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Abstract

The development of single-cell RNA-sequencing (scRNA-seq) technologies has offered insights into complex biological systems at
the single-cell resolution. In particular, these techniques facilitate the identifications of genes showing cell-type-specific differential
expressions (DE). In this paper, we introduce MARBLES, a novel statistical model for cross-condition DE gene detection from scRNA-seq
data. MARBLES employs a Markov Random Field model to borrow information across similar cell types and utilizes cell-type-specific
pseudobulk count to account for sample-level variability. Our simulation results showed that MARBLES is more powerful than existing
methods to detect DE genes with an appropriate control of false positive rate. Applications of MARBLES to real data identified novel
disease-related DE genes and biological pathways from both a single-cell lipopolysaccharide mouse dataset with 24 381 cells and 11
076 genes and a Parkinson’s disease human data set with 76 212 cells and 15 891 genes. Overall, MARBLES is a powerful tool to identify
cell-type-specific DE genes across conditions from scRNA-seq data.
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Introduction
Single-cell RNA-sequencing (scRNA-seq) methods have
opened up new opportunities in biological and biomed-
ical research [1–3]. Different from traditional bulk RNA-
seq technologies [4], scRNA-seq technology can measure
gene expression at single-cell resolution to study tis-
sue heterogeneity [5], which facilitates different down-
stream explorations such as cell-type-specific differen-
tial expression (DE) analysis across conditions.

Many methods have been developed for DE analysis.
These methods can be broadly divided into three groups,
including those designed for bulk RNA-seq data but are
also widely applied to scRNA-seq data, those developed
specifically for single cell data, and ensemble methods
that combine results from different individual tools. The
first group includes DESeq2 [6], edgeR [7] and limma-
voom [8, 9]. DESeq2 [6] uses gene-specific Empirical Bayes
shrinkage estimation for dispersions based on a negative
binomial distribution. Similarly, edgeR [7] employs a

negative binomial model to explain both biological vari-
ability and technical one, and the dispersion is estimated
by the empirical Bayes method. Limma-voom [8, 9]
estimates the mean-variance trend and incorporates this
into the limma pipeline. Methods that are specifically
developed for scRNA-seq data include Model-Based
Analysis of Single-Cell Transcriptomics (MAST) [10],
Monocle2 [11], Single-Cell Differential Expression (SCDE)
[12], Statistical Approach for Identifying Differential
Distributions in Single-Cell RNA-seq Experiments (scDD)
[13] and Discrete Distributional Differential Expression
(D3E) [14]. MAST [10] employs a two-part generalized
linear model to account for the bimodal distribution
of the data and includes the cellular detection rate
as a covariate. Monocle2 [11] develops a generalized
additive model for DE analysis and introduces the Census
algorithm to estimate the relative transcript count. SCDE
[12] fits a mixture probabilistic model composed of a
Poisson distribution and a negative binomial distribution
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to account for the drop-outs and the positive mean
expressions. scDD [13] utilizes a conjugate Dirichlet
process mixture model for the positive expression and
a logistic regression for the zero component. D3E [14] is
a nonparametric method which uses the Cramer–von
Mises test or the Kolmogorov–Smirnov test to identify
DE genes. In addition, a recently developed ensemble
method scDEA [15] combines 12 bulk and single cell DE
methods using a Lancaster’s combined probability test
to achieve better performance than each weak learner
alone.

Despite the developments of these methods, two
issues have not been adequately addressed in these
methods to identify DE genes. First, none of the methods
considers similarity across cell types, although there is
evidence suggesting that similar cell types share many
DE genes [16–18], e.g. different types of neurons in brains,
or T cells and cytotoxic T cells in lungs. Taking this
shared similarity into consideration may boost the power
for DE detection. Second, most existing pipelines are
limited to comparing cell-type differences but do not take
the sample-level differences into consideration when
conducting cross condition DE analysis [19, 20]. Given
the wide application of single cell technology and the
zero-inflated as well as large-scaled scRNA-seq datasets,
there is a need to develop a model to address these issues
simultaneously in order to better identify DE genes.

