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Abstract

The use of machine learning in high-dimensional biological applications, such as the human microbiome, has grown
exponentially in recent years, but algorithm developers often lack the domain expertise required for interpretation and
curation of the heterogeneous microbiome datasets. We present Microbiome Learning Repo (ML Repo, available at
https://knights-lab.github.io/MLRepo/), a public, web-based repository of 33 curated classification and regression tasks from
15 published human microbiome datasets. We highlight the use of ML Repo in several use cases to demonstrate its wide
application, and we expect it to be an important resource for algorithm developers.
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Findings
Background

Machine learning is widely used as a method for classification
and prediction, with a growing number of applications in hu-
man health [1]. The use of machine learning in biological fields
[2, 3], and more specifically the microbiome research field [4–7],
has grown exponentially owing to the robustness of these algo-
rithms to high-dimensional data. However, challenges exist for
large-scale meta-analysis because they often require manual cu-
ration of metadata and standardized processing of raw sequence
data, resulting in variation in the results derived from chosen
datasets across studies [8, 9]. In addition, microbiome research
data can be challenging to access and analyze for expert ma-
chine learning algorithm developers, who often do not have the
domain expertise required to interpret the data and metadata
in complex microbiome studies. There exist general resources
with curated classification tasks from a variety of domains. The

University of California Irvine Machine Learning Repository [10]
revolutionized machine learning methods development by giv-
ing developers access to many curated datasets; its widespread
usage and impact can be seen from its thousands of resulting
citations. Currently, we are unaware of any machine learning
repository dedicated to microbiome classification tasks. We con-
structed a complementary database to address this deficiency, in
order to promote the development of and use of improved ma-
chine learning methods for the microbiome community.

Workflow

We present the Microbiome Learning Repo (ML Repo), a repos-
itory of 33 curated classification and regression tasks involving
human microbiome data. Our 33 tasks are derived from 15 pub-
licly available human microbiome datasets, which include 12
amplicon-based and 3 shotgun sequencing datasets (Table 1).
These datasets vary across sequencing technology platforms,
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Table 1: Microbiome datasets with available classification tasks in ML Repo

Project name V Region
Target

size
No.

samples
No.

subjects Area Description
Sequencing
technology Study design

Cho 2012 V3 177 95 47 Antibiotics Mouse fecal and cecal samples,
control vs 4 kinds of antibiotics

454 Cross-
sectional

Claesson 2012 V4 221 168 168 Age Elderly and young adults 454 Cross-
sectional

David 2014 V4 282 235 11 Diet Plant-based vs animal-based
diet, cross-over study

Illumina MiSeq Longitudinal

Gevers 2014 V4 173 1,321 668 IBD Biopsies from patients with IBD
prior to treatment

Illumina MiSeq Cross-
sectional

HMP 2012 V35 527 6,407 242 Body habitat,
sex

Up to 18 body sites across 242
healthy subjects at 1–2 time
points

454 Cross-
sectional

Kostic 2012 V35 569 190 95 Colorectal
cancer

Adjacent healthy vs tumor
colon biopsy tissues

454 Paired

Montassier
2016

V56 280 28 28 Bacteremia Patients prior to chemotherapy
who did or did not develop
bacteremia

454 Cross-
sectional

Morgan 2012 V35 569 231 231 IBD Healthy controls, patients with
Crohn’s disease or ulcerative
colitis

454 Cross-
sectional

Turnbaugh
2009

V2 230 281 154 Obesity Monozygotic or dizygotic twin
pairs concordant for body mass
index class, and their mothers

454 Cross-
sectional

Wu 2011 V12 244 95 10 Diet Controlled high-fat or low-fat
feeding on 10 subjects over 10
days

454 Longitudinal

Yatsunenko
2012

V4 282 531 531 Geography, age,
sex

Humans of varying ages from
the USA, Malawi, and Venezuela

Illumina MiSeq Cross-
sectional

Ravel 2011 V12 240 396 396 Bacterial
vaginosis

Vaginal samples from 4 ethnic
groups; Nugent scores for
bacterial vaginosis

454 Cross-
sectional

Karlsson 2013 NA NA 144 144 Diabetes Patients with normal, impaired,
or type 2 diabetes glucose
tolerance categories

Illumina HiSeq Cross-
sectional

Qin 2012 NA NA 134 134 Diabetes Chinese healthy controls vs
patients with type 2 diabetes

Illumina HiSeq Cross-
sectional

Qin 2014 NA NA 130 130 Cirrhosis Healthy controls vs patients
with cirrhosis

Illumina HiSeq Cross-
sectional

ML Repo contains 33 classification and regression tasks from 15 publicly available human microbiome datasets shown here. IBD: inflammatory
bowel disease; NA: not applicable.

