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Abstract

Background: Royston-Parmar flexible parametric survival models (FPMs) can be fitted on either the cause-specific
hazards or cumulative incidence scale in the presence of competing risks. An advantage of modelling within this
framework for competing risks data is the ease at which alternative predictions to the (cause-specific or
subdistribution) hazard ratio can be obtained. Restricted mean survival time (RMST), or restricted mean failure time
(RMFT) on the mortality scale, is one such measure. This has an attractive interpretation, especially when the
proportionality assumption is violated. Compared to similar measures, fewer assumptions are required and it does not
require extrapolation. Furthermore, one can easily obtain the expected number of life-years lost, or gained, due to a
particular cause of death, which is a further useful prognostic measure as introduced by Andersen.

Methods: In the presence of competing risks, prediction of RMFT and the expected life-years lost due to a cause of
death are presented using Royston-Parmar FPMs. These can be predicted for a specific covariate pattern to facilitate
interpretation in observational studies at the individual level, or at the population-level using standardisation to
obtain marginal measures. Predictions are illustrated using English colorectal data and are obtained using the Stata
post-estimation command, standsurv.

Results: Reporting such measures facilitate interpretation of a competing risks analysis, particularly when the
proportional hazards assumption is not appropriate. Standardisation provides a useful way to obtain marginal
estimates to make absolute comparisons between two covariate groups. Predictions can be made at various
time-points and presented visually for each cause of death to better understand the overall impact of different
covariate groups.

Conclusions: We describe estimation of RMFT, and expected life-years lost partitioned by each competing cause of
death after fitting a single FPM on either the log-cumulative subdistribution, or cause-specific hazards scale. These can
be used to facilitate interpretation of a competing risks analysis when the proportionality assumption is in doubt.
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Background
In observational studies of time-to-event data, researchers
are often interested in decomposing the overall proba-
bility of death into component parts due to the event
of interest, and competing, but mutually exclusive out-
come events. For example, in cancer studies, it is of
interest to partition the overall probability of death into
the probability of death due to cancer and the probabil-
ity of death due to other causes. These are referred to
as cause-specific cumulative incidence functions (CIFs)
and are often chosen as the primary estimand of inter-
est. The cause-specific CIF gives the probability of dying
from the cause of interest at a particular time whilst also
being at risk of dying from other causes of death [1, 2].
In order to arrive at these quantities and to circumvent
bias, methods that appropriately account for the compet-
ing nature of the events must be applied. The restricted
mean failure time (RMFT) has been proposed as an alter-
native summary measure that is based on the area under
the all-cause probability of death up to a specific time-
point[3]. In an analogous way to the decomposition into
cause-specific CIFs, the RMFT can be further partitioned
to give the expected number of life years lost due to a
specific cause before a given time-point. In this paper,
we describe how the aforementioned measures can be
obtained using a flexible parametric model (FPM) as the
estimation approach by modelling covariate effects either
using (1) the direct relationship with the cause-specific
CIF on the subdistribution hazards (SDHs) scale, or (2)
modelling all cause-specific hazard functions (CSHs) to
obtain each cause-specific CIF [4–7]. Choosing FPMs as
the estimation method allows us to estimate effects con-
ditional on covariates, and effects averaged over specific
covariate distributions.
Forming contrasts to compare exposure groups is often

a further key focus in many large population-based stud-
ies. A common approach would be to report either cause-
specific hazard ratios (HRs), which measures the effect of
an exposure group on the rate of dying from a cause of
interest, or sub-distribution hazard ratios (SHRs), which
measures the effect of an exposure group on the risk of
dying from a cause of interest, whilst assuming that the
cause-specific HR or SHR was constant over time. How-
ever, it is well known, for instance, that the HR for tumor
size in cancer studies will vary over time since diagno-
sis, with stronger relative effects shortly after diagnosis
[8–10]. When non-proportional hazards are present i.e.
when the HR is expected to change over time, it has
been argued that the HR as the target estimand is not
appropriate and there are further issues in making causal
inferences using HRmeasures due to its non-collapsibility
as a relative risk measure [11]. As an alternative to the
HR, estimation of the difference in restricted mean sur-
vival time (RMST), also known as the restricted mean

lifetime (RMLT), as the primary estimand has been pro-
posed [12–19]. This, in contrast to the HR, is known as
a collapsible measure [11, 20]. Furthermore, this single
summary measure can still be presented when relaxing
the assumption of proportional hazards within the model-
building process. These can either be presented as con-
ditional differences, which is the average covariate effect
on the individual, or marginal differences, which is the
average covariate effect on the population [21].
In the presence of competing risks, Andersen [3] intro-

duces the analogue to the RMST measure for the CIF
which gives the (total) number of years lost before a pre-
specified time, i.e. RMFT, and demonstrates how this can
be partitioned to give the expected number of life-years
lost due to each cause of death [22]. In his approach, he
estimates RMFT and expected number of life-years lost
using regression models with pseudo-observations [3, 23].
These models only allow prediction for specific quanti-
ties of interest and only at single time-points. Therefore
separate models must be fitted to estimate, for exam-
ple, either the cause-specific CIF or RMFT, when it may
be of interest to obtain both and at various time-points.
For instance, to allow comparability and to obtain the
entire picture of the impact of different groups on out-
come, it has been suggested that differences in RMST,
RMFT and therefore, expected number of life-years lost,
should be reported alongside their respective survival,
or cumulative incidence functions [24]. Alternatively, the
Royston-Parmar FPM approach for estimating RMST,
which is extended for competing risks to estimate parti-
tioned RMFT, as introduced in this paper, can be used
[25]. In contrast to more popular approaches, such as
the Cox model, a parametric estimate of the baseline
hazard function is obtained as part of the full likeli-
hood function. This is estimated using restricted cubic
splines (RCS), allowing easy prediction of absolute com-
parisons between key quantities of interest. What’s more,
standard errors for predictions can be estimated via the
delta method, which offers computational advantages in
larger data compared to approaches for non-parametric
and semi-parametric methods which use bootstrapping,
or jack-knife resampling methods [26]. Further advan-
tages include the easy inclusion of time-dependent effects
using interactions with RCS for relaxing the proportional
hazards assumption. Estimating both the baseline effects,
and time-dependent effects to model departures from
the baseline using splines allows a unified approach for
estimating all required parameters in order to obtain pre-
dictions of all quantities of interest. Therefore, we intro-
duce in this paper how RMFT as the chosen estimand
can be estimated using FPMs in the presence of com-
peting risks on either the CSHs or cumulative incidence
scale as the estimator [5, 7]. This extends on previous
work by Royston and Parmar where estimation in the
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presence of competing risks is not considered [16]. This
approach allows the researcher to obtain differences in
effect between exposure groups either conditional on a
set of covariates, or averaged over a covariate distribu-
tion, also known asmarginal estimates. Furthermore, both
marginal and conditional estimates can be obtained from
the same model where the prediction of marginal esti-
mates using standardisation is proposed [27, 28]. We,
therefore, further demonstrate how difference in marginal
estimates of RMFT as the chosen estimand for the com-
parison between covariate groups can be obtained within
FPMs for competing risks.
We begin with a brief review of competing risks in the

Overview of competing risks section and highlight par-
ticular interest in the cause-specific CIF. This is followed
by an introduction of RMFT as the chosen estimand in
Overview of restricted mean survival time for compe-
ting risks section along with other useful measure such as
expected life-years lost. The Flexible parametric survival
models section details FPM approaches for estimation in
the presence of competing risks. In the Estimation section,
we show how absolute differences between RMFT and
expected number of life-years lost are calculated to assess
the impact of a covariate. We further demonstrate how
these models can be used for easily obtaining marginal
estimates and associated contrasts using standardisation
in the Standardisation for marginal differences section.
For illustration of these various measures, English col-
orectal cancer data obtained from National Cancer Regis-
tration and Analysis Service (NCRAS) is analysed in the
Results: colorectal cancer survival in England section
where comparisons between the most and least deprived
colorectal cancer patients are made, accompanied by Stata
code for estimation in Appendix: Stata code for obtaining
predictions. Finally, the paper is concluded with a discus-
sion on the use and estimation of RMST in the presence
of competing risks within FPMs. Although we specifi-
cally consider application to cancer studies, where the
event of interest is death from cancer, the methods are
generalizable to other time-to-event data and therapeutic
areas.

