=

∑100000
j= 1

{

1 γ (X, c) > γ
(

Dj, c
)

0 γ (X, c) < γ
(

Dj, c
)

100000

Where probabilities are stated for gene list enrichments, all
p-values stated are adjusted for multiple testing. Multiple
testing corrections are done separately for the results
shown in Figures 2, 3A–C. In the section on schizophrenia
transcriptomics, for ease of reading we report p-values for
cell-types though the analysis was done on the level of sub-cell
types: the p-values reported are for the subcell-type with the
most significant relevant enrichment. The fold enrichment
ϕ(X, c) is calculated as the expression in the target gene list
divided by the mean level of expression in the bootstrap
samples

ϕ (X, c) = γ (X, c) /

(

∑100000

j= 1
γ

(

Dj, c
)

/100000

)

Throughout the paper the number of standard deviations which
γ (X, c) falls from the mean of γ (D, c) is used as a measure of
significance. We denote this value for gene list X as d (γX, γD).

Bootstrapping with Controls for Transcript
Length and GC Content
Enrichments found in gene sets from genetic studies have been
shown to be biased by gene characteristics including transcript
length and GC content (Jia et al., 2010). To account for this, for
the analyses associated with Figure 2 we used a semi-random
form of gene selection which controlled for these two properties.
For each human gene list, we first obtained the ensembl ID’s
associated with the gene symbols through Biomart and then ran
a second query to obtain the transcript lengths and GC content
associated with each ensemble ID. Where multiple transcript
lengths were associated with a single HGNC gene we took the
mean value. The deciles of gene size and GC content were
calculated over the set of genes expressed in the SCT dataset (after
dropping those with low expression levels as described above).
The two sets of decile values were used to define a grid, and
each gene assigned to a position within the grid based on it’s
transcript lengths and GC content. To run a bootstrap analysis
on a particular target list, 100,000 random lists were constructed
with equal length to the target list. Gene i in each random list
was selected from the same grid square as gene i in the target
list.

Disease Gene Association Lists
The disease gene associations were curated from the literature,
being largely based on the most recent and authoritative
studies. The sources are shown in and the genes comprising
each list are in Supplementary Table 2. References associated
with the disease lists are listed here: Abnormal myelination
(Groza et al., 2015), Human post-synaptic proteome (Bayés
et al., 2011), Alzheimer’s disease (Bertram et al., 2007;
Lambert et al., 2013), Anxiety disorders (Le-Niculescu et al.,
2011), Autism (Sanders et al., 2015), Intellectual Disability

(Sanders et al., 2015), Multiple Sclerosis (Lill et al., 2011),
Schizophrenia (Girard et al., 2011; Ayalew et al., 2012; Xu
et al., 2012; Fromer et al., 2014; Schizophrenia Working
Group of the Psychiatric Genomics Consortium., 2014). Genes
associated with Intellectual Disabilities and Epilepsy were also
sourced by finding all genes associated with “Intellectual
Disability” and “Seizure” Human Phenotype Ontology terms
using the HPO Browser (http://compbio.charite.de/hpoweb).
Enrichment probabilities were corrected using the Bonferroni
methods.

Application of EWCE to Human Disease
Transcriptome Datasets
The transcriptome datasets used in the study were all obtained
from publically available sources (Katsel et al., 2005; Narayan
et al., 2008; Haroutunian et al., 2009; Maycox et al., 2009; Barnes
et al., 2011; Voineagu et al., 2011; Roussos et al., 2012; Gupta et al.,
2014; Reinhart et al., 2015) that are detailed in Supplementary
Methods. The methods used to calculate differential expression
for each study are also detailed in Supplementary Methods.
The R package Limma (Ritchie et al., 2015) was used for all
tests of differential expression. For all Autism and Schizophrenia
studies differential expression was determined for a diagnosis
of disease. For Alzheimer’s disease, differential expression was
calculated for Braak score. For each study, genes were ordered
based on the t-statistic. The 250 genes with the largest positive
t-statistics were taken as the upregulated gene set, and the
250 genes with the largest negative t-statistic were taken to be
downregulated. Where multiple probes targeted the same gene
these were dropped after selected the 250 genes, and the length of
the random lists set to have the length of the number of unique
genes.