16s hypervariable regions, and study design, in order to help de-
velopers ensure robustness of algorithms across data types. We
streamlined the microbiome data using a single post-processing
workflow (Fig. 1A). We downloaded trimmed and quality-filtered
sequencing reads for 8 datasets from QIITA [11], and raw se-
quences for 7 datasets from public repositories. Raw sequences
were trimmed and quality filtered using SHI7 [12] or QIIME [13].
We picked operational taxonomic units (OTUs) from all quality-
filtered sequences using a closed-reference method with the
BURST [14] aligner against both the National Center for Biotech-
nology Information (NCBI) RefSeq 16S ribosomal RNA project
[15] and the Greengenes 97 database [16]. Samples with <1,000
sequencing reads were dropped for 10 datasets, while we ap-
plied a lower threshold of 100 sequencing reads per sample
for 5 datasets that had lower expected bacterial load. Full de-
tails regarding the data preprocessing are provided for each data
set in the mlrepo-source branch of the GitHub repository, under
preprocessing/make.mappings.r. As a result, for each dataset
we generated RefSeq-based OTU and taxa abundance counts,
and Greengenes-based OTU and taxa abundance counts. These
counts are presented in tables that are organized as follows:
OTUs or taxa as rows, and samples as columns. OTUs are repre-
sented as either NCBI genome identifiers or Greengenes identi-
fiers. Taxa are represented as “kingdom; phylum; class; order;

family; genus; species; strain,” with highest taxonomic speci-
ficity where possible. We excluded additional post-processing
filtering and normalization steps so that these parameters can
be included in future benchmarking use cases as needed. We
also limit our data to OTU and taxa tables because other met-
rics such as α and β diversity can be subsequently generated as
needed.

Sample metadata from individual studies were manually cu-
rated to generate viable prediction tasks. When available, pub-
lished study exclusion criteria, such as reported use of antibi-
otics, were applied accordingly and confounders were removed
by dropping samples or stratification. Well-known confounders
were accounted for when constructing prediction tasks for other
human-associated conditions; e.g., predicting age using the Yat-
sunenko 2012 dataset is restricted to samples from the USA ow-
ing to the known variation in gut microbiomes across different
geographical locations. Details of how samples were subset for
each prediction task can be found in the mlrepo-source branch
of the GitHub repository, under preprocessing/make.mappings.r.
Studies that were cross-sectional by design but contained sev-
eral samples per subject were filtered to contain 1 sample per
subject. In study designs with paired diseased-healthy or pre-
and post-intervention samples, samples were reduced to 2 sam-
ples per subject with subject identifiers provided as confounder
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(A)

(B)

Figure 1: Data processing workflow and website generation. (A) Quality-filtered sequences were obtained from either the QIITA or from another public repository and

trimmed and filtered using SHI7. Reference-based OTUs were picked using BURST with the NCBI RefSeq and Greengenes 97 (GG 97) databases. (B) Individual GitHub
Markdown pages were generated from dataset and task lists with a custom Python script and Jinja2 template, then uploaded to GitHub to be hosted.

variables. Hence, each prediction task is made available as an
individual, compartmentalized metadata file that contains sam-
ple identifiers, responses to predict, and optionally, confounder
variables that are inherent to the research study design such as
paired healthy and diseased samples from the same subject (see
Methods for more details). As a result, we generated 33 distinct
tasks for predicting human-associated responses.

Publicly available web-based interface

We expect 2 types of users: (i) machine learning algorithm devel-
opers with limited knowledge of microbiome study designs and
(ii) microbiome researchers interested in obtaining additional
datasets for meta-analysis. Generally, we expect that method
developers will be most interested in sweeping through the full
set of prediction tasks for benchmarking, and hence would pre-
fer to download a single compressed file containing all tasks and
data. On the other hand, we expect microbiome researchers to
be more selective in downloading specific datasets and tasks de-
pending on their research domain. Hence, researchers may pre-
fer to browse specific details about tasks and datasets prior to
downloading.