Methods
Overview of competing risks
In the presence of competing risks, an individual is at risk
of failing from more than one event where the occurrence
of one event means that others cannot occur. In the con-
text of a cancer survival study, this is when a patient can
die from a multitude of other causes as well as the can-
cer itself. However, if the patient dies from one of these
other causes, it means that the time at which the patient
would have died from cancer is never observed. One of the
key quantities, and often the chosen estimand of interest
within this framework, is the cause-specific CIF [1].

Cause-specific CIF
Let T be a non-negative random variable for the time to
death from any cause. Furthermore, letD denote the cause
of death in the presence of k = 1, . . . ,K competing risks,
where D = 1, . . . ,K . It follows that the estimand, cause-
specific CIF, Fk(t), is defined as,

Fk(t) = P(T < t,D = k) (1)

This is interpreted as the probability of dying from cause
k by time t whilst also being at risk of dying from other
competing causes of death. Note here that the cause-
specific CIF is an improper distribution function since the
integral of Fk(t) at infinity is always less than 1 [3].
The target estimand, the cause-specific CIF, can be cal-

culated using either all k CSH functions, or by utilising the
one-to-one relationship between the cause-specific SDH
function. These are briefly introduced below.

Cause-specific hazards
The CSHs, hcsk (t), give the instantaneous mortality rate
from a particular cause k given that the patient is still alive
at time t in the presence of all the other causes of death
such that,

hcsk (t) = lim
�t→0

P[ t ≤ T < t + �t,D = k|T ≥ t)
�t

(2)

It follows that the target estimand, the cause-specific
CIF, can be calculated as a function of all k CSH functions,

Fk(t) =
∫ t

0
S(u)hcsk (u)du (3)

where S(t) = exp
(
− ∑K

k=1
∫ t
0 h

cs
k (u)du

)
is the all-cause

survival function.

Subdistribution hazards
Alternatively, Gray [29] introduces the SDH function for
cause k, hsdk (t), which offers a direct one-to-one relation-
ship with the cause-specific CIF estimand. This has the
following mathematical formulation,

hsdk (t) = lim
�t→0

P[ t ≤ T < t + �t,D = k|T ≥ t ∪ (T < t ∩ D �= k)
�t

(4)

which is interpreted as the instantaneous “sub”-rate of
failure at time t from cause k amongst those who are still
alive, or have died from any of the other K − 1 competing
causes excluding cause k [30].
This is not defined as a typical epidemiological rate since

the risk-set includes those that are either still alive or have
died from a competing cause of death. However, if indi-
viduals do not experience the competing event, then the
SDH rate and the CSH rate are both equivalent [31]. It
should be noted that, due to the nature of the risk-set in
the definition of a SDH, it is very difficult to interpret
[30, 32, 33].
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The cause-specific CIF estimand can be directly
obtained from the SDH for cause k using the standard sur-
vival transformation of the cumulative SDH function for
cause k, Hsd

k (t), such that,

Fk(t) = 1 − exp
[
−Hsd

k (t)
]

(5)

This shows that a one-to-one correspondence is main-
tained between the SDH function for a specific cause of
death and the cause-specific CIF.
The choice of which scale to model on depends

entirely on the research question to be answered which
would relate to other quantities specific to the modelling
approach that may be of interest. For instance, if primary
interest is in aetiological outcome, then the estimand of
interest would be on the CSH rates. For interest in prog-
nostic outcome, one may wish to quantify effects on the
risk of dying from a specific cause of death. In this case,
the estimand of interest would be the cause-specific CIF,
which can be obtained as function of all CSHs, or through
the SDH for cause k. Further discussion on this topic is
provided elsewhere [4, 34].

Overview of restricted mean survival time for competing
risks
The RMST measure quantifies the average survival, or
time lived, of a patient from time 0 up to a pre-defined
time-point, t∗. In the absence of competing risks, the
RMST before t = t∗,μ(t∗), of a random variableT is equal
to the expectation of min(T , t∗). RMST, in the absence of
covariates, can be expressed as the estimand,

μ(t∗) = E(min(T , t∗)) =
∫ t∗

0
S(u)du (6)

where S(t) is the all-cause survival function. If time is
measured in years, this is the average life-years lived
before time t∗. The choice of t∗ should be pre-determined
and clinically motivated, and will vary by, for example,
cancer types [15, 16]. This is also often chosen at maxi-
mum follow-up time [13, 35].
In addition to this, Andersen [3] proposes calculation of

the expected number of years lost before time t∗ such that
the estimand can be defined as,

L(0, t∗) = t∗ − E(min(T , t∗)) = t∗ −
∫ t∗

0
S(u)du (7)

Expected loss in life due to a cause of death
In the presence of competing risks, Andersen [3] shows
that the (total) number of years lost, L(0, t∗), can be
decomposed into the number of years lost due to each
cause k [22]. It follows that since,

S(t) = 1 −
K∑

k=1
Fk(t) (8)

then the RMST in Eq. 6 can be expressed as a function
of each cause-specific CIF through the following integral,

μ(t∗) = E(min(T , t∗)) =
∫ t∗

0
S(u)du =

∫ t∗

0
1 −

K∑
k=1

Fk(u)du

= t∗ −
∫ t∗

0

K∑
k=1

Fk(u)du

(9)

Equation 7 can also be written as a sum of the integral
of each cause-specific CIF such that,

L(0, t∗) = t∗ −
∫ t∗

0
S(u)du =

K∑
k=1

∫ t∗

0
Fk(u)du (10)

which may also be referred to as restricted mean fail-
ure time (RMFT). It follows that RMFT can be partitioned
where we have the estimand,

Lk(0, t∗) =
∫ t∗

0
Fk(u)du (11)

which gives the expected number of years lost due to
cause k before time t∗.