For the Schizophrenia analysis, data from multiple
independent studies was available for a number of brain
regions. Superior temporal gyrus came from two studies (Katsel
et al., 2005; Barnes et al., 2011). Middle temporal gyrus was
based on two studies (Katsel et al., 2005; Roussos et al., 2012).
Hippocampus was based on three studies, including one Bipolar
cohort (Katsel et al., 2005; Reinhart et al., 2015). Frontal pole
was based on two studies (Katsel et al., 2005; Maycox et al.,
2009). Dorsolateral prefrontal cortex was based on five studies,
including one Bipolar cohort (Katsel et al., 2005; Narayan et al.,
2008; Roussos et al., 2012; Reinhart et al., 2015). Cingulate cortex
was based on three studies, including samples from anterior and
posterior areas (Katsel et al., 2005; Roussos et al., 2012).

To merge these schizophrenia datasets together the EWCE
methodwas extended as follows. Standard cell type bootstrapping
was done for each individual study and the cell type expression
proportions for each bootstrap sample was stored as a matrix,
with a row for each of the 100,000 bootstrap replicates and
a column for each cell type. For each individual study being
merged, the bootstrap output matrices were summed to form a
consensus estimated distribution of random cell type expression
proportions. The cell type proportions for the target gene list in
each individual study were summed. Calculation of p-values and
fold enrichment was then performed as for an individual study,
as described above.
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FIGURE 2 | Susceptibility genes for major human brain disorders show distinct cell type enrichments. (A) Two gene sets with a strong prior expectation for

cell type enrichment—the human postsynaptic density, and genes with Human Phenotype Ontology annotations for abnormal myelination—were detected using

bootstrapping to have higher expression in neurons and oligodendrocytes, respectively. (B) Bootstrapping tests performed using the EWCE method show that seven

different classes of brain disorder show enrichment in particular cell types. (C) Multiple Sclerosis associated genes are strongly enriched for microglial expression. This

plot shows that this is not just a property of a few genes, but instead almost every single gene shows higher levels of expression in microglia than would be expected

by chance. The plot shows the actual level of expression of the susceptibility gene, against the mean expression level of the ith most expressed gene in a

bootstrapping analysis of lists of 19 genes. If microglial expression in MS genes was randomly distributed, the genes would be expected to fall along the red line. (D)

All Alzheimer’s disease susceptibility genes are more enriched for microglial expression than expected by chance. (E) Bootstrap distributions of expected microglial

expression levels of Alzheimer’s disease genes. Red dots mark the expression level of the susceptibility genes, while the associated boxplots denote the expected

expression level of the ith most expressed gene, in a list of 19 genes, as determined using bootstrapping. Asterisks behind the red dots denote that the gene has

higher expression in the cell type than expected by chance (p < 0.05). (F) Genes associated with Autism are found to show increased expression in pyramidal

neurons. (G) The hundreds of genes associated with Schizophrenia are found to show a moderate, but highly significantly, increased expression in pyramidal neurons.
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RESULTS

We first sought to confirm that the method detects expected cell
type enrichments (Figure 2A). We first gene list we used were
the 1461 genes associated with the human cortical post-synaptic
density (hPSD) (Bayés et al., 2011). As expected the hPSD
was significantly associated with cortical pyramidal neurons
(Bonferroni corrected p < 0.00001, d (γX, γD) = 24.1),
interneurons (p < 0.00001, d (γX, γD) = 23.6) and hippocampal
pyramidal neurons (p < 0.00001, d (γX, γD) = 23). Enrichment
was also found for oligodendrocytes (p < 0.00001, d (γX, γD) =

10.4), which is likely explained by myelin contamination of the
protein samples (amongst the most oligodendrocyte enriched
genes in the hPSD list are many of the major protein constituents
of myelin including Mbp, Mag, Mog, Pllp, and Cnp). The
enrichment can also be partially attributed to precursor cells of
oligodendrocyte have also been shown to develop post-synaptic
densities which are expected to be comprised of many of the same
proteins as in neurons (De Biase and Bergles, 2011).