In this study, we propose MARBLES, a Markov Random
Field (MRF) model-based approach for differentially
expressed gene detection from scRNA-seq data, which
can capture cell-type relationships and account for
sample variation by modeling cell-type-specific pseu-
dobulk data. We note that MRF-based algorithms have
been widely used to model gene relationships in bulk
RNA-seq studies as well as genome-wide association
studies by incorporating biological pathway information
into the analyses [21–24]. They have also been used
to model spatial-temporal dependencies [22, 25]. In
scRNA-seq analysis, cell-type-specific pseudobulk count
is calculated by aggregating all the counts for a specific
cell type in one sample, and these pseudobulk data
have been used to evaluate the similarity between bulk
and imputed scRNA-seq profiles [26], to alleviate plate
effects [27] and to identify cell-type-specific DE genes
[19]. MARBLES combines a two-group empirical Bayes
Poisson–Gamma model [28] to fit the cell-type-specific
pseudobulk counts with an MRF model to account for the
dependencies among cell types. We have implemented
this model using an iterative conditional mode algorithm
(ICM) [29] to estimate model parameters and identify
cell-type-specific DE genes (Figure 1).

Methods
Notations
Given scRNA-seq gene expression profiling data under
different conditions, we aim to identify cell-type-specific
DE genes. We assume that each gene in each cell type
can have two states, labeled as 0 and 1, representing

equally expressed (EE) and differentially expressed (DE),
respectively. For each gene, we assume that there is
a latent state assignment across cell types, which is
denoted by x = (x1, x2, · · · , xK), where xk is the corre-
sponding state of that gene in cell type k and K denotes
the total number of cell types. xk is 1 if cell type k is DE
and 0 otherwise. Also, we define the pseudobulk counts
as the sum of the counts of all the cells belonging to
a specific cell type in an individual. Let yk denote the
pseudobulk expression level of a gene in cell type k,
which can be thought of as a realization of a random
vector, Y = (Y1, Y2, · · · , YK), and yk itself is also a vector
yk = (yk1, yk2, · · · , ykm; yk(m+1), · · · , yk(m+n)), consisting of m
individuals under one condition and n individuals for the
other condition.

We further assume that given the latent states x =
(x1, x2, · · · , xK), the random variables Y = (Y1, Y2, · · · , YK)

are conditionally independent and all the Yk have the
same underlying conditional probability distribution
f (yk|xk) depending only on the latent state xk. And given
x, the conditional probability of the pseudobulk counts
y, is

l(y|x) =
K∏

k=1

f (yk|xk). (1)

Poisson–Gamma model for pseudobulk data
For each gene, we assume that yki follows a Poisson
distribution with mean value λk, where i is the sample
index. Therefore, the corresponding density function can
be written as

f (yki|λk) = λ
yki
k e−λk

yki!
. (2)

Furthermore, we assume that λk follows a gamma
distribution with shape α and rate β

f (λk) = βαλα−1
k e−βλk

�(α)
. (3)

Let θ = (α, β) denote the parameters used to specify
these two distributions, so the joint predictive probability
for the pseudobulk counts yk under the same condition
is

f (yk) =
∫

(
∏
y∈yk

f (y|λk))f (λk)dλk. (4)

With these assumptions, we can derive the joint den-
sity for the observations from the first condition

f (yk1, · · · , ykm) = βα�((
∑m

j=1 ykj) + α)

(
∏m

j=1(ykj! ))�(α)(m + β)
(
∑m

j=1
ykj)+α

, (5)
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Figure 1. Schematic overview of the MARBLES’ framework. The input of the model is a scRNA-seq dataset and a cell-type relationship network where
similar cell types are connected by an edge. Then, the observed scRNA-seq data are converted to cell-type-specific pseudobulk data, and for each gene,
a Poisson–Gamma distribution is fitted to the samples in each cell type. An MRF model is implemented based on the cell-type network. Finally, applying
ICM, latent states that represent whether genes are differentially expressed can be inferred iteratively.

as well as those from the second condition

f (yk(m+1), · · · , yk(m+n))

= βα�((
∑m+n

j=m+1 ykj) + α)

(
∏m+n

j=m+1(ykj! ))�(α)(n + β)
(
∑m+n

j=m+1
ykj)+α

. (6)

Thus, conditioning on the DE state xk and θ , we have

f (yk|xk; θ)

= [f (yk1, · · · , ykm)f (yk(m+1), · · · , ykn)]xk

[f (yk1, · · · , ykm, yk(m+1), · · · , ykn)]1−xk

=

⎡
⎢⎢⎢⎣

β2α�((
∑m

j=1 ykj) + α)�((
∑m+n

j=m+1 ykj) + α)

�(α)2(
∏m+n

j=1 (ykj! ))(m + β)

(∑m
j=1

ykj
)+α

(n + β)

(∑m+n
j=m+1

ykj
)+α

⎤
⎥⎥⎥⎦

xk

⎡
⎢⎢⎢⎣

βα�((
∑m+n

j=1 ykj) + α)

�(α)(
∏m+n

j=1 (ykj! ))(m + n + β)
(
∑m+n

j=1
ykj)+α

⎤
⎥⎥⎥⎦

1−xk

. (7)

More detailed derivations can be found in Supplemen-
tary Texts 1.1. (see Supplementary Data available online
at http://bib.oxfordjournals.org/).