Flexible parametric survival models
For competing risks data, many adopt the cause-specific
Cox proportional hazards model, or the Fine & Gray
approach as the chosen estimator for the estimands
introduced in the Overview of competing risks and
Overview of restricted mean survival time for compe-
ting risks sections. Here, we propose the use of FPMs as
the chosen estimator in order to obtain the estimand of
interest. FPMs are increasing in popularity since the base-
line SDH or CSH function is estimated as part of a fully
specified likelihood function and allows the estimation
of various estimands from a single model [5, 7]. These
models were introduced for standard survival data (in the
absence of competing risks) on various scales by Royston
and Parmar [9] using a general link function, g(·), to bet-
ter capture and represent the behaviour of real world data.
To increase flexibility and more accurately capture com-
plex shapes of the cumulative hazard function, Royston
and Parmar [9] proposed the use of RCS (see Appendix A).
Under the assumption of proportional hazards, Ruther-
ford et. al [36] showed in simulations that FPMs more
accurately capture complex shapes of hazard functions.
They further illustrated that unbiased estimates of the
HRs were obtained. Given a vector of M knots, m, and
a vector of M − 1 parameters, γγγ , with a RCS function,
s(ln(t);γγγ ,m) we have that,

η = g(Gk(t | xk)) = sk(ln(t);γγγ k ,mk) + xkβββT
k (12)

where, β , is a vector of co-efficient parameters and, x, is a
vector of covariates.
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Equation 12 can also be easily extended for time-
dependent effects to model non-proportionality by fit-
ting interactions between the associated covariates and
the spline functions. Using this interaction, a new set of
knots, me, are introduced, which represent the eth time-
dependent effect with associated parameters αααe. If there
are e = 1, · · · ,E time-dependent effects, Eq. 12 can be
extended such that,

η = g(Gk(t | x)) = s(ln(t);γγγ ,m0) + xβββT

+
E∑
l=1

s(ln(t);αααl,ml)xl
(13)

Non-proportional hazards are a common occurrence in
studies with long follow-up time, or, in the context of can-
cer studies, when the effect of covariates (e.g tumor size,
or treatment) on cancer-related mortality varies over time
[8–10, 19]. FPMs, extended for time-dependent effects as
in the Equation above, have also been shown to accurately
capture complex shapes of the hazard function with time-
dependent effects i.e. where there is non-proportionality
in the hazards [37]. This result is consistent with what
was shown by Rutherford et. al. for FPMs without time-
dependent effects i.e. proportional hazards, as mentioned
above [36]. Further technical details on FPMs for stan-
dard survival data in the absence of competing risks can
be found elsewhere [9, 25, 38].
The models described in Eqs. 12 and 13 can be fitted

on either CSHs scale [7], where Gk(t | x) = Sk(t | x),
or cumulative incidence scale [5, 6], where Gk(t | x) =
1 − Fk(t | x), based on different link functions, g(·).
The relationship of these with the cause-specific CIF are
defined in the Cause-specific hazards and Subdistribu-
tion hazards sections. Therefore, it follows that, using
a complementary log-log link function, the correspond-
ing log-cumulative CSHs FPM (otherwise referred to as a
cause-specific FPM), is,

ηcsk = log
[− log [Sk (t | xk)]

] = log
[
Hcs
k (t | x)]

= sk(ln(t);γγγ k ,mk) + xkβββT
k

(14)

and can be fitted in a similar way to the standard FPM.
Alternatively, models for all k causes can be fitted simulta-
neously by restructuring the data as described by Hinch-
liffe et. al. [7].
The log-cumulative SDHs FPM for cause k (also known

as the flexible parametric cumulative incidence model, or
FPCIM), on the other hand is defined as,

ηsdk = log
[− log [1 − Fk (t | xk)]

] = log
[
Hsd
k (t | x)

]

= sk(ln(t);γγγ k ,mk) + xkβββT
k

(15)

and can be fitted using the approach outlined using either
the full likelihood function as described by Mozumder
et. al. [5] or by using time-dependent censoring weights,

similar to the Fine-Gray model, as detailed by Lambert
et. al. [6]. As previously mentioned, alternative link func-
tions are also available for models on either scale. See for
example, Lambert et. al. [6].

Estimation
Cause-specific cumulative incidence function
If modelling on the cumulative incidence scale using
SDHs, after fitting the FPCIM in Eq. 15, the cause-specific
CIF is obtained by the following,

F̂k (t | x) = 1 − exp
(
− exp

(
η̂sdk (t | x)

))
(16)

Alternatively, when modelling on the CSHs scale, after
fitting the cause-specific FPM in Eq. 14, and as shown in
Eq. 3, the integral below must be evaluated in order to
obtain the cause-specific CIF,

F̂k (t | x) =
∫ t

0
Ŝ (u | x) ĥcsk (u | x) du (17)

where the predicted CSH function is,

ĥcsk (t | x) = ds
(
log(t) | γ ,m0

)
dt

exp
(
ηcsk (t)

)
(18)

and the predicted all-cause survival function is,

Ŝ (u | x) =
K∏

k=1
exp

(
−

∫ t

0
ĥcsk (u | x)du

)
(19)

However, as the above integral is not of closed form,
numerical approximation techniques must be used. Here,
the Gauss-Legendre quadrature approximation method
is used [39]. Details of this method is provided in
Appendix B. Therefore, after fitting the cause-specific
FPM for each k causes, the predicted cause-specific CIF
at t1, · · · , t different time-points over an interval [0, t] is
approximated by applying Gaussian quadrature rules with
W (u) = 1 such that,

F̂k (t | x) =
∫ t

0
f ∗
k (u)du ≈ t − 0

2

m∑
i=1

w′
if ∗
k

(
t − 0
2

u′
i +

t + 0
2

| x
)

(20)

where, f̂ ∗
k (t), is the “sub”-density function such that,

f̂ ∗
k (t | x) = Ŝ (t | x) ĥcsk (t | x) (21)

Restrictedmean failure time and expected number of
life-years lost due to each cause of death
If RMFT is the chosen target estimand of interest, this can
be predicted as the integral under the all-cause CIF such
that,

L̂
(
0, t∗

) =
∫ t∗

0

K∑
j=1

F̂j(u)du =
K∑
j=1

∫ t∗

0
F̂j(u)du (22)
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where the predicted expected number of life-years lost
before time t∗ due to each cause k is,

L̂k
(
0, t∗ | x) =

∫ t∗

0
F̂k(u | x)du (23)

Again, as above in Eq. 17, as the integral is of closed-
form, we use the Gauss-Legendre quadrature approxima-
tion technique to numerically evaluate,

∫ t∗

0
F̂k(u)du ≈ t∗ − 0

2

m∑
i=1

w′
iF̂k

(
t∗ − 0

2
u′
i +

t∗ + 0
2

| x
)

(24)

It follows that the RMST can also be obtained by,

μ̂
(
t∗ | x) = t∗ −

K∑
j=1

L̂j
(
0, t∗

)
(25)

Conditional differences
In population-based studies, i.e. non-randomised stud-
ies, it may be of interest to make absolute or relative
comparisons between different covariate groups. As an
alternative summary measure, or estimand, to the HR, we
can calculate the difference in RMST between two covari-
ate groups, or the difference in expected loss in life due
to different causes [19]. Let X be a binary covariate that
denote the group of interest and Z be the set of measured
covariates with a specific covariate pattern zj. To estimate
the average number of life years gained in group X = 0
compared to group X = 1, we have that,

μ̂(t∗ | X = 1,Z = zj) − μ̂(t∗ | X = 0,Z = zj) (26)

Alternatively, we can also estimate the expected reduc-
tion in the loss (or gain) in life due to cause k by,

L̂k(0, t∗ | X = 1,Z = zj) − L̂k(0, t∗ | X = 0,Z = zj)
(27)

Partitioning in this way is particularly useful if covari-
ates act differently on different causes of death. For exam-
ple, those from a particular covariate group may lose (or
gain) some life-years due to a specific cause of death in
comparison to another covariate group.
Absolute measures of gains or losses in years of life

are presented above as potential estimates of interest. To
obtain relative measures, the ratio between the RMST
estimates, or expected loss in life due to cause k for the
two covariate groups are calculated. Extension can also be
made for comparisons on a unit increase in a continuous
covariate Z, and for time-dependent effects.