We then examined 185 genes which have Human Phenotype
Ontology annotations for abnormal myelination with the prior
hypothesis that they would be enriched for oligodendrocyte
genes. The majority of the genes are associated with rare
neurological disorders in which patients/families have been
shown to exhibit either demyelination or absence of myelinated
fibers. EWCE analysis confirmed that oligodendrocytes are the
cell type most enriched amongst these genes (p < 0.00001,
d (γX, γD) = 8.7). All classes of neurons were also found to be
enriched with p < 0.00001 suggesting that in many cases the
myelination deficit is secondary to a neuronal change.

Cell Enrichments in Human Disease
Susceptibility Genes
We then tested for cell type enrichments in susceptibility
genes for seven major brain disorders: Alzheimer’s disease,
Anxiety disorders, Autism, Intellectual Disability, Multiple
Sclerosis, Schizophrenia and epilepsy (gene lists used shown in
Supplementary Table 2). Two of the disorders were found to
show strong evidence for being primary microglial disorders
(Alzheimer’s, p < 0.00001, d (γX, γD) = 9.6 and Multiple
Sclerosis, p < 0.00001, d (γX, γD) = 9.3). We denote the
number of standard deviations from the bootstrapped mean
as d (γX, γD) . It has previously been noted that a number
of Alzheimer’s disease susceptibility genes have high levels
of expression in microglia (Mhatre et al., 2015), and so we
tested whether the enrichment seen here is a result only of
expression in those few genes, or whether all susceptibility genes
have higher levels of expression than expected by chance. We
found that evidence strongly supports the latter hypothesis for
both Alzheimer’s and Multiple Sclerosis (Figures 2C–E): for
Alzheimer’s, every gene except Cass4 was found to have higher
expression in microglia than expected by chance (Figure 2E). No
other cell type was found to be significantly enriched for either of
these disorders.

Schizophrenia and Autism were found to be the
only exclusively neuronal disorders, and both had their
strongest enrichment in pyramidal rather than interneurons.

Schizophrenia associated genes were enriched for all three
classes of neurons with p < 0.00001 but for cortical pyramidal
neurons d (γX, γD) = 7 while for interneurons d (γX, γD) = 4.7.
For autism the enrichment for interneurons was close to the
significance threshold (p = 0.024 and d (γX, γD) = 3.3)
indicating that it may be secondary to the enrichment of
pyramidal neuron genes (p = 0.00126 and d (γX, γD) = 4.6).
The enrichments for both of these disorders were again found
to affect all genes throughout the lists, rather than a subset
of strongly cell-type specific genes (Figures 2F,G). Anxiety
disorders were also found to be enriched for pyramidal neuron
genes (p < 0.00001, d (γX, γD) = 6.7) but also showed evidence
for a microglial involvement (p < 0.00001, d (γX, γD) = 6.7).

Interneurons were found to be the most enriched cell type for
intellectual disabilities (ID) (p < 0.00001, d (γX, γD) = 9.8) and
epilepsy (p < 0.00001, d (γX, γD) = 11.2). Both disorders also
showed enrichment for pyramidal neurons but to a lesser degree
(for cortical pyramidal neurons d (γX, γD) = 7.3 for ID and
d (γX, γD) = 9.4 for epilepsy). Astrocytes (p = 0.003, epilepsy;
p = 0.034, ID) and Oligodendrocytes (both p < 0.00001) were
also found to contribute to both of these conditions. We note one
gene in particular, Aass, which is markedly specific to astrocytes
and is associated with both seizures and intellectual disabilities.