Then, the conditional probability of a gene’s pseudob-
ulk across all K cell types has the following form:

l(y|x; θ) =
K∏

k=1

f (yk|xk; θ). (8)

MRF Model
A gene’s DE states across cell types are not independent.
For example, if a gene is differentially expressed in nat-
ural killer cells, it is likely that the gene is also a DE
gene in group 1 innate lymphoid cells (ILC1) due to their
functional similarities [17, 30]. In order to incorporate
such cell-type dependency when conducting DE analysis,
we construct an MRF model based on the known cell-
type relationship network. In our model, for each gene,
the network is represented by an undirected graph G =
{V, E}, where V is the set of nodes representing the cell
types and E is the set of edges which correspond to
the relationships among cell types. More specifically, for
two cell types k and k′, if they are related, we write
k ∼ k′. For a specific cell type k, let Nk = {k′ : k ∼
k′ ∈ E} be the subset of cell types that are linked to
cell type k. Then, we propose to construct a pairwise
interaction MRF model with parameter (γ0, γ1, β) for each
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gene

p(x; γ0, γ1, β) ∝ exp(γ0n0 + γ1n1 − βn01), (9)

where n0 = ∑K
k=1(1−xk) denotes the number of cell types

at EE, n1 = ∑K
k=1(xk) represents the number of cell types

at DE and n01 is the number of edges connecting two cell
types with different states. Here, γ0 and γ1 are free param-
eters and we do not put any constraints on them. β is the
parameter that captures the cell-type connections, and
we set β to be positive in order to penalize neighboring
cell types having different states.

Let γ = γ1 − γ0, and � = (γ , β), then based on any two
state assignments which only differ at cell type k, it is
easy to derive the conditional probability for cell type k,
given the states of all the other cell types

p(xk|x\xk; �) = exp{xkF(xk; �)}
exp{F(xk; �)} + 1

, (10)

where ‘means other than’, and

F(xk; �) = γ − β
∑

k′∈Nk

(2xk′ − 1). (11)

The estimation of � is set to maximize the conditional
likelihood based on the ‘coding method’ [31]

l(x; �) =
K∏

k=1

p(xk|x\xk; �)

=
K∏

k=1

exp{xkF(xk; �)}
exp{F(xk; �)} + 1

. (12)

Parameter estimation based on ICM
The parameter set θ for the Poisson–Gamma model and
the � for the MRF model need to be estimated simulta-
neously in order to conduct the inference on the latent
states x for the K cell types. Here, we adopt the ICM algo-
rithm proposed by Besag [29] to estimate those parame-
ter sets. For each gene, the algorithm proceeds as follows:

(i) Initialization: Obtain initial estimated states x̂ from
any established DE method.

(ii) Estimation of θ : Obtain maximum likelihood esti-
mates from l(y|x̂; θ), based on Equation 8.

(iii) Estimation of �: Maximize the conditional likelihood
l(x̂; �) [see Equation 12] based on the current x̂ to
obtain �̂.

(iv) Update x: Perform one round of ICM using the cur-
rent estimated values of x̂, θ̂ and �̂ to get an updated
x. In particular, we choose xk = 1 or xk = 0, whichever
maximizes the conditional probability

P(xk|y, x̂\x̂k) ∝ f (yk|xk; θ̂)p(xk|x̂\x̂k; �̂). (13)

(v) Repeat steps (2)–(4) until convergence or for a fixed
number of iterations.

The resulting x̂ can be seen as an approximate of the
true latent states, and more technical details can be
found in Supplementary Texts 1.2. (see Supplementary
Data available online at http://bib.oxfordjournals.org/).