Standardisation formarginal differences
Regression standardisation is part of the estimator that
can be used to obtain marginal predictions for different

covariate groups at each observation given a set of mea-
sured confounders [27, 28]. Here, we apply standardisa-
tion to RMST and cause-specific CIFs estimates obtained
from a flexible parametric competing risks survival model.
In this case, it is of interest to compare the average life-
years lived before time t∗ between two different groups
[17, 18]. This is done by obtaining marginal estimates
which are calculated as an average over every individual
in the observed dataset. This enables comparisons that
solely focus on the differences between the two groups
of interest by forcing the same covariate distribution over
multiple confounders. If all exposures and confounders
are measured at baseline, this is essentially equivalent to
the G-formula [40]. For example, to compare males and
females, estimates must be standardised by age in order
to force the same age distribution for both males and
females. Extension can be made for multiple covariates
and other potential confounders. This is calculated using
an average of RMST estimates for each patient to sum-
marise the risk for a certain covariate group. For instance,
let X be an indicator variable that denotes the group of
interest and Z be the set of measured covariates. Then
the predicted RMST estimate for the ith individual, where
i = 1, . . . ,N , is,

μ̂i = t∗ −
∫ t∗

0

K∑
k=1

[̂
Fk(u | X = x,Z = zi)

]
du (28)

whereX is fixed to a specific value, x, andZ is the observed
covariate pattern, zi, for the ith individual. We can then
average over the marginal distribution of Z for all the pre-
dicted restricted mean life estimates obtained for each
individual i such that,

E(μ̂stand | X = x,Z) = 1
N

N∑
i=1

μ̂i (29)

This allows us to calculate marginal differences between
covariate groups. For example, between group X = 0 and
group X = 1, the marginal difference in RMST is,

E(μ̂stand | X = 1,Z) − E(μ̂stand | X = 0,Z) (30)

In recent literature, some have advocated the use of
RMST as a causal measure [41, 42]. For a causal inter-
pretation, the consideration of additional assumptions
are required and by adjusting for all appropriate con-
founders, these measures can be extended and interpreted
as causal effects and thus, used as an estimand [21]. This
is because, as shown above, they provide marginal com-
parisons averaged over the same covariate distribution by
using standardisation. Standardisation, otherwise referred
to as G-computation, has also been highlighted by Gran
et al. [43] as an approach for obtaining useful summary
causal-effect measures in more complicated multi-state
models. However, this is beyond the scope of the paper
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and estimation of causal effects are not explicitly dis-
cussed here. Note also that we only consider time-fixed
confounders and that there are additional complexities
when considering time-dependent risk-groups [44].

Results: colorectal cancer survival in England
Data
Data was obtained from the National Cancer Registration
and Analysis Service (NCRAS) to illustrate the estima-
tion of various measures introduced in the Overview of
restricted mean survival time for competing risks section.
The data consist of English colorectal (ICD10: C18, C19
and C20) male and female cancer patients aged between
45 and 90 years old. Patients are diagnosed on or after
1998 are included with follow-up restricted to either 10
years or censored at 31 Dec 2013, whichever comes first.
Analysis is further restricted to patients from the most or
least deprived groups as defined by the upper and lower
quintiles of the English index of multiple deprivation 2010
(IMD 2010). These groups are selected to simplify analy-
sis and to make for easy illustration of presenting different
metrics to allow comparisons between the two groups.
The final data consisted a total of 159,022 individuals
of which 48,845 die from cancer, 7,987 from cardiovas-
cular disease (CVD) and 32,133 from other causes. In
Appendix C, summary statistics on the age distribution,
and number of patients in each deprivation and sex groups
are provided.

Model
For demonstration purposes, predictions are obtained
after fitting an FPCIM simultaneously for all k causes of
death and standard errors for confidence intervals (CIs)
are obtained using the delta method. However, predic-
tions are also available after fitting cause-specific FPMs.
This paper focusses on the various estimands we can
obtain from such models, namely, the RMSTmeasure and
expected life-years lost.
Models are fitted simultaneously for all k causes of

death using the approach of Lambert et al. [6] and Geskus
[45]. This fits the model after restructuring the data
and applying time-dependent weights that are obtained
parametrically to the censoring distribution of the com-
peting causes of death. Alternatively, using the approach
described by Jeong and Fine [46], models can be fitted
on individual-level data using the full likelihood function
[47]. Models for each of the causes of death include sex,
IMD 2010 deprivation group (upper and lower quintile
only) and a non-linear effect of continuous age using RCS
with 3 DF centred at 45 years old at diagnosis. Time-
dependent effects to relax the proportionality assump-
tions are included for sex, non-linear age and deprivation
group with 2 DF and 3 DF are used for the baseline
RCS function. In order to evaluate whether assuming

non-proportional (subdistribution) hazards was more
sensible, and is more consistent with the data, a likeli-
hood ratio test was performed. This compared the FPCIM
with time-dependent effects to relax the proportionality
assumption to the one without that assumed proportional
SDHs. The likelihood ratio test statistic was 752.94 and
the associated p-value was less than 0.0001. This shows
that relaxing the proportionality assumption leads to a sta-
tistically significant improvement in model fit. Note that
this is an illustrative model and we therefore omit formal
evalutation of the model performance. When evaluating
the model in practice, we recommend conducting a sensi-
tivity analysis, particularly in the selection of the number
of knots. This can be done by comparing the Akaike infor-
mation criterion and the Bayesian information criterion as
an informal guide to selecting the appropriate number of
knots and covariates [6].

Analysis of data with conditional estimates
Cause-specific cumulative incidence functions
Cause-specific CIFs are presented in Fig. 1 for male col-
orectal cancer patients. The probability of dying from can-
cer at 10 years from diagnosis for the most deprived male
patients is approximately 36.5% (95% CI: 35.5%, 37.5%) for
those aged 50 years old at diagnosis. This slightly increases
to approximately 40.5% (95% CI: 39.8%, 41.1%) for those
aged 80 years old at diagnosis. However, the largest change
is in the probability of dying from other causes and CVD
which have an increasing contribution to the probability
of dying from any cause for older male patients from the
most (and least) deprived groups. For instance, the prob-
ability of dying from any cause by 10 years from diagnosis
for the most deprived 50 year old male patients at diag-
nosis is 53.6% of which 17.1% is due to other causes and
CVD. In contrast, the all-cause probability of death for the
most deprived male patients aged 80 years old diagnosis
is much higher at 92.5%. However, although the probabil-
ity of dying due to cancer has only increased from 36.5%
to 42.5%, much of the overall probability of dying is due to
other causes (38.4%) and CVD (13.6%).
Absolute CIF differences between the most and least

deprived male patients aged 50, 65 and 80 years old at
diagnosis are presented on the third row of Fig. 1. This
shows that, for 50 year olds, the difference between CIFs
for the most and least deprived groups are similar for
deaths due to cancer and other causes. There is very little
difference between the two deprivation groups for deaths
due to CVD, however, this is due to a generally very low
probability of death due to CVD. On the other hand, for
older male patients, the difference in the probability of
dying from other causes and CVD between the most and
least deprived is larger and increases over time. This leads
to a greater disparity in the probability of dying from other
causes and CVD between the most and least deprived
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Fig. 1 Stacked cause-specific CIFs by deprivation group and CIF differences for male patients at specific ages

patients compared to the difference in the probability of
dying due to cancer. Furthermore, after approximately
1 year from diagnosis for 65 year olds, and 2 years for
80 year olds, the difference in the probability of dying
due to cancer for the most deprived compared to the
least deprived patients reduces. This change in difference
between the most and least deprived is greatest for the 80
year old male patients with cancer-specific CIF difference
reducing from approximately 4.6% (95% CI: 4.2%, 5.0%) at
1 year from diagnosis to 3.2% (95% CI: 2.6%, 3.7%) by 10
years from diagnosis.