Robust Cell Enrichments in Post-Mortem
Disease Transcriptomes
We next sought to ascertain whether the method could be used
to describe the cellular nature of disease phenotypes found in
post-mortem brain samples. Many transcriptome studies have
been performed for major brain disorders, in an effort to cast
light on the pathological basis of the conditions. We reasoned
that because our method utilizes genome-wide data to define “set
membership” in a quantitative and brain specific manner, it may
be more robust and relevant than GO enrichments at detecting
the hidden variables underlying brain diseases.

The first step towards obtaining the gene set from
transcriptomics was in each case a standard differential
expression analysis. Genes were rank ordered by t-statistic and
the 250 most upregulated as well as 250 most downregulated
genes were taken for further analysis. We then perform an
Expression Weighted Cell type Enrichment (EWCE) analysis,
wherein the random samples are obtained by reordering the
ranked list 100,000 times (see Figure 1A for workflow).

The pathological characteristics of Alzheimer’s disease are
relatively well understood, with inflammatory gliosis and synapse
loss becoming more acute as the disease progresses. We applied
the method to an Alzheimer’s dataset that examined changes in
14 cortical and three non-cortical regions, with between 51 and
70 samples per region. Differential expression was calculated for
genes whose expression is affected by increases in Braak score.
Across all the brains tested, a consistent cell enrichment signature
was detected (see Figure 3A). We calculated the fold-enrichment
for each cell type in each region, for both up- and down-
regulated genes, and applied Bayesian estimation to determine
whether an actual fold enrichment of zero falls within the 95%
Highest Density Interval (HDI): for each of the cell types, we
found this to not be the case. Interneuron and pyramidal neuron
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FIGURE 3 | Post-mortem transcriptomes from patients with Alzheimer’s disease, Autism and Schizophrenia show distinctive cellular phenotypes. (A)

Consistent fold enrichments were found for each cell type across fourteen cortical and three subcortical brain regions of Alzheimer’s patients. The box plots mark the

distribution of cellular fold enrichments across all the brain regions examined. Asterisks mark that the fold enrichment for each cell type that was found to be

significantly non-zero with p < 0.05. (B) Two independent autism studies show the same cellular phenotypes, including upregulation of glial cells and downregulation

of neurons. Asterisks mark those cell types found to be significantly differential with p < 0.05 after BH correction over all groups. (C) Cellular phenotypes in

Schizophrenia are regionally dependent but cluster into groups, with a number of regions including the cingulate cortex and temporal pole showing downregulation of

oligodendrocyte genes while the prefrontal cortex exhibits upregulation of endothelial and astrocyte genes as well as downregulation of deep pyramidal neurons in the

anterior region. The analyses shown are based on an integrative analysis of six independent studies, though not all brain regions featured in all studies.

genes were found to be enriched amongst those which were
down-regulated, while oligodendrocytes, microglia, astrocytes
and endothelial cells showed evidence of up-regulation. The
enrichments detected are directionally consistent with the known

pathology of the disease (Grammas, 2011; Wyss-Coray and
Rogers, 2012), strongly supporting the notion that this is a
powerful and robust technique for determining hidden variables
in transcriptome data.
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Having validated the method’s ability to detect known
pathological phenotypes, we sought to apply the method to
two disorders that are less well characterized: Autism and
Schizophrenia. Two publically available transcriptome datasets
were used for Autism (Voineagu et al., 2011; Gupta et al.,
2014), with one study using samples from areas BA41/42,
BA9, BA19, BA10, and BA44. The two studies were analyzed
separately, and within each study differential expression was
tested over all cortical regions. Remarkably, we again found a
consistent cellular enrichment signature across the two studies
(Figure 3B). We emphasize that these were two independent
studies, performed by different laboratories, on different cortical
regions, with one study using RNA-Sequencing and the other
Illumina microarrays.