Simulation Studies
Simulation setup
A simulation study was performed to evaluate the per-
formance of MARBLES. To simulate the cell-type relation-
ship network, we set the number of cell types to be six,
and randomly selected 50% of the cell type pairs to be
connected. Both the number of cell types and connectiv-
ity were selected to match the Parkinson’s disease (PD)
data in our real data application in section 4.3, which
is a single-nucleus RNA-seq (snRNA-seq) dataset of the
brain cortex tissue consisting of six cell types from 12
individuals divided into PD and healthy control (HC)
groups. Then, to simulate the latent states X for each
gene across cell types, we initialized a random set of
cell types to be DE and the rest of the cell types to be
EE, resulting in X0. Next, based on the cell-type network
structure, starting from X0, we performed Gibbs sampling
five times to get the final latent states X. In each cycle
of the Gibbs sampling, the latent states were updated
entrywise according to Equation (10). Here, we set � =
(−10, 11) which were the modes of the distributions of
the PD data parameter estimation.

Next, given X, we simulated the count data. To explic-
itly take into account the individual effects as well as
the cell-type effects, we adopted the simulation model
from the muscat [19] and incorporated our cell-type rela-
tionship network, yielding a new simulation model which
consists of the following steps:

(i) Estimation of negative binomial (NB) parameters
based on the reference PD data. To better set the
baseline, we only chose the six HC individuals as our
reference for simulation. Then, the cell-type- and
sample-specific means, dispersion and the library
size for the NB distribution were estimated from the
reference dataset.

(ii) Sampling count data based on the cell-type rela-
tionship network. For each gene and cell type, we
assigned the latent states (DE or EE) according to
X. If a gene in a cell type was DE, we sampled a
log fold change (logFC) from a Gamma distribution
with α = 4 and β = 4/τ , where τ was the average
logFC across genes and cell types. For a DE cell type
in a specific gene, it had equal probability of being
up-regulated or down-regulated. For EE cell types,
counts from the two conditions were sampled from
the same mean. And for DE cell types, the mean of
a random condition was multiplied by the result-
ing fold change. Thus, the baseline multi-cell type,
multi-sample count data can be sampled from the
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resulting distributions. More details can be found in
their original paper.

Model benchmarking comparison
The number of genes G was set to be 1000. To test
the model robustness and also the ability to detect DE
genes in single cell data at different scales or levels of
complexity, we varied three parameters nc (Scenario 1),
ns (Scenario 2) and τ (Scenario 3), where nc is the number
of cells of each cell type in each sample, ns represents the
number of samples in each condition and τ is the average
logFC mentioned in the previous section. In Scenario 1, nc

ranges from 100 to 1000, τ is chosen to be 2 and ns be 4. In
Scenario 2, we chose ns to be between 3 and 12, nc is fixed
to be 150 and τ to be 2. In Scenario 3, τ varies from 1.2
to 3.8, nc is 150 and ns is 4. Currently, there are no gold
standard methods for detecting DE genes [32, 33], and
the agreement among those most widely used algorithms
is relatively low [33]. We initialized our models using (i)
three commonly used bulk methods, DESeq2 [6], edgeR
[7] as well as limma-voom [8, 9], (ii) the ensemble method
scDEA [15] and (iii) the individual single cell methods
considered in scDEA, including BPSC [34], DEsingle [35],
monocle [36], scDD [13], T-test [37], Wilcoxon test [38],
SeuratBimod [39, 40] and zingeR.edgeR [41]. In addition,
to test the model robustness against different initializa-
tions X̂, we also initialized MARBLES with (iv) random
states. For method sets (i) and (iv), we ran simulation
under all three scenarios and repeated the simulation
50 times, whereas for the method sets (ii) and (iii), due
to the runtime and memory constraints, we only tested
them on Scenario 1 with five repeats. The reason we
specifically chose the method set (i) is that these meth-
ods are all tailored for bulk RNA-seq data and thus fit our
model assumption where we modeled the distribution of
the cell-type-specific pseudobulk data to account for the
sample variation. Therefore, this approach is adequate to
benchmark the performance of our method.

As for the DE gene detection threshold, we set it to
be the locally Benjamini and Hochberg (BH) adjusted P-
value less than 0.05, and abs(logFC) > τ/2. Here, locally
means the multiple testing correction was performed on
each of the cell-type-level test (n = G), in order to be
less conservative and have a higher sensitivity [19]. Since
for our model, the outputs are the latent states (DE or
EE) instead of the P-values, we only applied the second
threshold as our criteria for MARBLES.