On the basis of these expected use cases, we created a pub-
licly available web-based interface for ML Repo hosted by GitHub
Pages [17]. Tasks are organized by relevant response categories
(Fig. 2A). Task pages contain descriptive details such as sam-

ple size and response type that are specific to the selected pre-
diction task, as well as links for downloading OTU tables, taxa
tables, and sample metadata (Fig. 2B). Dataset pages contain
important details about the entire dataset, including links to
the original research study, as well as original metadata files
and quality-filtered sequences (Fig. 2C). We also provide a sin-
gle compressed file containing the entire set of available tasks
(OTU tables, taxa tables, and relevant metadata) for download
from the main home page.

Benefits of curated microbiome-based prediction tasks

We expect ML Repo to be beneficial for both the machine learn-
ing community as well as the microbiome research commu-
nity. ML Repo will be a powerful complement to the Univer-
sity of California Irvine’s Machine Learning Repository because
it will allow for benchmarking curated classification tasks with
high-dimensional data and hence enable the subsequent de-
velopment of novel algorithms for these complex datasets. Our
streamlined approach in generating OTU and taxa tables offers
a rich set of 15 datasets that microbiome researchers can use di-
rectly for further comparison with their own studies, for teach-
ing and learning purposes, or for large meta-analyses. We expect
that our provided OTU and taxa tables will also be beneficial for
researchers with limited access to high-performance comput-
ing resources or bioinformatics skills necessary for processing
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Figure 2: Screenshots of ML Repo web interface. (A) Available classification and regression tasks are listed by high-level phenotype categories for browsing. (B) Individual

task webpages contain links to files for classifying a specific task, as well as relevant task-specific metadata. (C) Individual dataset webpages contain relevant metadata
pertaining to the entire dataset, as well as links to raw metadata files and sequencing data.

raw sequencing data. In addition, we also expect microbiome-
specific methods development to benefit from our repository.
The subset of samples found in each prediction task metadata
file replace the work of rigorously deciphering metadata and un-
derstanding the subtle differences of individual research stud-
ies. New methods, such as OTU-picking algorithms, can be eval-

uated not only on metrics such as speed and accuracy but also
based on overall impact to study findings.

Comparison to similar databases

Although a number of microbiome repositories exist, many are
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Figure 3: ROCs comparing random forest and SVM with different kernels. Sweeping across all binary classification tasks available in ML Repo (28), we compare ROCs

of random forest, SVM with a radial kernel, and SVM with a linear kernel. AUCs are listed within plots and are colored respective to each model. cd: Crohn’s disease;
dz: dizygotic; mz: monozygotic; uc: ulcerative colitis.

intended as data archival repositories [18, 19] or function as re-
sources for aggregating across studies [20]. Resources such as

QIITA [11] offer an extensive collection of datasets, and mock-
community–based Mockrobiota [21] is well-suited for bench-
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(A)

(B)

(C)

Figure 4: Summary statistics of framework and database comparisons. (A) AUCs of random forest (rf) to SVM-Linear (left) and random forest to SVM-Radial (right).
Paired t-tests reveal that random forest results in significantly higher AUC than both SVM-Linear (P = 0.0014) and SVM-Radial (P = 0.00032). (B) Accuracies of random

forest to SVM-Linear (left) and random forest to SVM-Radial (right). Paired t-tests reveal that random forest results in significantly better accuracy than SVM-Radial (P
= 0.03), but not SVM-Linear (P = 0.083). (C) AUCs (left) and accuracies (right) of random forest classifications of 24 tasks using OTUs picked with NCBI RefSeq database
or Greengenes (gg) database as predictors. Student t-test reveals that reference database choice has limited impact on classification AUC or accuracy. Lines are colored
by the top model for each classification task.

marking upstream methods, but neither offers support for the
metadata interpretation necessary for predicting high-level phe-
notypes. Microbiome-based repositories that do provide man-
ually curated metadata include curatedMetagenomicData [22]
and MicrobiomeHD [23]. Although curatedMetagenomicData of-
fers a collection of shotgun-metagenomics datasets with vary-
ing human sample types with gene, pathway, and taxonomic
abundance tables, its data are accessible only via Bioconduc-
tor [24] and are stored as ExpressionSet objects, which inte-

grates metadata and abundance data. Although curatedMetage-
nomicData is an impressive repository with many features, it
is most suitable for advanced bioinformaticians because its in-
terface may hinder use by beginner data analysts and in teach-
ing environments. MicrobiomeHD offers easily accessible taxo-
nomic abundance tables with curated metadata but is limited
only to amplicon-based sequencing data, human stool samples,
and case-control responses. And although both curatedMetage-
nomicData and MicrobiomeHD provide manually curated meta-
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Figure 5: ROCs comparing NCBI RefSeq and Greengenes 97 (gg97) databases. Sweeping across 16s-based binary classification tasks available in ML Repo (24), we compare