Both Autism studies, like the Alzheimer’s disease studies,
indicated that the disease processes affect every major cell
type in the brain. As in Alzheimer’s disease, interneuron and
pyramidal enrichments were found in down-regulated genes,
while enrichments of glial and endothelial cells were present
in the up-regulated gene sets. The cellular changes expected
to correspond to decreased expression of neuronal transcripts
is unclear, with no consensus in the literature about how
neurons are affected in autistic patients (van Kooten et al., 2008;
Courchesne et al., 2011; Casanova et al., 2013). Up-regulation of
astro- and micro- glial genes, which indicates activation in those
cell types, is broadly supported by past studies which have shown
elevated expression of glial marker genes, increased cell densities
and altered morphologies for both cell types (Laurence and
Fatemi, 2005; Vargas et al., 2005; Morgan et al., 2012; Tetreault
et al., 2012). The finding that endothelial genes are up-regulated
could be related to the decrease in cerebral blood flow seen in
temporal and frontal cortices of autistic patients (Ohnishi et al.,
2000).

We next extended the study to Schizophrenia. We utilized
data from six independent transcriptomic studies, providing data
for many brain areas. Four of the studies included samples
from the dorsolateral prefrontal cortex, while other brain regions
including hippocampus and cingulate cortex were covered by
at least two of the datasets. To maximize the utility of these
replicate studies, the cell type bootstrap data was summed
across each independent cohort allowing pooled estimates for
cellular changes. As was expected based on the disease literature,
regional changes were found to be divergent. Some regions (e.g.,
the primary visual cortex) were found to show no significant
changes, while the most pronounced enrichments were seen in
the prefrontal and cingulate cortices.

Those regions showing alterations were found to cluster into
two groups: (1) those with decreased oligodendrocyte expression
and upregulation of pyramidal neuron genes; (2) increased
astrocyte and/or endothelial expression. All samples from the
prefrontal cortex fell into the second cluster. Four regions fall
outside of these clusters and show few/no significant changes:
the primary visual cortex, putamen, superior and inferior frontal
gyrus. While we showed in Figure 2B that schizophrenia is
genetically associated only with neurons, the primary effects
appear to be in astrocytes, endothelial cells and oligodendrocytes.
A number of regions do show changes in neuronal transcripts,

including downregulation of a Somatostatin and Neuropeptide-
Y expressing interneuron in the hippocampus (p < 0.0266,
d (γX, γD) = 3.5), but these changes are less consistent across
regions.

One of the most significant changes was in the dorsolateral
prefrontal cortex (BA46), with an enrichment of astrocyte
genes 12.7 standard deviations from the bootstrapped mean
(p < 0.00001, d (γX, γD) = 12.7). Significant up-regulation
of astrocyte genes (after Benjamini Hochberg correction) was
also seen in Striatum (p = 0.00001, d (γX, γD) = 5.8), Frontal
Pole (p = 0.004, d (γX, γD) = 4.2) and the Superior Parietal
Lobe (p = 0.037, d (γX, γD) = 3.5). Six regions showed
significant up-regulation of endothelial cells in Schizophrenia,
including three of those regions which also had up-regulated
astrocytes. The most significant effects were seen in the Frontal
Pole (p < 0.00001, d (γX, γD) = 6.7) and Striatum (p<0.00001,
d (γX, γD) = 6.0). Also affected was the Superior Parietal Lobule
(p = 0.00992, d (γX, γD) = 4.5), the Hippocampus (p = 0.0031,
d (γX, γD) = 4.5), the Entorhinal cortex (p = 0.018, d (γX, γD) =

4.0) and Superior Temporal Gyrus (p = 0.013, d (γX, γD) =

3.7). The Frontal Pole, also known as the Anterior Prefrontal
Cortex, fits within this cluster but also showed a very strong
upregulation of microglial genes (p < 0.00001, d (γX, γD) =

10.4) and downregulation of pyramidal neurons (p < 0.0009,
d (γX, γD) = 4.4).

The second set of brain regions affected in schizophrenia
show totally distinct phenotypes from those described above.
Astrocyte and endothelial expression appears normal, while
highly significant down-regulation of Oligodendrocyte genes was
found in the Caudate Nucleus (p < 0.00001, 0d (γX, γD) =

13.1), Cingulate Cortex (p < 0.00001, d (γX, γD) = 11.6),
Hippocampus (p < 0.0057, d (γX, γD) = 4), Middle Temporal
Gyrus (p < 0.0001, d (γX, γD) = 5.7), and the Temporal Pole
(p < 0.0001, d (γX, γD) = 8.2). For four of the five regions
the most significant change is in the pre-myelinating (type 2)
oligodendrocytes, which are understood to be mid-way through
the stages of oligodendrocyte maturation.