Results
Simulation studies
The simulation results for method set (i) Scenario 1 are
shown in Figure 2, those for Scenarios 2 and 3 are shown
in Supplementary Figures 1 and 2 (see Supplementary
Data available online at http://bib.oxfordjournals.org/).
In each Scenario, we compared the performance of
DESeq2, edgeR and limma-voom alone (w/o MRF), against
MARBLES initialized with those methods (w/ MRF),

in terms of sensitivity, specificity and false discovery
rate (FDR). In general, the three methods had similar
performance in different scenarios, and so did our
model when initializing with those methods’ estimates.
In Scenario 1 (Figure 2), it is not surprising that as nc

increases the performance of all the models improves,
but MARBLES consistently shows much higher sensi-
tivity, comparable specificity and well-controlled FDR
(less than 0.05). Additionally, the model was very robust
when for different ns and had the best performance (Sup-
plementary Figure 1, see Supplementary Data available
online at http://bib.oxfordjournals.org/). In terms of τ ,
simulation results show that MARBLES was comparable
with the other three methods when τ was around 1.6,
and continued to improve when τ increased, which was
within the range of the current scRNA-seq datasets (Sup-
plementary Figure 2, see Supplementary Data available
online at http://bib.oxfordjournals.org/). The results for
MARBLES initialized with method sets (ii) and (iii) are
in Supplementary Figures 3 and 4 (see Supplementary
Data available online at http://bib.oxfordjournals.org/),
respectively, where MARBLES also outperformed all the
other methods in terms of sensitivity, had a compa-
rable specificity and well-controlled FDR. Additionally,
the random initialized model results are shown in
Supplementary Figure 5 (see Supplementary Data
available online at http://bib.oxfordjournals.org/), and
although comparable sensitivity can be obtained using
randomized X̂, the standard deviations of specificity and
FDR are much larger under all three settings, which
shows the benefit of using the outputs from other DE
methods for MARBLES to get more stable results.

Application to LPS mouse cortex data
The performance of MARBLES was first evaluated on
a mouse cortex snRNA-seq dataset in Crowell et al.
[19]. LPS is known to cause neuro-inflammation and
neuronal cell death in the brain [42, 43]. This dataset
has already been preprocessed as well as annotated, and
contains four control (Vehicle) and four LPS-treated mice
(Figure 3A bottom). Since we wanted to focus on neurons
and glial cells, we only selected excitatory neurons,
inhibitory neurons, astrocytes, microglia, oligodendro-
cyte progenitor cells (OPCs) and oligodendrocytes for
downstream analyses (Figure 3A top), resulting in 11
076 genes and 24 381 cells. The cell-type relationship
was determined by domain knowledge to represent the
similarity and cell lineage (Figure 3B). After aggregating
the data into cell-type-specific pseudobulk, we applied
MARBLES initialized with both the edgeR (edgeR-
MARBLES) and the scDEA (scDEA-MARBLES) results. Due
to the high demand of memory and runtime for scDEA
(Figure 5), only 25% of the cells from each cell type were
subsampled to feed into the scDEA algorithm. Here, the
threshold for DE gene detection was set to be abs(logFC)
> 1, and the gene expression in a specific cell type was
larger than the 40th percentile of the cell-type-specific
gene mean expression across samples of all genes and
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Figure 2. Simulation results for method set (i) under Scenario 1. The sensitivity, specificity and FDR are plotted under different ncs for DESesq2, edgeR,
limma-voom alone (w/o MRF) or for the MARBLES model initialized with those methods (w/ MRF).

all cell types. As for edgeR and scDEA, similar to the
simulation settings, an additional requirement is that the
BH adjusted P-value being less than 0.05. The distribution
of the estimated parameter � for the edgeR-MARBLES
model across all genes is shown in Supplementary
Figure 6A (see Supplementary Data available online
at http://bib.oxfordjournals.org/). edgeR-MARBLES and
scDEA-MARBLES identified 554 and 582 DE genes in
at least one cell type, whereas edgeR and scDEA only
detected 373 and 527 ones, respectively. Figure 3C is
the UpSet [44] plot showing the total number of genes
(horizontal bars), and unique DE genes for each cell
type as well as the overlap DE genes across cell types
(vertical bars and lines) identified by edgeR-MARBLES.
Astrocytes had the largest number of DE genes, followed
by microglia, and neurons had relatively small sets of DE
genes. Also, most genes were cell-type specific, but the
cell types within glial cells or neurons also share some
genes, as expected. We further investigated the directions
of the shared DE genes between similar cell types to see if
edgeR-MARBLES can indeed borrow information across