ROCs of random forest with genus-level taxonomic summaries as predictors from OTU-picking strategies with the NCBI RefSeq prokaryote reference database and the
Greengenes 97 reference database. AUCs are listed within plots and are colored respective to each database. cd: Crohn’s disease; dz: dizygotic; mz: monozygotic; uc:
ulcerative colitis.
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data, biological interpretation is still required because other
sample metadata, e.g., antibiotic use, may have biological rel-
evance in predicting responses. This poses a potential problem
for machine learning developers with limited biological and mi-
crobiome domain expertise. ML Repo resolves this issue by ex-
plicitly defining classification and regressions tasks for predict-
ing responses that have either been manually curated to re-
move confounders or been specifically annotated with biolog-
ical confounders that must be controlled for. Metadata files in
ML Repo are task-specific and, hence, are simplified to contain
only (i) sample identifiers indicating samples that should be
used for the prediction task, (ii) corresponding high-level pheno-
types or responses, and optionally, (iii) a confounder that should
be accounted for owing to its biological relevance. In addition,
datasets in ML Repo include both amplicon-based and shotgun-
metagenomics datasets covering a variety of human sample
types, and are easily accessible via a web-based interface.

Case studies

We compare the performance of 3 machine learning models: a
random forest [25], and a support vector machine(SVM) [26] with
either a radial or linear kernel. Sweeping through available tasks
with binary responses, we compare our models by examining re-
ceiver operating curves (ROCs) and areas under the curve (AUC),
considered the standard method for machine learning model
evaluation [27, 28] (Fig. 3). Through comparison of ROCs, we can
see that random forest outperforms or ties the other 2 models
in 21 of the 28 tasks. The choice of kernels for SVM seems to
have limited impact on overall mean accuracy, yet a linear kernel
was able to perfectly classify penicillin-treated and vancomycin-
treated mouse cecal contents when the other models could not;
further examination of the microbial features in these samples
may be warranted to better elucidate the strengths of this ker-
nel. We also performed pairwise comparisons of random for-
est against the other models across all tasks. When evaluated
by AUC, random forest performed significantly better than both
SVM with a linear kernel (P = 0.0014) and with a radial kernel (P
= 0.00032) (Fig. 4A). We found that random forest accuracy im-
provements were moderate when compared with SVM-Linear
(P = 0.083) and SVM-Radial (P = 0.03) (Fig. 4B), which may be
explained by the fact that, unlike AUC, accuracy ignores class
prediction probability estimates. Our results support the broad
usage [4, 5, 8, 29] and acceptance of random forest as a robust
classifier [6] with high-dimensional microbiome data.

To assess the impact of reference database choice on classi-
fication accuracies, we also used the classification tasks to com-
pare random forest using OTUs picked with the Greengenes 97
database or the NCBI RefSeq Targeted Loci Project 16s project.
We found that there was limited impact of database choice on
overall classification accuracies (Figs 4C and 5). This may be due
to (i) large effect sizes that are driven mainly by several well-
characterized bacterial taxa present in both databases (e.g., stool
vs tongue samples), or (ii) small effect sizes such that classifica-
tion is difficult regardless of the database (e.g., male vs female
stool). Note that OTU-picking with the Greengenes database re-
sulted in more OTU features in every dataset (Table 2); hence,
these findings further highlight how the smaller, higher-quality
NCBI RefSeq database can recover the same signal from the
larger Greengenes database.

Future work

We expect and hope that the broader microbiome research com-
munity will add new datasets and prediction tasks to ML Repo.
We provide instructions [30] on our GitHub repository to guide
users to create a fork from our repository, add the appropriate
data and files, and update the master task and dataset lists. Re-
searchers can then submit a pull request for our review, and re-
quests that are properly formatted will be accepted and merged
into the repository. We expect that data submissions will come
from either the original researchers or those well acquainted
with the datasets, and hence will expect that sample selection
and subsetting will have undergone rigorous review for predic-
tion tasks.