Restrictedmean failure time and expected number of
life-years lost due to a particular cause of death
As discussed in the Overview of restricted mean survival
time for competing risks section, as a useful summary
measure, the RMST estimate can be obtained. This is
equivalent to the white area of the associated stacked plot
in Fig. 1 up to t∗ for a particular covariate pattern. Con-
versely, the area of the stacked areas give an estimate of
the RMFT. The area of each of the partitioned stacks for
each of the respective causes of death yield the expected

life years lost due to cancer, CVD and other causes. These
are presented for themost and least deprived 50, 65 and 80
year old male patients in Fig. 2. Each of the stacks repre-
sent the average life-years lived in total and life-years lost
due to a specific cause. The plots here present life-years
lost and lived before different points in time up to 10 years
from diagnosis. However, particular interest here is in the
life-years lived, or lost, before 10 years from diagnosis. For
example, total average life-years lived before 10 years from
diagnosis for the most deprived 50 year old male patients
is 3.99 years (95% CI: 3.84 years, 4.14 years). Of the 6.01
years of the total life-years lost, 2.72 years (95% CI: 2.60
years, 2.85 years) are due to cancer, 0.07 years (95% CI:
0.06 years, 0.09 years) are due to CVD and 1.19 (95% CI:
1.11 years, 1.28 years) due to other causes.
Table 1 presents differences in life-years lost due to each

cause of death before 10 years from diagnosis between
the most and least deprived groups for 50, 65 and 80 year
olds, along with their associated 95% CIs. The absolute
estimates of expected life-years lost for the most and least
deprived patients at the individual ages are also presented.
This provides us with an understanding of how many
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Fig. 2 Stacked plots of expected life-years lost partitioned by each cause of death for male patients

Table 1 Expected LYL for each cause for males aged 50, 65 and 80 years old at diagnosis

Most Deprived Least Deprived Difference

LYL 95% LCI 95% UCI LYL 95% LCI 95% UCI LYL 95% LCI 95% UCI

50 Yrs Old

Cancer 2.724 [2.604, 2.848] 2.407 [2.299, 2.519] 0.317 [0.277, 0.357]

CVD 0.069 [0.055, 0.088] 0.056 [0.044, 0.071] 0.014 [0.009, 0.018]

Other causes 1.195 [1.113, 1.282] 0.864 [0.804, 0.929] 0.330 [0.300, 0.361]

65 Yrs Old

Cancer 2.654 [2.179, 3.232] 2.340 [1.913, 2.864] 0.313 [0.250, 0.377]

CVD 0.271 [0.149, 0.495] 0.219 [0.120, 0.400] 0.052 [0.019, 0.085]

Other causes 1.662 [1.285, 2.149] 1.212 [0.930, 1.580] 0.449 [0.339, 0.559]

80 Yrs Old

Cancer 3.415 [3.055, 3.818] 3.018 [2.690, 3.386] 0.397 [0.340, 0.454]

CVD 0.840 [0.468, 1.508] 0.681 [0.378, 1.228] 0.159 [0.063, 0.255]

Other causes 2.845 [2.426, 3.337] 2.120 [1.792, 2.508] 0.725 [0.618, 0.833]
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additional life-years most deprived patients are expected
to lose due to a specific cause of death in comparison
to the least deprived patients. For instance, at 10 years
from diagnosis, 50 year old male patients from the most
deprived group lose an additional 0.32 (95% CI: 0.28, 0.36)
life-years due to cancer, 0.01 (95% CI: 0.01, 0.02) life-years
due to CVD and 0.33 (95% CI: 0.30, 0.36) life-years due
to CVD compared to the least deprived group. For older
male patients aged 80 years old, there is a greater dis-
parity in life-years lost due to CVD (0.16 life-years) and
other causes (0.76 life-years) between the most and least
deprived.

Analysis of data with marginal estimates
When interest is in the covariate effects of particular
groups, for example, between deprivation groups, it is use-
ful to obtain standardised estimates as described in the
Standardisation for marginal differences section. By
marginalising over the same covariate distribution, fairer
comparisons can be made between particular covariate
groups of interest. In this example, we standardise by age
and sex in order to summarise the differences in sur-
vival between patients from the most and least deprived
groups.

Cause-specific probability of death for theMost deprived
compared to the least deprived
Figure 3 illustrates standardised CIFs stacked for each
cause of death and Fig. 4 presents absolute risk differ-
ences for each cause between the least and most deprived

patients. As illustrated in Fig. 3, patients from the most
deprived group have a higher probability of dying from
any cause (73.8%) compared to those from the least
deprived group (63.3%). However, when partitioned into
the different causes of death, the difference in total mor-
tality between the most and least deprived groups is
mostly due to other causes and CVD as indicated by the
area proportions. The cause-specific marginal risk differ-
ence between the most and least deprived are presented
in Fig. 4 along with their respective 95% CIs. As can be
seen here, the largest difference in risk is due to other
causes and the largest difference in risk between the least
and most deprived groups is due to other causes at 10
years from diagnosis (6.3%; 95% CI: 5.8%, 6.9%). Generally,
the disparity in the probability of dying from other causes
or CVD between the most and least deprived patients
continues to increase over follow-up time. However, the
cancer-specific risk difference between the most and least
deprived increases only for the first 2 years. After this
point, the disparity in the probability of dying due to
cancer between the most and least deprived begins to
decrease.

Expected number of life-years lost for theMost deprived
compared to the least deprived
In Fig. 2, the expected life-years lost and total average
life-years lived were presented for each cause of death
before various time-points, t∗. By obtaining marginal esti-
mates through standardisation over age and sex, we can
focus on specific comparisons between the least and most

Fig. 3 Estimated cause-specific CIFs standardised by age and sex for each deprivation group
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Fig. 4 Estimated CIF differences for each cause of death standardised by age and sex with 95% CIs

deprived patients. The marginal expected life-years lived
for each cause of death and total average life-years lived
before each time, t∗, are similarly illustrated in Fig. 5.
If t∗ = 10, then we have that the total average life-
years lived before 10 years from diagnosis for the most
deprived patients is 4.39 (95% CI: 3.78, 5.00). Of the 5.61

total expected life-years lost, 3.03 (95% CI: 2.66, 3.46)
years are lost due to cancer, 0.46 (95% CI: 0.27, 0.81)
years due to CVD and 2.11 (95% CI: 1.76, 2.53) years
due to other causes. By obtaining marginal estimates of
expected life-years lost, we are able to directly compare
both deprivation groups and determine the additional

Fig. 5 Stacked plots of expected life-years lost for each cause of death standardised by age and sex
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life-years lost for patients that are the most deprived stan-
dardised by age and sex. Thus, where t∗ = 10, we have
that the additional life-years lost due to cancer, CVD and
other causes before 10 years from diagnosis for the most
deprived patients is 0.31 (95% CI: 0.25, 0.37), 0.05 (95%
CI: 0.02, 0.08) and 0.44 (95% CI: 0.33, 0.54) life-years
respectively.