these cell types to find biologically meaningful genes,
and we found that all the genes shared the same logFC
direction (Supplementary Figure 6B, see Supplementary
Data available online at http://bib.oxfordjournals.org/),
although the algorithm itself does not impose the
constraint of the DE direction. The exact logFC can be
found in Supplementary Table 1 (see Supplementary
Data available online at http://bib.oxfordjournals.org/).
In addition, to test model robustness and to consider
the situation where the true cell-type relationships
are unknown, four alternative cell-type networks were
constructed (Supplementary Texts 1.3, Supplemen-
tary Figure 7A–D, see Supplementary Data available
online at http://bib.oxfordjournals.org/), based on which
we ran edgeR-MARBLES. Overall, the numbers of DE
genes identified by the four alternative models were
similar to the ones returned by the main model
(Supplementary Figure 7E, see Supplementary Data
available online at http://bib.oxfordjournals.org/). Note
that in the fourth alternative network (Supplementary
Figure 7D, see Supplementary Data available online
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Figure 3. edgeR-MARBLES results on the LPS mouse cortex data. (A) The UMAP plot of the LPS mouse dataset colored by cell type (top) and treatment
condition (bottom). (B) The cell-type relationship network among these cell types which was built based on domain knowledge. (C) The total number of
DE genes identified by MARBLES for each cell type (horizontal bar plots) and the overlap among cell types (vertical bar plots and lines). (D) Venn diagrams
showing the gene sets identified by edgeR alone or MARBLES for each cell type. (E) The top IPA pathways of the DE genes in microglia identified by both
edgeR and MARBLES (Intersection) or MARBLES only (MRF only).

at http://bib.oxfordjournals.org/), oligodendrocyte is
disconnected from the rest of the cell types, which
may explain why this model identified the smallest
set of DE genes for this cell type (Supplementary
Figure 7I, see Supplementary Data available online at
http://bib.oxfordjournals.org/). Nevertheless, the cell-
type-specific DE genes resulted from the five models
are quite similar for other cell types (Supplementary
Figure 7F–H, J-K, see Supplementary Data available
online at http://bib.oxfordjournals.org/), demonstrating
MARBLES’s robustness to network misspecification.

Next, we clustered all the edgeR-MARBLES DE genes
from the main model according to their cell-type-specific
logFC using the consensus clustering through M3C [45].
Three clusters were returned and most of the genes in
cluster 3 were upregulated in LPS mice especially in glial
cells (Supplementary Figure 6C, see Supplementary Data
available online at http://bib.oxfordjournals.org/) and
related to immune responses similar to previous studies
[19] (Supplementary Figure 6D, see Supplementary Data
available online at http://bib.oxfordjournals.org/). Then,
we compared the number of DE genes identified by
edgeR and edgeR-MARBLES, with edgeR in yellow and

edgeR-MARBLES in blue. Utilizing cell-type relationship
network, edgeR-MARBLES could detect more genes than
edgeR for all the cell types (Figure 3D), and similar results
were also found between scDEA and scDEA-MARBLES
(Supplementary Figure 6A, see Supplementary Data
available online at http://bib.oxfordjournals.org/). The
complete list of DE genes can be found in Supplementary
Table 2 (see Supplementary Data available online at
http://bib.oxfordjournals.org/).