DISCUSSION

Using the EWCE method, we have shown that single cell
transcriptome data can be integrated with genetic susceptibility
data or tissue transcriptome data to identify cell types involved
with disease. Using lists of genetic susceptibility data with single
cell transcriptome data that define cell types, we could identify
specific cell types that are the likely primary targets of the genetic
susceptibility. In a separate analysis, using lists of genes from
post-mortem transcriptomes, we found that a broader range of
cell types were affected, indicating that the cellular pathology of
the disease extends from the cells affected by the primary genetic
susceptibility to a wider set of “secondary” or “reactive” cell types.

For seven different brain disorders, the EWCE method was
used to identify the putative primary cell types affected by
genetic susceptibility. Consistent with current models, pyramidal
neurons were the cell type most associated with schizophrenia
and autism genes. A primary role of microglia in multiple
sclerosis is also consistent with primary pathology in the immune
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system (Hemmer et al., 2015). The association of Alzheimer’s
with microglia also builds on a body of existing work on the
role of that cell type in the disease (Mhatre et al., 2015), but goes
further in suggesting it is the primary focus of genetic risk. The
identification of anxiety disorders as having a microglial/immune
component was surprising and may be relevant to the reported
prevalence of anxiety disorders amongst those suffering from
immunological disorders (Roy-Byrne et al., 2008). For this later
association we caution that unlike the gene sets used for all
other disorders, the gene set for Anxiety disorder was generated
through a convergent functional genomics approach, which was
not solely informed by human genetic studies.

Intellectual disabilities and epilepsy were both found to be
most strongly associated with interneurons. Past studies strongly
support the finding that interneurons are the causative cell type
underlying seizures (Ogiwara et al., 2007; Hammad et al., 2014).
Other cell types, including astrocytes and oligodendrocytes were
also found to contribute to the etiology of these disorders; this is
supported by evidence showing that a human disorder featuring
intellectual disabilities and seizures can be attributed to cell-
specific mutations in astrocytes (Uhlmann et al., 2002). The
shared cellular enrichment profiles between ID and epilepsy
explains why there exists far high rates of comorbidity between
individuals with the two disorders: around 26% of individuals
with ID suffer from seizures compared to only 0.4–1% in
the general population (McGrother et al., 2006). Noting the
stronger enrichment for interneurons over pyramidal neurons
in epilepsy and ID, the findings also suggest an explanation for
why individuals with autism are significantly more likely to have
seizures if they also have ID (Amiet et al., 2008): while a mutation
affecting synapses in pyramidal neurons may cause Autism, our
data suggests that if the mutation affects a gene that is also
highly expressed in interneurons this would increase the chance
of seizures and ID.

Once denser sequencing of interneurons has been performed
from a wider set of brain regions it may be possible to identify
specific interneuron populations associated with distinct types
of seizures, as well as particular cognitive deficits. The ability
to precisely distinguish affected subtypes of interneurons may
however require a modification to the method: at present four
of the five disorders which are stated as affecting one population
of neurons, have significant enrichments for all three neuron
types. As neurons share many genes, and vary only in limited
subsets and graduated expression levels, it may be that one
can only distinguish between them by considering the single
most enriched category. The limitations of the method can
be seen by considering the case of autism, which shows it’s
strongest enrichment in pyramidal cells but is also enriched in
interneurons to a lesser degree. These results could support either
of two hypotheses: that autism is a primary pyramidal neuron
disorder, or that it is a disorder of broad neuronal dysfunction.
An extension to the EWCE method that penalizes neuronal
subtypes for absence of expression when a gene is expressed in
similar cells could potentially resolve this issue.