Discussion
This paper presents novel estimation of RMLT and
expected life-years lost from within the flexible para-
metric survival modelling framework in the presence of
competing risks. This can be done either on the CSHs
or cumulative incidence scale and allows easy incorpora-
tion of time-dependent effects to relax the proportionality
assumption. These also offer additional advantages over
the more popular Cox PH and Fine and Gray models
[5, 7]. In particular, we illustrate how one can easily obtain
comparative predictions based on the expected number of
life-years lost due to a specific cause of death in addition
to other useful estimands, such as absolute differences in
the cumulative incidence functions. A common approach
for obtaining marginal estimates uses inverse probability
weighted estimating equations. However, different esti-
mators need to be calculated subject to whether it is of
interest to obtain marginal or non-marginal/conditional
estimates [48, 49]. On the other hand, marginal estimates
using standardisation are easily obtained in addition to
conditional estimates within the FPM approach from a
single model. FPMs in both a standard survival analysis
and for competing risks data offer numerous advantages
in prediction, specifically, through its estimation of the
baseline hazard function using RCS and easy inclusion of
time-dependent effects. In spite of this, it is also impor-
tant to consider limitations that are often highlighted. One
such limitation is the problem of choosing the appropriate
number of knots for the underlying baseline hazard func-
tion using RCS, and for when including time-dependent
effects when relaxing the proportional hazards assump-
tion. However, a number of extensive simulation studies
have been carried out evaluating how many knots are
required in order to accurately capture (both simple and
complex i.e. time-dependent) shapes of the baseline haz-
ard function. For instance, Bower et. al. [37] and Syri-
opoulou et. al. [50] both conclude predictions are not
sensitive to the choice in the number of knots, provided
that a sufficient number of degrees of freedom are used.
In other words, too few degrees of freedom may be too
simple to accurately capture the effect, and too many will
lead to over-fitting. As a guideline, 5 degrees of freedom
to capture baseline effects and 3 degrees of freedom for
any time-dependent effects are suggested as a starting
point. However, it is further suggested that for each indi-
vidual study, sensitivity analyses are carried out in order

to assess model fit and robustness to the choice in degrees
of freedom [37, 50]. Syriopoulou et. al [50] also reach sim-
ilar conclusions with extension to marginal model-based
estimates when obtaining predictions using standardisa-
tion. Alternatively, a penalised approach for choosing the
appropriate number of degrees of freedom for RCS can
be used [51]. The interpretation of the RMLT measure
also has some notable limitations. Although communica-
tion in terms of changes in life-years lost to clinicians and
patients rather than probabilities is attractive, applying an
upper bound, t∗, to the time interval may add some dif-
ficulty in understanding of the measure. This is because,
RMLT for an arbitrary choice of t∗ can only be used to
estimate the average risk within a restricted time period
for a group of patients. Furthermore, it should be high-
lighted that the expected life-years lost makes comparison
with an immortal cohort where patients are alive for the
whole interval from 0 to time t∗. A similar “unrestricted”
measure that do not compare to an immortal cohort can
be estimated within the relative survival framework based
on extrapolation of the excess hazard rate. This is usu-
ally referred to as the number of life years lost, or the
loss in expectation of life and is calculated based on a
comparison of the life-expectancy of cancer patients to
a comparable population group who are assumed to be
cancer-free [52–54]. However, this relies on the assump-
tion that this extrapolation is appropriate which is not
made for the RMLT estimate. In addition to the above,
due to the dependence of the interpretation of RMST
on follow-up time, comparison between different stud-
ies, for example, between countries, becomes difficult. It
has also been further shown that the difference in RMST
between two covariate groups depends on the outcome
rates within each group. Therefore, it is recommended
that differences in RMST, RMFT and expected number
of life-years lost, are reported alongside their respective
survival, or cumulative incidence functions, in order to
allow comparability and to obtain the entire picture of the
impact of different groups on outcome [24]. This further
points to additional advantages of estimation of RMFT
within the flexible parametric modelling framework, as
these additional measures are easily obtained from the
same model.

Conclusions
The RMLT measure is presented as a useful summary
measure with an attractive interpretation which can aid
in the analysis of competing risks data. As discussed by
others, it is also useful to present estimated cause-specific
CIFs alongside CSHs [6, 34]. We propose FPMs as the
chosen estimator as it allows easy estimation of various
estimands from a single model providing both condi-
tional and marginal estimates. Note that, although not
discussed here, if appropriate confounders are adjusted
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for, one can also infer causal effects between two groups
using standardisation. However, one must also consider
the additional complexities and issues in interpretation
with the inclusion of time-dependent risk-groups [44].
Furthermore, the RMLT measure can be easily extended
for obtaining conditional estimates, for example, the aver-
age life-years lived before t∗ years given survival to time
t0 from diagnosis. Example Stata code for the model and
prediction of measures provided in this paper is outlined
in Appendix: Stata code for obtaining predictions.

Appendix A: Restricted cubic spline variables
Given a vector ofM knots,m and a vector ofM−1 param-
eters, γγγ , withM−1 degrees of freedom (df), the restricted
cubic spline function, s(ln(t);γγγ ,m), is defined as,

s(ln(t);γγγ ,m) = γ0 + γ1z1 + · · · + γ(M−1)z(M−1) (31)

Where z1, · · · , z(M−1) are the basis functions of the
restricted cubic splines and are defined as,

z1 = ln(t) (32)

zj = (ln(t) − mj)
3+ − φj(ln(t) − m1)

3+
− (1 − φj)(ln(t) − mM)3+, j=2, · · · ,M − 1

where,

φj = mM − mj

mM − m1
(33)

and

(u)+ =
{
u, if u > 0
0, otherwise

(34)

Usually, M knots are placed at equally spaced centiles
of the distribution of the uncensored log-survival times
including two boundary knots at the 0th and 100th centiles.

Appendix B: Gaussian quadrature
With the general Gaussian quadrature rule, the integral
of any polynomial function, g(u), over the interval [−1, 1]
can be evaluated. This performs best for integrals that can
be approximated by a polynomial function of degree 2m−
1, where m is a pre-determined number of points, other-
wise known as nodes, or abscissae. Hence, this integral can
be evaluated for,

∫ 1

−1
g(u)du =

∫ 1

−1
W (u)g(u)du (35)

where, W (u), is a known weighting function. Here, the
integral, e.g. the cause-specific cumulative incidence func-
tion, is calculated using Gauss-Legendre quadrature, with
W (u) = 1. With this, based on a set of pre-defined num-
ber of nodes, u′

i, and associated Lagrange polynomials
of degree m, Pm(u), weights, w′

i, for i = 1, . . . ,m, are

obtained such that,

w
′
i = 2

(1 − u′2
i )

(
P′
m(u′

i)
)2 (36)

and are provided by Abramowitz and Stegun [55]. There-
fore, Eq. 35 is approximated by,

∫ 1

−1
g(u)du ≈

m∑
i=1

w′
ig(u

′
i) (37)

However, for survival data, functions are evaluated over
an interval [0, t]. Therefore, to apply the Gaussian quadra-
ture rule in Eq. 35, integrals over the interval [0, t] must be
changed to an interval over [−1, 1] such that,

∫ t

0
g(u)du = t − 0

2

∫ 1

−1
g
(
t − 0
2

u + t + 0
2

)
du (38)

Therefore, a function evaluated at t1, . . . , t different
time-points over an interval [0, t] is approximated by
applying Gaussian quadrature rules with W (u) = 1 such
that,

∫ t

0
g(u)du ≈ t − 0

2

m∑
i=1

w′
ig

(
t − 0
2

u′
i +

t + 0
2

)
(39)

Appendix C: Additional summary statistics
Table 2 provide summary statistics on the distribution of
key covariates of interest for inclusion in analysis i.e. sex,
deprivation group (least/most deprived) and age, by cause
of death, and in total.
Figure 6 represents the cause-specific cumulative

incidence functions estimates obtained by the non-
parametric Aalen-Johansen estimator. This summarises
the probability of dying from each cause of death by sex
and deprivation groups.
Figure 7 illustrates the all-cause survival probabilities

obtained by the non-parametric Kaplan-Meier estimator.
This summarises the all-cause probability of survival by
sex and deprivation groups.