Furthermore, to gain more biological insights from
the DE genes, we performed canonical pathway analysis
using the Ingenuity Pathway Analysis (IPA) [46] for
each cell type based on either the overlap genes
between edgeR/scDEA and MARBLES (Intersection), or
the novel genes identified by MARBLES alone (MRF
only). The pathways with BH corrected P-value less
than 0.05 were considered significant. The results for
microglia are shown in Figure 3E and Supplementary
Figure 6B (see Supplementary Data available online at
http://bib.oxfordjournals.org/) as an example. For the
edgeR/MARBLES comparison, not surprisingly, using the
intersection genes, many immune-related pathways
were identified [47–49]. For example, triggering receptor
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expressed on myeloid cells 1 (TREM1), which is related to
microglial maladaptive responses, shows a significant
increase following the induced brain inflammation
cause by LPS [50, 51], and also LPS can be a stimulus for
microglial activation, causing the elevated expression of
the toll-like receptors (TLR) [52, 53], the enhanced secre-
tion of the neural damage correlated proinflammatory
molecule interleukin 6 (IL-6) [54, 55]. Besides that, our
model identified an additional set of pathways, of which,
interferon regulatory factor (IRF) activation in microglia
is critical for inflammatory response mediation in the
brain [56, 57], high amount of nitric oxide synthase
(iNOS) can be induced in LPS-stimulated microglia [58,
59] and JAK/STAT signaling is one of the pathways that
can induce microglia activation upon LPS stimulation [54,
60]. Likewise, scDEA-MARBLES identified extra immune-
related pathways, such as Th17 activation pathway
[61], JAK/STAT signaling and IL-13 signaling pathway
[62], all of which have been found to be associated
with neuroinflammation. The pathways inferred from
both sets of genes for each cell type are provided
in Supplementary Table 3 (see Supplementary Data
available online at http://bib.oxfordjournals.org/). Taken
together, our model can not only find genes that are in
agreement with the establish method but also detect
novel genes which are related to biologically meaningful
pathways.

Application to the PD human prefrontal cortex
data
Finally, we applied our model to a single cell dataset
containing post-mortem human brain tissue from the
prefrontal cortex of six PD patients (denoted by PD142,
PD148, PD151, PD197, PD199 and PD208) and six healthy
controls (HC) (denoted by HC07, HC10, HC101, HC13,
HC30 and HC99) in a recent study [18]. We filtered out
T cells and endothelial cells which only made up 1.13%
of the total population (Figure 4A and B, Supplementary
Figure 9A, see Supplementary Data available online at
http://bib.oxfordjournals.org/), resulting in 15 891 genes
and 76 212 cells. Then, we applied the same cell-type net-
work (Figure 3B) to conduct the MARBLES analysis. Since
edgeR resulted in no DE genes, we initialized our edgeR-
MARBLES model with all EE states and identified 630 DE
genes expressed in at least one cell type. On the other
hand, scDEA (25% subsampling) and scDEA-MARBLES
discovered 511 and 631, respectively (Supplementary
Figure 9D, see Supplementary Data available online at
http://bib.oxfordjournals.org/). Supplementary Figure
9B and C (see Supplementary Data available online
at http://bib.oxfordjournals.org/) show the inferred �

parameter distribution of the two models, and the
complete set of genes identified for both models can
be found in Supplementary Table 4 (see Supplementary
Data available online at http://bib.oxfordjournals.org/).
The edgeR-MARBLES results are shown in Figure 4F,
where microglia had the most DE genes, and the two
types of neurons shared the largest number of genes.

Similarly, we looked into the logFC direction of the DE
genes between related cell types and found that most
of the genes were of the same direction (Supplementary
Figure 9E, see Supplementary Data available online at
http://bib.oxfordjournals.org/), and the exact logFC can
be found in Supplementary Table 5 (see Supplementary
Data available online at http://bib.oxfordjournals.org/).
Then, we examined the DE genes by plotting the mean of
the PD pseudobulk expression against those for the HC
individuals for each gene in each cell type (Figure 4C–E,
Supplementary Figure 9F–H, see Supplementary Data
available online at http://bib.oxfordjournals.org/) and
found that many of them are associated with PD based
on previous studies. For example, metallothioneins 1G
(MT1G) was found in PD frontal cortex and expressed
by astrocytes to protect neurons [63, 64]. Also, heat
shock response genes HSPA1A were downregulated in
PD patients neurons [18, 65], and our results suggest that
they are also DE genes in OPCs and oligodentrocytes, but
upregulated. Morevoer, dual specificity phosphatase 1
(DUSP1) was shown to be upregulated in PD to overcome
neuron damage [66, 67].

Similarly, we carried out the IPA analysis to dis-
cover if any known or novel pathways were enriched.
Employing the same filtering criteria, we were able
to identify 23 pathways for microglia (Supplementary
Table 6, see Supplementary Data available online at
http://bib.oxfordjournals.org/) and no pathways for other
cell types, and Figure 4G shows the top 10 pathways.
For instance, studies have shown that unfolded protein
response signaling is upregulated in microglia in several
neurodegenerative diseases [68, 69]. As expected, the
peripheral concentrations of Interleukin 10 (IL-10) was
found higher in PD patients [70, 71]. Also, our method
indicates that glycolysis, which was reported to be
upregulated in microglial cells in Alzheimer’s disease
patients to regulate the innate inflammatory response
[72, 73], could also be activated in response to PD
pathology.