Methods
Pre-processing of sequencing reads

When available, preprocessed FASTA files were downloaded
from QIITA (or previously, the QIIME database). For all other
datasets, raw FASTQ files were downloaded from sources listed
in Supplemental Table 1. Adaptors and barcodes were removed
and sequences were quality filtered (at Phred score ≥ Q20) using
SHI7 [12] or QIIME [13]. OTUs were picked from processed FASTA
files using BURST [14] with Greengenes [16] 97 or the NCBI RefSeq
Targeted Loci Project 16s project [15] (accessed on 4 July 2017).
Samples with sequencing depth <1,000 sequences per sample
were dropped for all studies, except for 5 datasets [31–35], where
the minimum threshold was 100 sequences per sample.

Selection of classification tasks

Classification tasks were selected on the basis of reported study
results, biologically relevant high-level phenotypes, and suffi-
cient sample sizes. Original metadata files and research meth-
ods were rigorously and manually curated in order to subset
samples with minimal confounders. For confounders that were
inherent to the study, we include an additional variable to con-
trol for in the task metadata files. The presence of control vari-
ables can be found by examining “control vars” in the Tasks ta-
ble.

Website generation

Website templating was developed using Jinja2 [36] and custom
Python scripts. Individual webpages were generated by iterat-
ing through items in the Tasks and Datasets tables, and dynam-
ically populating templates to generate individual Markdown
[37] pages. The resulting Markdown pages are hosted as GitHub
Pages.

Case study benchmarking

Case study results were generated with custom R [38] scripts,
which can be found in the /example folder in the ML Repo Github
repository. To compare machine learning models, we iterated
through tasks with binary responses. OTU counts were con-
verted to relative abundances, filtered at a minimum of 10%
prevalence across samples, and collapsed at a complete-linkage
correlation of 95% (which is done by calculating the Pearson
correlation between each pair of OTUs using all complete pairs
of observations, hierarchically clustering the results, and cut-
ting the resulting dendrogram at a height of 0.05). We then con-
structed a 5-fold cross-validation for tasks containing >100 sam-
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ples, or a leave-one-out cross-validation for tasks with fewer
samples. For n-fold cross validation, samples were assigned to
folds such that classes were equally balanced within each fold
(e.g., if our task contained 40% healthy and 60% diseased sam-
ples, our folds would also be selected to represent this distri-
bution). For tasks that contained control variables, we selected
folds such that samples with the same control variable value
were contained within the same fold. For example, for a task
dataset containing matching stool and oral samples from sub-
jects, the Subject Identifier would be listed as the control vari-
able and we should assign samples to folds such that all sam-
ples from a specific subject were contained within a fold. This
step is crucial to avoid biasing or overfitting the training model;
test folds should contain not only new samples but also sam-
ples that are independent from those in the training set. Models
were constructed using the “caret” package [39]. Control param-
eters were set using the function trainControl with parameter
method = “none” and default parameters. Default settings for all
models are as follows: SVM radial basis σ is set to 0.1, all SVMs
[40]C is set to 1, and randomForest number of trees is set to 500
and number of variables to split is sqrt(p), where p is the num-
ber of features. This entire process was bootstrapped 100 times,
and the mean class probabilities were used to calculate the re-
sulting AUCs and ROCs. To compare classification accuracies us-
ing different reference databases, we used a similar procedure
but held the model constant and predicted using different base
OTU tables. This framework enables comparison of a myriad of
machine learning models available in the “caret” package and
can be easily expanded to compare different OTU-picking algo-
rithms, or normalization and filtering techniques.

Availability of supporting data and materials

All test datasets are available in the Microbiome Learning Repo
site [17]. Snapshots of our code and other supporting data are
available in the GigaScience database, GigaDB [41].

Availability of supporting source code and
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License: MIT License
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Table3 Glossary

Term Definition
OTU Operational taxonomic unit, group of closely

related organisms based on DNA sequence
similarity

16S 16S ribosomal RNA gene, component of the
prokaryotic ribosome, used to reconstruct
phylogenies

FASTA Text-based format for representing nucleotide
sequences with single-letter codes

FASTQ Text-based format for representing nucleotide
sequences and corresponding quality scores,
with single-letter codes for nucleotides and
quality

Taxa Groups of ≥1 populations of organisms. Usually
summarized at phylum, class, order, family,
genus, or species levels

Metadata Descriptive data pertaining to samples within a
study

Shotgun Shotgun metagenomics sequencing breaks up
all available DNA into random small segments
and uses chain termination to sequence reads.
Reads can be aligned directly to a reference
database, or overlapping reads can be
assembled into contiguous sequences
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