Contrasting the results of EWCE from genetic susceptibility
data with transcriptomes from diseased tissue suggested that
the cellular pathology spreads from the primary affected

cells to secondary cells. These putative secondary changes
appear to extend between classes of cells. For example, the
genetic susceptibility of Autism and Schizophrenia appears to
primarily impact neurons, yet both show evidence for secondary
endothelial disruption. Interestingly, both disorders have been
shown to have decreased cerebral blood flow (Sabri et al.,
1997; Ohnishi et al., 2000; Kindler et al., 2013) although it is
unclear whether this is related to up-regulation of endothelial
genes. Though mechanisms are well established for how synaptic
activity alters blood flow across brief time scales (Attwell et al.,
2010) we are unaware of any studies investigating how persistent
mutational changes in the level of synaptic/neuronal activity
alters the vascular system. Based on the results we have found
here, we suggest that understanding which pyramidal neuronal
properties need to be altered (through mutation) to induce
secondary transcriptional enrichments of endothelial and/or
glial genes could cast new light on the polygenic nature of
Schizophrenia and Autism.

Implementation of EWCE in mouse models of human disease
could underlie a new approach to studying brain disorders. Once
the transcriptomic cell type enrichments are determined for a
disease, conditional mouse models (carrying cell type specific
mutations) could then be validated or rejected based on whether
they recapitulate some or all of the disease associated secondary
effects. One problem with this approach is that a range of distinct
changes could result in the same transcriptomic alteration (for
instance, down regulation of interneuron genes could be caused
by either decreased cell density, altered cellular state, or decreased
synaptic connectivity). The directionality and regional specificity
of transcriptional phenotypes should however be able to act
as a guide to narrow down the nature of the cellular changes.
Even without more extensive follow-up EWCE could heighten
confidence in the biological validity of disease models for which
only behavioral similarities to human disease could otherwise be
shown.

Three limitations with the current study are that the cells were
obtained from mice, they were immature and only from CA1
and somatosensory cortex. Using human rather than mouse data
may make a significant difference for disease enrichments: one
study which compared expression profiles of cell types between
humans and mice found that as few as 52% of genes identified as
being astrocyte-enriched inmice, were also found to be astrocyte-
enriched in humans (Zhang et al., 2015). Developmental age is
likely to be important since the Braincloud dataset shows that
significant transcriptional changes occur in human brain tissue
between the pre- to post-natal period (Colantuoni et al., 2011).
The few anatomical regions so far studied also limits the range
of diseases which can currently be analyzed. For instance, while a
suitable number of genome wide significant genes are known for
Parkinson’s disorder (Nalls et al., 2014), the known association
of that disorder with the Striatum lead us to avoid testing for
enrichment in those genes.

In the coming years the quantity of single cell data that
is available will increase and the utility of the EWCE method
is expected to expand commensurate with this. The single
cell transcriptome dataset used for this study comprised 3005
cells from the cortex and CA1 of mice aged p21–31. With
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greater depth of cellular sequencing, it may become possible
to detect changes in more specific populations of cells. This is
potentially of greatest importance for interneurons for which the
data presently available is sparse—of the 1314 cells sequenced
from CA1, only 126 were from interneurons. With over thirty
types of interneuron estimated to exist just within CA1 based
on morphology, electrophysiology and expression of classical
molecular markers (Wheeler et al., 2015), the sparse sampling
means there is likely to be substantial noise within the current
cell type estimates. Presently it is unclear whether diseases are
likely to specifically affect such particular neuron types, and an
alternative approach could involve testing along branches of the
cell lineage tree—i.e., interneurons derived frommedial or caudal
ganglionic eminences.

We also note that there is no reason why EWCE should
be restricted to the study of brain disorders and as sufficient
cellular data becomes available the same methodology could
be applied to any other disease. Indeed the EWCE method
can be applied to other omic gene lists for the purposes of
interrogating the relevant cell types. For example, gene lists from
mouse phenotyping studies, such as the International Mouse

Phenotyping Consortium (Brown and Moore, 2012) could be
used to identify the cell types underlying specific phenotypes.
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