Discussion
In this paper, we developed a powerful method MARBLES
to conduct DE analysis between conditions for scRNA-
seq data, by borrowing information across cell types
using the MRF. There are two key differences between
our model and another MRF method recently developed
by us [21]. The first one is that instead of modeling the
distribution of the statistics such as P-values rendered
from other methods, we directly captured the signals
in the data using a Poisson–gamma distribution. And
the other is that we modeled all the genes instead of
just highly variable ones which may introduce method-
specific biases [1, 74, 75]. For the DE state inference,
we implemented the ICM algorithm, the initialization
of which are the results from existing and well-known
methods, indicating that MARBLES can not only integrate
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Figure 4. edgeR-MARBLES results on the PD human prefrontal cortex data. (A) The MDS plot of the cell-type-specific pseudobulk-level PD data colored
by cell type and shaped by disease condition. (B) Cell-type proportions in each individual. (C–E) Scatter plots of the pseudobulk-level mean expression
of each gene for PD and HC in astrocytes (C), excitatory neurons (D) and inhibitory neurons (E). Top 10 DE genes based on mean expression value of the
pseudobulk data in log scale are shown for astrocytes and excitatory neurons, and OPCs only renders five DE genes. (F) The total number of DE genes
identified by MARBLES for each cell type (horizontal bar plots) and the overlap among cell types (vertical bar plots and lines). (G) The top ten microglia
IPA pathways of the DE genes identified by MARBLES.

the outputs from other methods but also extract addi-
tional information by directly modeling the pseudobulk
data.

Simulation results show that our method can achieve
a high statistical power compared with the other well-
known methods and is able to simultaneously control the
FDR. Also, MARBLES shows robustness to the number of
samples and cells, as well as the logFC. Results from the
LPS data analysis suggest that our method is capable of
finding the same gene sets as the established methods
and can also identify novel genes and pathways that
are related to the biological problems that are being
studied. In addition, the results from the four alternative

cell-type networks suggest that MARBLES is robust to
network misspecification and can still identify mean-
ingful genes by constructing affinity/distance-based net-
works when the cell-type relationship of the dataset
being studied is unknown. Meanwhile, for the PD data,
one possible reason why the logFC of some of the shared
DE genes between cell type pairs are not the same is
that microglia are immune cells in the brain, whereas
astrocytes and oligodendrocytes are supportive cells, so
the impact of the PD pathology on these cell types is
not the same. Besides, edgeR could find no DE gene,
which might be caused by two factors. The first one is
that the differences between conditions in mice are more
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Figure 5. Real data runtime comparison.

significant than in humans since the neural inflamma-
tion in mice is induced, whereas the cause of PD is more
complicated and is still an ongoing research [76, 77]. In
addition, although the dataset contains many cells, the
number of individuals might not be sufficient for those
methods to conduct DE gene analysis. Therefore, given
the fact that our method has proven to be reliable and
more powerful in both simulations and the LPS data
application, the genes found by MARBLES in the PD data
are highly likely to be PD-related genes and potential
drug targets. Additionally, MARBLES achieved much rea-
sonable runtimes than scDEA for both datasets, although
due to the scDEA’s high memory and runtime demand,
we only subsampled 25% cells from each cell type for
both datasets to run the algorithm.

Future works can focus on three aspects. The first
one is that the gene–gene relationship network could
be incorporated into this framework to capture the bio-
logical pathway information [21, 23, 25]. Additionally,
MARBLES can include weights to increase the network
resolution. Specifically, if we have several subtypes under
a specific cell type, the edges within the subtypes should
have larger weights than the edges connecting different
cell types. Finally, MARBLES could be extended to have
more DE states to include the DE directions, which means
that the n1 could be devided into n+ and n−, representing
the upregulated and downregulated genes, respectively.

Key Points

• We propose MARBLES, a Markov Random Field model-
based approach for differentially expressed gene detec-
tion from scRNA-seq data.

• The method can capture cell-type relationships and
account for sample variation by modeling cell-type-
specific pseudobulk data.

• Simulation results showed that MARBLES is more power-
ful than existing methods and applications to real-data
identified novel disease-related DE genes and biological
pathways from two scRNA-seq datasets.

Supplementary Data
Supplementary data are available at Briefings in Bioinfor-
matics online.
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