Table 2 Distribution of data on key covariates included in the
analysis for n = 159,022 patients

Females, n(%) Least deprived, n(%) Age, mean(sd)

Cancer 21 137 (43.27) 25 084 (51.35) 72.25 (10.57)

CVD 3 158 (39.54) 3 853 (48.24) 76.78 (7.96)

Other Causes 13 716 (42.71) 14 955 (46.57) 74.04 (9.64)

All Causes 38 011 (42.74) 43 892 (49.35) 73.30 (10.13)

Alive/Censored
within 10 yrs

30 663 (43.76) 43 079 (61.47) 68.05 (9.97)

Total 68 974 (43.19) 86 971 (54.59) 70.99 (10.39)
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Fig. 6 Cause-specific cumulative incidence functions (CIFs) Aalen-Johansen estimates for each cause of death

Fig. 7 All-cause Kaplan-Meier survival probabilities by sex and deprivation groups
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Stata code for obtaining predictions
This appendix outlines Stata code used to obtain pre-
dictions presented in the paper. Some user-defined Stata
commands are required which can be installed from the
Boston College Statistical Software Components (SSC)
archive by calling,

ssc install
[
command

]
The following must be installed before running the

code:

• stpm2: To fit the flexible parametric models
described in Flexible parametric survival models
section.

• rcsgen: To generate the restricted cubic spline
functions.

• stcrprep: To restructure data and calculate
time-dependent censoring weights in order to fit
models on the subdistribution hazards scale using
standard Stata commands.

To obtain marginal (and non-marginal) estimates using
standardisation, the standsurv command must be
installed. This will be released on SSC soon, however, in
the meantime, it can be installed by running,

net from https://www.pclambert.net/

downloads/standsurv

Preparing the data for analysis
To prepare the data for a survival analysis in Stata, we
must first run the stset command. We identify the vari-
able that records survival time (in days), exit2, the indi-
cator variable for cause of death, cod, where death from
cancer = 1, CVD = 2 and other causes = 3 and
finally the variable for date of diagnosis, dx. The scale
option is used to transform the survival time into years
from days and we use the exit option to restrict follow-
up time to 10 years from diagnosis and censor those still
alive at 2014. In order to ensure that the death indicator,
_d, generated after stset matches the death indicator
for cause of death, we create a new cause of death indica-
tor, cod2, so that those who die either after 10 years from
diagnosis or 2014 are administratively censored. Finally,
to generate restricted cubic spline variables for the non-
linear effect of age centred at 45 years old at diagnosis,
we use rcsgen. For 3 degrees of freedom, 3 new age
spline variables are created, rcsage1 − rcsage3, and
we store knot positions and matrix for orthogonaliza-
tion which are required for post-estimation predictions at
specific ages.

stset exit2, failure(cod=1,2,3) id(id)

scale(365.25) origin(dx) ///

> exit(time min(dx + 365.25*10.01,

mdy(12,31,2013)))

//must ensure that those that die after

follow-up time

// are administratively censored

gen cod2 = cond(_d==0,0,cod)

//center non-linear age (rcsage) at 45

years old

rcsgen age, gen(rcsage) df(3) orthog

center(45)

//store knot positions in global macro

global knots ‘r(knots)’

//save matrix for orthogonalization

matrix Rage = r(R)

To restructure the data and calculate the time-
dependent censoring weights so that we may fit a
model on the subdistribution hazards scale, we use
stcrprep[56]. Here, we specify wtstpm2 to estimate
the censoring distribution using a Royston-Parmar flex-
ible parametric model with covariates included in the
censcov option. The data is restructured based on the
variable failcode, which splits the data according to
the cause of interest. This is used to fit identify for
which cause the model is to be fitted for. For clarity, we
create dummy variables for each of the causes of death
from failcode and generate _cancer, _cvd and
_other. Another indicator variable, event, is also cre-
ated to identify at which split time interval, or row, death
(from any cause) is observed for that patient. To incor-
porate the calculated weights from stcrprep, we must
stset the data again with tstart and tstop. These
are also provided by stcrprep and give the times at
which an individual starts and stops being at risk.
stcrprep, events(cod2) keep(age mostdep

sex rcsage?) trans(1 2 3) ///

> wtstpm2 censcov(mostdep sex rcsage?)

every(1)

gen event = cod2 == failcode

stset tstop [iw=weight_c], failure(event)

enter(tstart) noshow

tab failcode, gen(cause)

rename cause1 _cancer

rename cause2 _cvd

rename cause3 _other

Model
Themodel described in Flexible parametric survival models
section can be fitted in two ways after preparing the data.
We can either fit separate models for each of the causes

https://www.pclambert.net/downloads/standsurv
https://www.pclambert.net/downloads/standsurv
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of death, or fit a single model to cancer, CVD and other
causes simultaneously. Here, we demonstrate for the latter
to make illustration of the code for obtaining predictions
post-estimation easier. However, in order to fit the equiv-
alent single model with coefficients comparable to the
models fitted individually to each of the causes of death,
the knot locations on the cause-specific survival time
distributions must be stored. These are stored in global
macros for each of the causes of death.
global knotstvc_opt

global bknotstvc_opt

foreach cause in cancer other cvd {

2. global lnbhknots_‘cause’

3. }

foreach cause in cancer other cvd {

2. stpm2 mostdep sex rcsage? if _‘cause’

==1, df(3) ///

> tvc(mostdep sex rcsage?) dftvc(2)

scale(h) eform

3. global bhknots_‘cause’ ‘e(bhknots)’

4. global boundknots_‘cause’

‘e(boundary_knots)’

5. foreach cov in mostdep sex rcsage1

rcsage2 rcsage3 {

6. global knotstvc_opt ${knotstvc_opt} ///

> ‘cov’_‘cause’ ‘e(tvcknots_‘cov’)’

7. }

8. global knotstvc_opt ${knotstvc_opt}

_‘cause’ ${bhknots_‘cause’}

9. global bknotstvc_opt ${bknotstvc_opt}

_‘cause’ ${boundknots_‘cause’}

10. }

Here we define a global macro of the list of covariates
to be included in the single model. As the data is stacked,
interactions need to be created between the covariates
and the indicator variable for each cause of death. See
Lunn and McNeil[57] for further details. The baseline
coefficient, i.e. the constant in the cause-specific model, is
calculated in _cancer, _cvd and _other. We therefore
fit a model for each of the causes of death simultane-
ously without a constant using nocons and the baseline
splines using rcsbaseoff. Instead, the baseline splines
are specified as time-dependent splines for the coefficient
that corresponds to the constant in its respective model
for that particular cause of death. These were stored in the
global macro bknotstvc_opt. Since knots are specified
according to the time scale, rather than the log-time scale,
the knscale(time) option is used.

global covlist

global covlist_tvc

foreach cause in cancer cvd other {

2. global covlist $covlist _‘cause’

3. global covlist_tvc $covlist_tvc_‘cause’

4. foreach cov in mostdep sex rcsage1

rcsage2 rcsage3 {

5. gen ‘cov’_‘cause’ = ‘cov’*_‘cause’

6. global covlist $covlist ‘cov’_

‘cause’

7. global covlist_tvc $covlist_tvc

‘cov’_‘cause’

8. }

9. }

di "$covlist"

_cancer mostdep_cancer sex_cancer

rcsage1_cancer rcsage2_cancer rcsage3_

cancer

_cvd mostdep_cvd sex_cvd rcsage1_cvd

rcsage2_cvd rcsage3_cvd

_other mostdep_other sex_other rcsage1_

other rcsage2_other rcsage3_other

stpm2 $covlist ///

> , scale(h) tvc($covlist_tvc) knotstvc

(${knotstvc_opt}) ///

> bknotstvc(${bknotstvc_opt})

knscale(time) rcsbaseoff eform nocons

Predictions
Although standsurv was written for obtaining
marginalised predictions, it can also be used to obtain
non-marginalised estimates. This is done by simply speci-
fying the entire covariate pattern so that the predictions
are not averaged over any covariate distribution. To
obtain predictions at a specific age, we need to calculate
the spline variables at that particular age centred at 45
years old with the same knot locations and projection
matrix as before. The spline variables are stored in the
local macros c1, c2 and c3. An example is given below
when the cause of interest is cancer and we want to make
comparisons between the most and least deprived male
patients aged either 50, 65, or 80 years old at diagnosis.
foreach age in 50 65 80 {

2. rcsgen, scalar(‘age’) knots($knots)

rmatrix(Rage) gen(c) center(45)

3. global cancer_mostdep_‘age’_male

sex_cancer 0 sex_cvd 0 sex_other 0 ///

> mostdep_cancer 1 mostdep_cvd 0

mostdep_other 0 ///

> rcsage1_cancer ‘=c1’ rcsage2_cancer

‘=c2’ rcsage3_cancer ‘=c3’ ///

> rcsage1_other 0 rcsage2_other 0
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rcsage3_other 0 ///

> rcsage1_cvd 0 rcsage2_cvd 0

rcsage3_cvd 0 _cancer 1 _cvd 0 _other 0

4. global cancer_leastdep_‘age’_male

sex_cancer 0 sex_cvd 0 sex_other 0 ///

> mostdep_cancer 0 mostdep_cvd 0

mostdep_other 0 ///

> rcsage1_cancer ‘=c1’ rcsage2_cancer

‘=c2’ rcsage3_cancer ‘=c3’ ///

> rcsage1_other 0 rcsage2_other 0

rcsage3_other 0 ///

> rcsage1_cvd 0 rcsage2_cvd 0

rcsage3_cvd 0 _cancer 1 _cvd 0 _other 0

5. }

As we do not average over each observation, we must
tell standsurv to only take the first observation in
the stacked data to calculate non-marginalised predic-
tions. This is done using if _n == 1. The failure
option is used to obtain the cumulative incidence func-
tions that is specified in each at option. To calcu-
late the difference between at1 and at2, we use
contrast(difference).
range tempt 0 10 101

foreach age in 50 65 80 {

2. foreach cause in cancer other cvd {

3. standsurv if_n==1, at1(${‘cause’

_leastdep_‘age’_male}) ///

> at2(${‘cause’_mostdep_‘age’

_male}) ///

> atvars(Fage‘age’_‘cause’_male_least

CIF_‘age’_‘cause’_male_most) ///

> contrastvar(CIF_‘age’_‘cause’

_male_diff) ///

> contrast(difference) failure

timevar(tempt) ci

4. }

5. }

Since we are making predictions at particular covariate
patterns for each of the causes separately, specifying rmft
gives us estimates of the expected life-years lost due to a
particular cause of death. To calculate RMLT, we need to
take the sum of all of the at options, where the expected
life-years lost due to cancer, CVD and other causes is spec-
ified in each. We do this by creating our own contrast in
a user-defined mata function which can be called in the
option userfunction. An example of this is also given
below.
foreach age in 50 65 80 {

2. foreach cause in cancer cvd other {

3. standsurv if_n==1, at1(${‘cause’

_leastdep_‘age’_male}) ///

> at2(${‘cause’_mostdep_‘age’

_male}) ///

> atvars(LYL_‘age’_‘cause’_leastdep

LYL_‘age’_‘cause’_mostdep) ///

> contrast(difference) contrastvar

(LYL_‘cause’‘age’_diff) ///

> rmft timevar(tempt) ci

4. }

5. }

mata mata clear

mata

function RMFT(at) {

2. return((at[1]:+at[2]:+at[3]))

3. }

end

In order to obtain marginalised estimates, in each at
option, only the covariate pattern for the group of inter-
est need to be given. For the covariate distribution that
we want to average over, as we have created interactions
between the covariates and the causes of death, thesemust
be mapped to each covariate e.g. sex_cancer = sex.
The others are excluded from the at option for the other
causes of death. In this case, because we want to average
over covariates that we wish to standardise by, we need to
identify the row for each patient in the stacked data that
corresponds to the failure time of that individual. This is
done by creating the indicator variable first and using it
as an if condition in standsurv. As before, we give an
example for specifying macros for use in the at options
for deaths due to cancer.
global cancer_mostdep_stand sex_cvd 0

sex_other 0 sex_cancer = sex ///

> mostdep_cancer 1 mostdep_cvd 0

mostdep_other 0 ///

> rcsage1_cancer = rcsage1 rcsage2_cancer

= rcsage2 rcsage3_cancer = rcsage3 ///

> rcsage1_other 0 rcsage2_other 0

rcsage3_other 0 ///

> rcsage1_cvd 0 rcsage2_cvd 0

rcsage3_cvd 0 ///

> _cancer 1 _cvd 0 _other 0

global cancer_leastdep_stand sex_cvd 0

sex_other 0 sex_cancer = sex ///

> mostdep_cancer 0 mostdep_cvd 0

mostdep_other 0 ///

> rcsage1_cancer = rcsage1 rcsage2_cancer

= rcsage2 rcsage3_cancer = rcsage3 ///

> rcsage1_other 0 rcsage2_other 0

rcsage3_other 0 ///

> rcsage1_cvd 0 rcsage2_cvd 0
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rcsage3_cvd 0 ///

> _cancer 1 _cvd 0 _other 0

bysort failcode id (_t): gen first

=_n==1

The cause-specific CIF differences are thus calculated as
follows,
foreach cause in cancer other cvd {

2. standsurv if first, at1(${‘cause’

_leastdep_stand}) ///

> at2(${‘cause’_mostdep_stand}) ///

> atvars(Fstand_‘cause’_least Fstand_

‘cause’_most) ///

> contrast(difference) contrastvars

(Fdiff_‘cause’) ///

> failure timevar(tempt) ci

3. }

As highlighted above, we can write user-functions to
define our own contrasts. Below is an example for when
interest is in calculating the difference in RMLT between
the most and least deprived patients.

mata mata clear

mata

: function RMFTdiff(at) {

2. return((at[1]:+at[2]:+at[3]) :- (at[4]:

+at[5]:+at[6]))

3. }

: end

standsurv if first, at1(${cancer_mostdep_

stand}) ///

> at2(${cvd_mostdep_stand}) ///

> at3(${other_mostdep_stand}) ///

> at4(${cancer_leastdep_stand}) ///

> at5(${cvd_leastdep_stand}) ///

> at6(${other_leastdep_stand}) ///

> atvars(LYLcancer_stand_mostdep LYLcvd_

stand_mostdep ///

> LYLother_stand_mostdep LYLcancer_stand_

leastdep ///

> LYLcvd_stand_leastdep LYLother_stand_

leastdep) ///

> userfunction(RMFTdiff) userfunctionvar

(RMFT_diff) ///

> failure timevar(tempt) ci
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